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Abstract

In this paper, we present mesh-independent modeling of discontinuous fields on
polygonal and quadtree finite element meshes. This approach falls within the class
of extended and generalized finite element methods, where the partition of unity
framework is used to introduce additional (enrichment) functions within the classical
displacement-based finite element approximation. For crack modeling, a discontinu-
ous function and the two-dimensional asymptotic crack-tip fields are used as enrich-
ment functions. Linearly complete partition of unity approximations are adopted
on polygonal (convex and nonconvex elements) and quadtree meshes. Excellent
agreement with reference solution results is obtained for mixed-mode stress inten-
sity factors on benchmark crack problems, and crack growth simulations without
remeshing are conducted on polygonal and quadtree meshes to reveal the potential
of the proposed techniques in computational failure mechanics.

Key words: partition of unity, discontinuous enrichment, natural neighbors,
Voronoi tessellation, nonconvex polygons, fracture, crack growth

1 Introduction

Polygonal finite elements [1] are a generalization of triangular and quadrilat-
eral finite element methods to meshes with n-sided elements (n ≥ 3). The abil-
ity to construct conforming approximations on convex and nonconvex shapes
provides greater flexibility in mesh generation [2] and render such elements to
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be a viable and potentially attractive choice in computer modeling and simu-
lation. Recently, partition of unity finite element techniques have emerged as
a powerful tool for crack growth simulations without the need for any remesh-
ing. The extended and generalized finite element methods [3–5] are particular
instances of the partition of unity finite element method [6,7]. In the extended
finite element method (X-FEM) [3, 4], the emphasis has been on modeling
crack discontinuities using minimal enrichment. In this paper, we introduce
crack growth modeling using the X-FEM on polygonal and quadtree meshes.

Rational finite element basis functions on convex polygons were introduced by
Wachspress [8], and in recent years there has been growing interest in the con-
struction of shape functions (barycentric coordinates) on irregular polygons
and polyhedra. Many new contributions on barycentric polygonal interpo-
lation have been realized in geometry modeling and graphics, and in finite
element methods [1,9–16]. In Reference [1], natural neighbor based (Laplace)
interpolants [17] are used to construct shape functions on irregular polygons
(n-gons), which is adapted to quadtree meshes (resolves the issue of hanging
nodes) in References [18, 19]. Barycentric coordinates are non-negative, form
a partition of unity, have linear precision, and are linear on element edges.
Mean value coordinates retain the key properties of barycentric coordinates
on arbitrary (convex and nonconvex) planar polygons [15], which makes them
a suitable candidate for use in finite element modeling on meshes with non-
convex elements.

The partition of unity (PU) method [6, 7] generalized the classical finite el-
ement method by providing the ability to incorporate a priori information
on the nature of the solution of the boundary-value problem within the fi-
nite element approximation space. Any set of basis functions {φi(x)}ni=1 that
sum to unity form a partition of unity. Belytschko and Black [3] were the
first to use the PU framework to model crack discontinuities, and this was
subsequently extended by Moës et al. [4] who introduced simple (Heaviside
function) enrichments for the interior of the crack. The literature on gener-
alized and extended finite element techniques is extensive, and we point the
interested reader to Karihaloo and Xiao [20] for a review and to the recent
article of Bordas et al. [21] for an extensive listing. The driving force in the X-
FEM is to obtain good accuracy on relatively coarse meshes and to eliminate
the need for remeshing in crack growth simulations—remeshing is a necessity
for crack propagation studies using classical finite element methods. In the
X-FEM, crack modeling and crack growth are carried out on a fixed finite
element mesh, which lends itself to parametric studies for failure analyses of
single and multiple cracks. In this paper, we appeal to References [1,15,18] to
first construct partition of unity approximation spaces on polygonal (convex
and nonconvex elements) meshes. These advances are used to develop extended
finite element methods for crack growth modeling on polygonal meshes, and
as a special case, the capabilities are extended to quadtree meshes. The ad-
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vantages and flexibility of using nonconvex finite elements and quadtree-based
meshes in mesh-independent crack growth simulations is demonstrated.

The rest of the paper is organized as follows. In Section 2, the construction of
conforming interpolants on polygonal and quadtree meshes is described. The
X-FEM formulation for crack modeling on polygonal meshes is touched upon
in Section 3, and the computer implementation is presented in Section 4. In
Section 5, the performance of the proposed technique is assessed on bench-
mark crack problems and for crack growth simulations in linear elastic media.
Finally, we close with some concluding remarks in Section 6.

2 Polygonal and quadtree finite elements

2.1 Polygonal meshes

The construction of conforming Laplace interpolants on arbitrary convex poly-
gons is summarized; for details, the interested reader can refer to Refer-
ences [1,16]. The Laplace interpolant is a natural neighbor-based interpolation
scheme [17] that is based on the underlying Voronoi diagram and Delaunay
triangulation. For a set N consisting of n nodes with locations {xi}ni=1, the
natural neighbors [22] of a point p within the convex hull of N are defined
through the Delaunay circumcircles: if p lies within the circumcircle of a De-
launay triangle t, the nodes that define t are neighbors of p. For the polygonal
reference elements shown in Fig. 1 (regular n-gons), the Delaunay tessellation
of either polygonal domain is non-unique. This non-uniqueness arises in two
dimensions when four or more nodes are cocircular. For a valid tessellation of
either polygon, the Delaunay triangles t of the polygon are circumscribed by
the same circle, and therefore all the vertex nodes of the polygon are natural
neighbors of any interior point p.

A polygonal reference element and the Voronoi cell of a point p inside the
reference element are shown in Fig. 2. The Laplace shape function at point p
is given by [17]

φa(ξ) =
αa(ξ)
n
∑

b=1
αb(ξ)

, αa(ξ) =
sa(ξ)

ha(ξ)
, ξ ∈ Ω0, (1)

where n is the number sof vertex nodes, αa(ξ) is the Laplace weight function,
sa(ξ) is the length of the common edge between the Voronoi cell of point p and
Voronoi cell of node a, and ha(ξ) is the distance between point p and node a.
By construction, Laplace shape functions are non-negative, form a partition
of unity, are linearly complete, and are linear on the element edges [23]. The
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Fig. 1. Reference elements. (a) Hexagon; and (b) Heptagon.
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Fig. 2. Construction of Laplace shape functions in a reference element.

Laplace interpolant on the physical element is constructed via an isoparametric
mapping from the corresponding reference element (the regular polygon with
the same number of nodes as the physical element) to the physical element.
In Fig. 3, the isoparametric mapping from a hexagonal reference element to a
six-noded polygonal element is illustrated. Since the mapping is isoparametric,
Laplace shape functions remain linear on the edges of the physical element.
Due to linearity of the Laplace interpolant on the element edges, the resulting
basis functions are conforming on polygonal meshes. Laplace shape functions
reduce to barycentric coordinates on a triangle and to bilinear finite element
shape functions on a biunit square [23]. Hence, polygonal finite elements are
an extension of three- and four-noded finite elements to irregular convex n-
gons. To integrate a function on a polygonal element, we proceed similar to
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finite elements. Numerical integration is performed on the reference element
by subdividing it into subtriangles and then quadrature rules for a triangle
are applied [1].
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Fig. 3. Isoparametric mapping from a hexagonal reference element to a six-noded
physical element.

Meyer et al. [9] introduced a simple formula for Wachspress’s basis functions,
whereas Floater [10] utilized the mean value theorem for harmonic functions to
propose a new barycentric coordinate on irregular polygons. Floater’s linearly
precise mean value coordinate at point p is [10]:

φi(x) =
wi(x)
n
∑

j=1
wj(x)

, wi(x) :=
tan (αi−1/2) + tan (αi/2)

ri
, ri := |xi−x|, (2)

where ri ≡ ri(x) is the Euclidean distance between p and pi, and the angles
αi−1 and αi are shown in Fig. 4b. In Fig. 4b, pi−1, pi, and pi+1 are contigu-
ous vertex nodes whose coordinates are xi−1, xi, and xi+1, respectively. For
nonconvex polygons, mean value coordinates are positive in the kernel of the
polygon (Fig. 4a). Furthermore, they have a smooth extension outside the
polygon, and are linear on any element edge (Fig. 5). These properties are
not met by other barycentric constructions [13,16]. Hormann and Floater [15]
have presented the important properties of mean value coordinates along with
an implementation for planar polygons. On letting ri = xi − x, we have [15]

tan
(

αi
2

)

=
1− cosαi
sinαi

=
riri+1 − ri · ri+1

2Ai

=
riri+1 − ri · ri+1
|ri × ri+1|

, (3)

where Ai is the area of triangle [pi, pi+1, p] (see Fig. 4b). If Ai = 0, then two
cases are possible: (1) if p ∈ [pi, pi+1] (p lies on a boundary edge), then the
interpolant is linear on the edge with only φi(x) and φi+1(x) being non-zero,
and (2) if p lies in the interior of a nonconvex polygon with αi = 0, then the
weight is zero but a procedure to find the derivatives of the above weight at p
is not apparent. To ease the derivative computations, we have implemented a
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modified form of Eq. (3):

tan
(

αi
2

)

=
sinαi

1 + cosαi
=

2Ai

riri+1 + ri · ri+1
=

|ri × ri+1|
riri+1 + ri · ri+1

, (4)

which is now valid for all points p that are in the interior of an arbitrary planar
(convex and nonconvex) polygon. The denominator vanishes when αi = π,
i.e., when p lies on the boundary of the polygon, but this does not arise in the
present application since all integration points are in the polygon interior.
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Fig. 4. Mean value coordinates [10]. (a) Kernel K of the polygon; and (b) Construc-
tion.

To numerically integrate the weak form integrals, the derivatives of the basis
functions are required. Unlike Laplace shape functions that are defined on
a reference element, mean value coordinates are directly evaluated on the
physical element. The physical element is subdivided into triangles for the
purpose of numerical integration. On applying the chain rule to Eq. (2) and
using Eq. (4), the derivatives of mean value coordinates are obtained. Letting
W (x) :=

∑n
j=1wj(x) and w̃i(x) := tan(αi/2), we can write

∇φi(x) =
∇wi(x)− φi(x)∇W (x)

W (x)
, (5a)

where

∇wi(x) =
∇w̃i−1(x) + ∇w̃i(x)− wi(x)∇ri

ri
, ∇ri =

x− xi

ri
, (5b)
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Fig. 5. Smooth extension of mean value coordinates in the plane. Nodes are vertices
of a nonconvex polygon (thick line), and the square on the top-left in (a) and (c)
lies outside the polygon. (a) and (b) Contour and 3D plot of φa(x); and (c) and (d)
Contour and 3D plot of φb(x).

and

∇w̃i(x) =
∇

(

|ri × ri+1|
)

− w̃i

(

ri∇ri+1 + ri+1∇ri + 2x− xi − xi+1
)

riri+1 + ri · ri+1
. (5c)

Polygonal meshes are generated by using the Voronoi tessellation of the do-
main [19]. To this end, first a set of random seed points are inserted in the
domain, and then the Voronoi diagram of this set of generators is constructed.
This results in a nonuniform polygonal mesh (see Fig. 6a). Quasiuniform
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Fig. 6. Polygonal meshes. (a) Initial mesh; and (b) Final mesh.

polygonal meshes are constructed using the centroidal Voronoi tessellation
(CVT) algorithm. In a centroidal Voronoi diagram, the generator point is
the same as the centroid of the Voronoi cell. Lloyd’s algorithm is suitable to
compute the centroidal Voronoi diagram [24]:

(1) Generate a set of random generator xi.
(2) Construct the Voronoi diagram of this set of generators.
(3) Calculate the centroid of each Voronoi cell Ci.
(4) If Ci converges to xi, stop, otherwise put xi = Ci, goto step 2.

An initial nonuniform polygonal mesh is constructed from random generators
(Fig. 6a), and a final quasiuniform polygonal mesh is obtained by applying
Lloyd’s algorithm to the initial mesh (Fig. 6b). A public-domain package is
used to generate the CVT mesh [25]. Nonuniform discretizations with local
refinement are obtained if a nonuniform density function is used in the CVT
algorithm; a few such examples are presented in Reference [19].

2.2 Quadtree meshes

Quadtree is a hierarchical data structure that is based on the recursive decom-
position of a square into four equal subelements [26]. A quadtree mesh along
with its representative tree is shown in Fig. 7. As illustrated in Fig. 7, hanging
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Fig. 7. A quadtree mesh and its representative tree. Hanging nodes a and b are
generated due to level mismatch between adjacent elements.

nodes arise in a quadtree mesh if adjacent elements are not in the same level of
refinement. Owing to the generation of hanging nodes, classical finite element
shape functions are nonconforming on quadtree meshes. Typically, Lagrange
multipliers, Nitsche’s method, or use of multipoint constraints are used to
address the issue of nonconformity. As an alternative, directly constructing
conforming approximations on a quadtree is appealing—the quadtree data
structure is untouched and a standard Galerkin formulation suffices with no
changes in the properties of the stiffness matrix. The application of B-spline
finite elements [27], hierarchical nodal refinement [28, 29], and use of natural
neighbor basis functions [18,30] are a few approaches that share this viewpoint.

In this paper, we adopt the technique introduced in Reference [18], where
quadtree elements are considered as special cases of polygonal elements in
which at least three nodes are collinear. The implementation parallels that
described in Section 2.1 for polygonal elements. First, Laplace shape func-
tions are constructed on the polygonal reference element and then through
an isoparametric mapping, the shape functions on the quadtree element are
obtained. The mapping from a pentagonal reference element to element A is
shown in Fig. 8. As indicated in Section 2.1, the Laplace interpolant is linear
on the edges of the physical element, and therefore, piecewise linear interpo-
lation is realized along edge 1–a–2 of element A (see Fig. 7). Since the shape
functions of elements B and C in Fig. 7 are linear along edges 1–a and a–2,
the Laplace interpolant is conforming on edge 1–2. The numerical integration
scheme on quadtree elements follows that done for polygonal elements. As an
alternative to the above approach, conforming approximations can be con-
structed on quadtree meshes using mean value coordinates [14,15], which is a
potentially preferred choice in three dimensions.
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Fig. 8. Mapping from a regular pentagon to a quadtree element with one hanging
node.

3 Extended finite elements for two-dimensional crack modeling

In contrast to the classical finite element method where crack surfaces are
explicitly meshed and must conform to mesh boundaries, in the extended
finite element method, inter-element crack discontinuities are modeled entirely
independent of the underlying mesh. In the X-FEM, cracks are represented via
the displacement approximation—enriching the classical displacement-based
approximation by a function that is discontinuous across the crack permits
crack modeling to be realized. The enriched displacement field in the X-FEM
is [4]:

uh(x) =
∑

i∈I

φi(x)ui +
∑

j∈J

φj(x)H(x)aj +
∑

k∈K

φk(x)
4
∑

α=1

ψα(x)bkα, (6)

where φi(x) is the polygonal basis function of node i, ui are the classical de-
grees of freedom associated with node i, aj are the enriched degrees of freedom
associated with node j and the Heaviside function H(x) (discontinuous across
the crack interior), and bkα are the enriched degrees of freedom associated
with node k and the near-tip enrichment functions ψα(x), which are defined
as [3]

{ψα(x), α = 1–4} =
{√

r sin
θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

}

, (7)

where r and θ are local crack-tip polar coordinates of point x. Furthermore,
in Eq. (6), I is the set of all nodes in the mesh, the set K consists of nodes
that contain the crack-tip within their basis function support closure, and J
is the set of nodes whose basis function supports are cut by the crack interior
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and do not belong to set K:

K = {k : k ∈ I : ω̄k ∩ Λc 6= ∅} (8a)

J = {j : j ∈ I : ωj ∩ Γc 6= ∅, j /∈ K} , (8b)

ωi = {x : φi(x) > 0} , (8c)

where ωi is the support (open set) of φi(x), Γc denotes the crack surface and
Λc is the crack-tip. The nodes that are enriched by the Heaviside and near-tip
functions on a quasiuniform polygonal mesh containing an embedded crack
are shown in Fig. 9.

(a) (b)

Fig. 9. Nodes that are enriched in a polygonal mesh for an embedded crack. (a)
Heaviside; and (b) Near-tip nodal enrichment.

3.1 Weak form and discrete equations

Consider a domain Ω ⊂ R2 with boundary Γ = Γu ∪ Γt, where Γu and Γt
are the essential and natural boundaries, respectively. The strong form is the
equilibrium equations of linear elasticity with no body forces, small strain
kinematics, linear elastic constitutive law, and u = ū on Γu and t = t̄ on Γt
are the essential and natural boundary conditions, respectively. In addition,
the interior of the domain contains one or more traction-free cracks. The weak
form (principle of virtual work) is: find u ∈ S × S such that

∫

Ω
σ : δε dΩ =

∫

Γt

t̄ · δu dΓ ∀δu ∈ V × V, (9)

where u is the displacement field, σ is the Cauchy stress tensor, ε is the
small strain tensor, and δ is the first variation operator. The discrete trial
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space Sh ⊂ S and the discrete test space V h ⊂ V contain functions that are
discontinuous across the crack. Referring to Eq. (6), the discrete trial space
Sh is

Sh = span

{

{φi}i∈I ∪ {φjH}j∈J ∪ {φkψ1, φkψ2, φkψ3, φkψ4}k∈K
}

. (10)

Polygonal and enriched bases on a mesh that is cut by a crack are presented
in Figures 10 and 11. For the convex element A in Fig. 10, Laplace shape
functions are used, whereas for the nonconvex element A in Fig. 11, mean
value coordinates are adopted. From Figures 10c and 11c, we observe that the
enriched basis function is discontinuous across the crack within element A.

To obtain the weak form given in Eq. (9), the divergence theorem is invoked,
which hinges on the regularity of displacement field within the domain (ab-
sence of singularities or discontinuities). To preserve this assumption, the in-
tegration domain must conform to the crack surfaces. For the purpose of nu-
merical integration in elements that are cut by the crack discontinuity, the
element is subdivided into subtriangles, and integration is done on the subtri-
angles [4]. The subtriangles of intersected polygonal elements in a polygonal
mesh are shown in Fig. 12. The displacement (trial) functions and admissible
displacement variations of the form given in Eq. (6) are inserted into Eq. (9).
On invoking the arbitrariness of nodal variations, the discrete equations are
obtained as

Kd = f , K =















Kuu Kua Kub

Kau Kaa Kab

Kbu Kba Kbb















, d = {u a b}T , f = {fu fa fb}T , (11)

where d is the vector of nodal unknowns, and K and f are the global stiffness
matrix and external force vector, respectively. In Eq. (11), Kuu is the stiffness
matrix contribution due to the polygonal basis functions and other submatri-
ces arise due to the presence of enriched basis functions. A detailed description
of the entries in the X-FEM discrete equations is given in Reference [31].

3.2 Evaluation of enrichment functions

To assemble the stiffness matrix, the enrichment functions need to be evaluated
at each Gauss point. On using the crack-tip coordinates, the polar coordinates
(r, θ) of any point x are readily computed. On using these polar coordinates,
the near-tip enrichment functions given in Eq. (7) are evaluated. The Heaviside
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Fig. 10. Basis functions on a convex element cut by a crack. (a) Mesh and crack
geometry; (b) φa(x); (c) Contour plot of enriched basis, φa(x)H(x); and (d) 3D plot
of φa(x)H(x). The function H(x) is +1 to the left of the crack and -1 to its right.
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Fig. 11. Basis functions on a nonconvex element cut by a crack. (a) Mesh and crack
geometry; (b) φa(x); (c) Contour plot of enriched basis, φa(x)H(x); and (d) 3D plot
of φa(x)H(x). The function H(x) is +1 to the left of the crack and -1 to its right.
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Fig. 12. The subtriangles of the intersected elements of a polygonal mesh.

function, which appears in Eq. (6), is defined as [4]

H(x) =











1 if (x− x∗) · n ≥ 0

−1 otherwise
(12)

where x∗ is the closest point on the crack segment to point x and n is the
normal to the crack segment at point x∗. If the vector x − x∗ belongs to the
cone of normals at x∗, H(x) = 1, and otherwise it is −1. Geometric predicates
are used to evaluate the sign of H(x).

4 Computer implementation

As in many recent studies [4, 21, 32–35], we have used C++ to implement the
X-FEM. In contrast to finite elements, the key distinctions that need to be
accounted for in the X-FEM are as follows: ability to have variable number of
degree of freedom per node, necessary geometric tools to evaluate enrichment
functions, and algorithms to partition elements for the purpose of numeri-
cal integration of the weak form integrals. The C++ Standard Template Li-
brary (STL) is extensively used in the code. The essential features of the class
DofManager from previous C++ implementations [4,32] have been adapted to
fit our needs. A short description of the important C++ classes follows.
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4.1 Class FeInterpolation

Class FeInterpolation is an abstract base class from which four classes are
publicly derived: Triangle3Interpolation (linear interpolation on triangular
elements), Quad4Interpolation (bilinear interpolation on quadrilateral ele-
ments), LaplaceInterpolation (Laplace interpolation on convex polygons),
and MVCInterpolation (mean value interpolation on nonconvex polygons).
Functions to compute the shape function and its derivatives are provided.
Also, function DirectMap performs the mapping from the reference element to
the physical element to find the global coordinates of a point in the reference
element, and in function InverseMap, a Newton method is carried out to map
the global coordinate to the local coordinate within the reference element [31].
This function is called to calculate the stiffness matrix entries of intersected
and nonconvex elements as explained in Section 4.5.

4.2 Class Elements

Class Elements is an abstract base class from which three classes are publicly
derived: Tri3Element for three-noded triangular elements, Quad4Element for
four-noded quadrilateral elements and PolygonalElement for elements with
more than four nodes and also for nonconvex elements. For each element, the
element connectivity data, type of element interpolation function, number of
degrees of freedom of the element, element material type, if element is inter-
sected or not, and the list of element Gauss points are stored. A nonconvex
element is considered as a polygonal element in which mean value interpola-
tion is used. Function ComputeStiffnessMatrix is the key function of this class,
and is used to assemble the element stiffness matrix. To perform this task, the
function IsIntersected is called to verify if the element is a classical one or if
it is intersected. If the element is not intersected but has enriched degrees of
freedom, a standard stiffness matrix assembly procedure is used with higher
number of Gauss points. For intersected elements, the element stiffness ma-
trix is computed by taking into account contributions of classical and enriched
basis functions. To this end, the value of the enrichment functions and its gra-
dients are calculated at each Gauss point within the element. The integration
procedure on different elements is described in Section 4.5.

4.3 Storage of degrees of freedom

Since in the X-FEM, nodes can have different number of degrees of freedom,
the data structure for the storage of degrees of freedom (coefficients) is more
involved than that in the standard finite element method. The data structure
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for the degrees of freedom in an X-FEM code should be flexible enough to allow
for saving variable number of degrees of freedom per node and to provide tools
to add or delete degrees of freedom that are tied to a node. In our C++ code,
three classes are used to manage the storage and retrieval of degrees of freedom:
class DofKey, class DofValue and class DofManager. In what follows, instances
of classes DofKey and DofValue are referred to as key and value, respectively.
A key and a value are associated with a degree of freedom, and keys are used
to differentiate between degrees of freedom. The couple (key, value) is saved in
an STL map container and the key provides access to the value of a coefficient.
In what follows, the key of coefficients (class DofKey) and value of coefficients
(class DofValue) are presented.

4.3.1 Class DofKey

Every coefficient key is defined by four components: (1) The x1- or x2-direction
that is associated with the coefficient; (2) The association of the coefficient
with a basis function φ̃i (either classical finite element or enriched basis func-
tion). If φ̃i is an enriched basis function, then the type of enrichment can be
determined; (3) The node number that the key is linked to; and (4) For coef-
ficients tied to enriched basis functions, the particular internal discontinuity
that the coefficient is tied to. For example, if two cracks pass through the same
element, the coefficients associating with each crack should be distinguishable.
Operators are defined to compare and retrieve keys.

4.3.2 Class DofValue

This class saves the standard data associated with a degree of freedom. The
public functions of DofValue include members to save the value of the coeffi-
cient, the global equation number of the degree of freedom, and the status of
the degree of freedom (free or fixed). Functions are defined to set and retrieve
the member data.

4.3.3 Class DofManager

The couples (key, value) are stored in an STL map container using the inter-
face class DOFManager. All the degrees of freedom are contained in the class
DOFManager, and hence it is defined as a singleton [36]—only one instance
of this class is created, which can be accessed in the entire code. This class
includes methods for adding new degree of freedoms to the map container,
changing the status of a degree of freedom, setting the value of coefficients,
retrieving degree of freedoms, and finding degrees of freedom that are tied to
a node.
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4.4 Crack-mesh interaction

The intersection between a crack and the finite element mesh is used to deter-
mine the elements that need to be partitioned into subtriangles. The crack is
represented by a union of line segments. To find the elements that are inter-
sected by a crack, one checks for the intersection of each segment with element
edges. For the numerical integration, the polygon (convex or nonconvex) is
partitioned into subtriangles. The area-criterion given in Reference [4] is used
to determine if a node is enriched by the Heaviside function. If a crack-tip lies
inside an element, the nodes in the element connectivity are enriched by the
near-tip functions given in Eq. (7). To check if an element contains a crack-tip,
one of the in-polygon test algorithms given in Reference [37] is suitable. For
each crack, two types of enrichment items exist: crack interior and crack-tip.
The enrichment items of each node are saved in a STL set container. If the
crack-tip and crack interior of the same crack exist in the enrichment item set
of a node, the crack interior item is erased. The evaluation of the Heaviside
and near-tip functions at a Gauss point is discussed in Section 3.2.

4.5 Numerical integration

The numerical integration scheme is tied to the element-type. The element-
type dictates the interpolation that is used: for triangles and convex quadri-
laterals, finite element interpolation is used, Laplace shape functions are used
for convex polygons with more than four sides, and mean value coordinates
apply for nonconvex polygons. A short description on the integration classes
follows:

(1) Integration on non-intersected quadrilateral or triangular elements is per-
formed by using Gauss quadrature rules. Class StandardIntegration

serves the purpose of providing Gauss point weight and position on refer-
ence quadrilateral and triangular elements. An element is considered to
be enriched if at least one of its nodes is enriched. For enriched triangular
and quadrilateral elements, 6 and 3× 3 Gauss quadrature rules are used,
respectively.

(2) To integrate on non-intersected convex polygonal elements, the reference
polygonal element is triangulated. In class PolygonalIntegration, the
polygonal reference element is triangulated, and the location and weight
of each Gauss points inside the reference subtriangle are saved. The lo-
cation of the Gauss points on the physical element is obtained by using
the isoparametric mapping from the reference element to the physical
element. In each subtriangle, a 25-point Gauss quadrature rule is used.

(3) Integration on non-intersected nonconvex polygonal elements is performed
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by triangulating the physical element and performing the integral on each
physical subtriangle. Class SplitElement accomplishes this task by sav-
ing the global coordinate and weight of Gauss points on each physical sub-
triangle. Mean value coordinates are calculated on the physical element,
and therefore no mapping is required. A public-domain C++ code [38] is
used to triangulate a polygon (convex and nonconvex).

(4) Integration on the intersected elements is done by triangulating the phys-
ical element into subtriangles. The element is triangulated such that the
crack does not intersect any triangle. Class SplitElement is used to save
the weight and position of Gauss points on the physical element. For
convex elements, the shape function and its derivatives are calculated on
the corresponding reference element. Therefore, an inverse map from the
physical element to the reference element is needed to find the local posi-
tion of the Gauss point (code listed in Reference [31, Appendix] is used).
The integration schemes for a convex polygon, a nonconvex polygon and
an intersected convex polygon are shown in Fig. 13.

As in finite elements, the global stiffness matrix is computed via element-
level assembly procedures. The direct sparse solver, SuperLU [39], has been
interfaced to our code to solve the linear system of equations.

5 Numerical examples

The convergence of conforming polygonal finite elements is established in Ref-
erence [1] and use of quadtree finite elements to solve linear and nonlinear
boundary-value problems is presented in References [18, 19]. In this section,
four numerical examples are presented to illustrate the performance of the X-
FEM on polygonal and quadtree meshes. Plane stress conditions are assumed
with E = 200 GPa and ν = 0.3. The domain form of the interaction integral
is used to extract the stress intensity factors [40, 41] with a domain radius
rq = 2h (h is the size of the crack-tip element); details on the extraction of
SIFs in the X-FEM are provided in Reference [4].

5.1 Double-edge cracked plate in tension (DET)

The first example is a double-edge cracked plate in tension. The geometry
and boundary conditions are shown in Fig. 14. The following parameters are
chosen to solve the problem: a/w = 0.25, h/w = 2, and w = 1. The reference
mode I stress intensity factor for this problem is [42]

KI = ασ
√
πa, (13)
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Fig. 13. Integration on polygonal elements. (a) Integration on a convex polygonal
element is performed by triangulating the reference element; (b) Integration on a
nonconvex element is done by triangulating the physical element; and (c) Integration
on an intersected element is performed by triangulating the physical element.

where α is a finite dimension correction factor, which is given by

α = 1.12 + 0.406
(

a

w

)

− 4.788
(

a

w

)2

+ 15.44
(

a

w

)3

. (14)

On using Eqs. (13) and (14), the exact normalized stress intensity factor for the
chosen set of parameters isKI/

√
πa = 1.1635. Quasiuniform (CVT algorithm)

polygonal and nonuniform polygonal meshes along with uniform quadrilateral
meshes are used to solve the problem and the results are presented in Table 1.
The polygonal meshes with 500 elements are shown in Figures 14b and 14c.
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Fig. 14. Double-edge cracked plate in tension. (a) Geometry; (b) Quasiuniform mesh
using CVT algorithm (500 elements); and (c) Nonuniform mesh (500 elements).

Table 1
Normalized SIF for double-edge cracked plate under tension.

Mesh Number of Nodes KI√
πa

%Error

Uniform Polygonal mesh

402 1.1622 0.1

1002 1.1625 0.1

2001 1.1631 0.1

Nonuniform Polygonal mesh

402 1.1863 1.95

1002 1.1788 1.31

2001 1.1650 0.1

Quadrilateral mesh

435 1.1570 0.6

1035 1.1611 0.2

2016 1.1647 0.1

5.2 Oblique crack in an infinite plate

As a second example, an infinite plate with an oblique central crack under
biaxial loading is considered. The plate is subjected to tensile loading of σ1

21



and σ2 in the x1- and x2-directions, respectively. The schematic of the problem
is shown in Fig. 15a. The exact stress intensity factors are a function of the
angle of the crack β with the x2-axis and are given by [43]

KI = (σ2 sin
2 β + σ1 cos

2 β)
√
πa, (15a)

KII = (σ2 − σ1) sin β cos β
√
πa. (15b)

The infinite plate with a crack is modeled by a square plate with width of 2w,
crack of length 2a, w/a = 10, σ1 = 1, and σ2 = 2. Since the crack length is
much smaller than the specimen dimensions, the numerical results are com-
pared to the reference solution of a crack in an infinite plate. The problem
is solved on three meshes: a quadtree mesh with 292 elements, a nonconvex
mesh with 292 elements, and a uniform quadrilateral mesh consisting of an
array of 40 × 40 elements. The quadtree and the nonconvex mesh are shown
in Figures 15b and 15c, respectively. The nonconvex mesh is generated from
the quadtree mesh by perturbing the position of the hanging nodes. Laplace
basis functions are adopted for quadtree elements, whereas mean value co-
ordinates are used for nonconvex elements. The mode I and mode II stress
intensity factors as a function of the angle β are presented in Table 2 and
Fig. 16. Excellent agreement with the reference solution results is obtained,
and for comparable accuracy, quadtree meshes with local refinement require
far fewer degrees of freedom than a uniform rectangular mesh. Suitable en-
richment functions to model intraelement cracks within the X-FEM have been
developed [44]; the modeling of discontinuities on quadtree meshes is an al-
ternative approach to represent and capture the growth of very small cracks
without incurring significant additional costs.

5.3 Crack Growth Simulations

Quasi-static crack growth simulation on polygonal and quadtree meshes are
presented. In all simulations, the crack length increment in each step is equal
to twice the length of the element that contains the crack tip, and the kink
angle is obtained using the maximum circumferential stress criterion as in
previous extended finite element studies [4, 31].

5.3.1 Beam under four-point loading

The first crack growth example that we consider is a pre-cracked beam that
is subjected to four-point shear loading [45]. The geometry and boundary
conditions are shown in Fig. 17a, with the beam length L = 4 and load
P = 1. The problem is solved on three polygonal meshes (CVT algorithm is
used) with 500, 1000, 1500 elements and a 60 × 15 quadrilateral mesh. The
crack paths are shown in Fig. 17. Initially, the cracks move away from each
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Fig. 15. Infinite plate with a central oblique crack. (a) Schematic of the crack ge-
ometry and loading; (b) Quadtree mesh; and (c) Quadtree mesh with nonconvex
elements (for example, elements A, B, C and D).

other, but finally they are attracted toward the load points. The X-FEM crack
paths are in agreement with the results presented in the literature [45,46].
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Table 2
Mode I and mode II stress intensity factors for an infinite plate with an oblique
crack.

Exact values Quadtree mesh Nonconvex mesh Quadrilateral mesh

β KI KII KI KII KI KII KI KII

90 2.5066 0.0 2.5171 0.0000 2.5171 0.0000 2.5263 0.0000

85 2.4971 0.1088 2.5098 0.1122 2.5090 0.1111 2.5115 0.1148

80 2.4688 0.2143 2.4662 0.2140 2.4658 0.2128 2.4814 0.2197

75 2.4226 0.3133 2.4092 0.3187 2.4070 0.3194 2.4138 0.3149

70 2.3600 0.4028 2.3451 0.4015 2.3431 0.4024 2.3574 0.4060

65 2.2828 0.4800 2.2708 0.4799 2.2700 0.4806 2.2863 0.4836

60 2.1933 0.5427 2.1937 0.5434 2.1932 0.5433 2.2059 0.5495

55 2.0943 0.5888 2.0823 0.5861 2.0823 0.5868 2.0819 0.5914

50 1.9888 0.6171 1.9714 0.6134 1.9706 0.6145 1.9748 0.6181

45 1.8800 0.6266 1.8785 0.6266 1.8782 0.6260 1.8703 0.6282

40 1.7711 0.6171 1.7543 0.6136 1.7536 0.6143 1.7593 0.6179

35 1.6656 0.5889 1.6536 0.5821 1.6538 0.5835 1.6544 0.5884

30 1.5666 0.5427 1.5637 0.5423 1.5640 0.5425 1.5723 0.5472

25 1.4771 0.4800 1.4681 0.4746 1.4684 0.4767 1.4796 0.4832

20 1.4000 0.4028 1.3900 0.3967 1.3893 0.3983 1.3997 0.4026

15 1.3373 0.3133 1.3278 0.3086 1.3269 0.3072 1.3360 0.3104

10 1.2911 0.2143 1.2890 0.2133 1.2892 0.2144 1.2976 0.2145

5 1.2628 0.1088 1.2692 0.1083 1.2688 0.1091 1.2704 0.1074

0 1.2533 0.0000 1.2586 0.0000 1.2585 0.0000 1.2632 0.0000

5.3.2 Inclined central crack in uniaxial tension

Crack growth of an inclined central crack in a rectangular plate under uniaxial
tension in the x2-direction is simulated. The plate dimension is 10 × 10, the
angle of the crack with the x1-axis is 30

◦ and the ratio of the crack length to the
plate dimension is a/L = 0.01. Since a << L, this example is used to illustrate
the benefits of using X-FEM to study crack propagation of microcracks on
quadtree meshes. The quadtree mesh (1128 elements) is shown in Fig. 18a,
with a zoom of the crack region depicted in Fig. 18b. Since the plate is under
pure mode I loading, crack advance will take place along the x1-direction. The
crack paths are presented in Figures 18c and 18d, and we observe that the
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Fig. 16. Mode I and Mode II stress intensity factors versus angle β.

final trajectory is in agreement with theory. In addition to enabling modeling
of microcracks on quadtree meshes, there exists the possibility of developing a
posteriori error estimators on such meshes [19], which can provide improved
accuracy at modest increase in computational costs.

6 Conclusions

In this paper, two-dimensional crack growth modeling using the extended finite
element method on arbitrary polygonal and quadtree meshes was introduced.
The Laplace interpolant [17] was used to construct basis functions on convex
polygonal and quadtree meshes, and for nonconvex elements, mean value coor-
dinates [10] were adopted. These linearly complete polygonal basis functions
were used within the framework of partition of unity framework [6] to en-
rich the classical displacement approximation. A discontinuous function and
the asymptotic crack-tip fields were used as enrichment functions to model
cracks, and crack propagation was simulated without the need for remesh-
ing. Excellent agreement with reference solution results was obtained for the
stress intensity factors on benchmark crack problems. The benefits and versa-
tility of nonconvex elements and quadtree meshes in finite element modeling
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Fig. 17. Beam under four-point loading.
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(a) (b)

(c) (d)

Fig. 18. Inclined central crack in an infinite domain. (a) Initial mesh; (b) Zoom on
the refined area containing the initial crack; (c) Crack after second step; and (d)
Final crack trajectory.

and simulation was demonstrated. Crack growth simulations on polygonal and
quadtree meshes were presented to reveal the potential of the proposed meth-
ods in computational failure mechanics.
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[7] I. Babuška, I. Melenk, Partition of unity method, International Journal for
Numerical Methods in Engineering 40 (1997) 727–758.

[8] E. L. Wachspress, A Rational Finite Element Basis, Academic Press, N. Y.,
1975.

[9] M. Meyer, H. Lee, A. H. Barr, M. Desbrun, Generalized barycentric coordinates
on irregular polygons, Journal of Graphics Tools 7 (1) (2002) 13–22.

[10] M. S. Floater, Mean value coordinates, Computer Aided Geometric Design
20 (1) (2003) 19–27.

[11] N. Sukumar, Construction of polygonal interpolants: A maximum entropy
approach, International Journal for Numerical Methods in Engineering 61
(2004) 2159–2181.

[12] E. A. Malsch, G. Dasgupta, Shape functions for polygonal domains with interior
nodes, International Journal for Numerical Methods in Engineering 61 (12)
(2004) 1153–1172.

[13] E. A. Malsch, J. J. Lin, G. Dasgupta, Smooth two dimensional interpolants: a
recipe for all polygons, Journal of Graphics Tools 10 (2) (2005) 11–23.

[14] M. S. Floater, G. Kós, M. Reimers, Mean value coordinates in 3D, Computer
Aided Geometric Design 22 (7) (2005) 623–631.

[15] K. Hormann, M. S. Floater, Mean value coordinates for arbitrary planar
polygons, ACM Transaction on Graphics 25 (4) (2006) 1424–1421.

28



[16] N. Sukumar, E. A. Malsch, Recent advances in the construction of polygonal
finite element interpolants, Archives of Computational Methods in Engineering
13 (1) (2006) 129–163.

[17] N. H. Christ, R. Friedberg, T. D. Lee, Weights of links and plaquettes in a
random lattice, Nuclear Physics B 210 (3) (1982) 337–346.

[18] A. Tabarraei, N. Sukumar, Adaptive computations on conforming quadtree
meshes, Finite Elements in Analysis and Design 41 (2005) 686–702.

[19] A. Tabarraei, N. Sukumar, Adaptive computations using material forces and
residual-based error estimators on quadtree meshes, Computer Methods in
Applied Mechanics and Engineering 196 (25–28) (2007) 2657–2680.

[20] B. L. Karihaloo, Q. Z. Xiao, Modelling of stationary and growing cracks in
FE framework without remeshing: a state-of-the-art review, Computers and
Structures 81 (3) (2003) 119–129.

[21] S. Bordas, P. V. Nguyen, C. Dunant, A. Guidoum, H. Nguyen-Dang, An
extended finite element library, International Journal for Numerical Methods
in Engineering 71 (6) (2007) 703–732.

[22] R. Sibson, A vector identity for the Dirichlet tesselation, Mathematical
Proceedings of the Cambridge Philosophical Society 87 (1980) 151–155.

[23] N. Sukumar, B. Moran, A. Y. Semenov, V. V. Belikov, Natural neighbor
Galerkin methods, International Journal for Numerical Methods in Engineering
50 (1) (2001) 1–27.

[24] Q. Du, V. Faber, M. Gunzburger, Centroidal Voronoi tessellations: Applications
and algorithms, SIAM Review 41 (1999) 637–676.

[25] J. Burkardt, CCVT BOX: Centroidal Voronoi Tessellation Constrained to a
Box, Available at http://www.csit.fsu.edu/~burkardt/f_src/ccvt_box/

ccvt_box.html, 2004.

[26] H. Samet, Application of Spatial Data Structure, Addison-Wesley, New York,
N.Y., 1990.

[27] P. Kagan, A. Fischer, P. Z. Bar-Yoseph, Mechanically based models: Adaptive
refinement for B-spline finite element, International Journal for Numerical
Methods in Engineering 57 (8) (2003) 1145–1175.

[28] P. Krysl, A. Trivedi, B. Zhu, Object-oriented hierarchical mesh refinement with
CHARMS, International Journal for Numerical Methods in Engineering 60 (8)
(2004) 1401–1424.
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