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SUMMARY

A two-dimensional numerical model of microstructural effects in brittle fracture is presented, with an
aim towards the understanding of toughening mechanisms in polycrystalline materials such as ceram-
ics. Quasi-static crack propagation is modelled using the extended finite element method (X-FEM) and
microstructures are simulated within the framework of the Potts model for grain growth. In the X-FEM,
a discontinuous function and the two-dimensional asymptotic crack-tip displacement fields are added to
the finite element approximation to account for the crack using the notion of partition of unity. This
enables the domain to be modelled by finite elements with no explicit meshing of the crack surfaces.
Hence, crack propagation can be simulated without any user-intervention or the need to remesh as the
crack advances. The microstructural calculations are carried out on a regular lattice using a kinetic
Monte Carlo algorithm for grain growth. We present a novel constrained Delaunay triangulation algo-
rithm with grain boundary smoothing to create a finite element mesh of the microstructure. The fracture
properties of the microstructure are characterized by assuming that the critical fracture energy of the
grain boundary (Gcgb) is different from that of the grain interior (G;). Numerical crack propagation sim-
ulations for varying toughness ratios Gcgb/GC‘ are presented, to study the transition from the intergranular
to the transgranular mode of crack growth. This study has demonstrated the capability of modelling
crack propagation through a material microstructure within a finite element framework, which opens-up

exciting possibilities for the fracture analysis of functionally graded material systems. Copyright © 2003
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Understanding deformation and failure mechanisms in brittle polycrystalline materials such
as ceramics is critical for improvements in the development and application of advanced
structural materials. The material microstructure plays a pivotal role in dictating the modes of
fracture and failure, and the macroscopic response of real materials. The grain morphology,
elastic modulus, and the toughness of the individual microstructural constituents and interfaces
are key parameters that control the failure mechanisms in polycrystalline materials. Concepts
such as grain boundary design and control and grain boundary engineering to improve the
fracture resistance of polycrystalline materials are well-recognized [1-3]. Quasi-static crack
propagation through a material microstructure depends on the mechanical state in the vicinity
of the crack-tip, and hence local differences in toughness (grain interior versus grain bound-
aries) significantly influence the crack path. In light of the above, it is clear that any numerical
fracture model that is able to model crack propagation by incorporating these microstructural
features has the potential to describe toughening mechanisms in polycrystals and provide a
framework for microstructural design.

Brittle fracture simulations in disordered (heterogeneous) materials using spring networks
has received wide attention since the late 1980s [4—6]. A detailed study on spring-networks and
finite element methods for crack propagation simulations was conducted by Jagota and Ben-
nison [7, 8], who pointed out the dilemma associated with spring networks—regular meshes
can model uniform strain but show strong anisotropy in crack propagation whereas random
networks cannot in general represent uniform strain. Schlangen and Garboczi [9] considered
the appropriate selection of cross-sectional area and moment of inertia for beam elements in
a random lattice to simulate a homogeneous medium with showed no mesh dependency. An
elegant solution and partial resolution to the above shortcomings was provided by Bolander
and Saito [10] who used rigid-body spring networks to model brittle fracture in homogeneous
isotropic materials such as cement and concrete. They proposed a model for random networks
based on the Voronoi tessellation which was able to produce homogeneous deformation on
uniform straining and showed little bias towards crack propagation directions.

Lattice spring models have been used to study brittle fracture and damage in polycrystalline
materials. Yang and co-workers [11] used the Potts grain growth model [12—16] to generate
a polycrystalline microstructure which was mapped onto a triangular lattice. The mechanics
of this structure was represented by a spring network on the lattice, where a spring fails
if the stored elastic energy in the spring exceeded a critical value. In Reference [11], the
transition from intergranular (growth along the grain boundary) to transgranular (growth in the
grain interior) fracture with increasing grain boundary toughness was observed. In Reference
[17, 18], the effects of thermal-mismatch on microcracking was studied. Holm [19] considered
surface formation energies to study intergranular fracture in polycrystals; the influence of
low/high-angle grain boundaries and grain boundary microcracking on the fracture path was
investigated. Kim and co-workers [20] analysed two-dimensional crack propagation through
a polycrystal as a function of the grain boundary toughness, focusing on the competition
between intergranular and transgranular mode of crack propagation.

An alternative approach to modelling fracture phenomena for arbitrary microstructure is the
use of cohesive surfaces within a finite element formulation. Zhai and Zhou [21] proposed
a micromechanical model in which the cohesive surface formulation of Xu and Needleman
[22] is used to study failure modes in composite microstructures, whereas in Reference [23],
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intergranular microcrack initiation and evolution is assessed in ceramic microstructures under
dynamic loading conditions. The cohesive surface formulation is a phenomenological frame-
work in which the fracture characteristics of the material are embedded in a cohesive surface
traction—displacement relation. Using this approach, an inherent length scale is introduced into
the model, and in addition no fracture criterion (K-dominant field) is required; crack growth
and the crack path are outcomes of the analysis. However, the constraint that cohesive sur-
faces can only lie along element edges does tend to render crack paths that are biased by the
mesh spacing and orientation [24].

Early numerical models for treating discontinuities in finite elements can be traced to the
work of Ortiz and co-workers [25] and Belytschko and co-workers [26]. They modelled shear
bands as ‘weak’ (strain) discontinuities that could pass through finite elements using a multi-
field variational principle. Dvorkin and co-workers [27] considered ‘strong’ (displacement)
discontinuities by modifying the principle of virtual work statement. A unified framework
for analysing strong discontinuities by taking into account the softening constitutive law and
the interface traction—displacement relation was put forth by Simo and co-workers [28,29].
Applications and extensions of this approach have been proposed by many researchers todate;
for a few related studies, see References [30—33]. In the strong discontinuity approach, the
displacement consists of regular and enhanced components, where the enhanced component
yields a jump across the discontinuity surface. An assumed enhanced strain variational for-
mulation is used, and the enriched degrees of freedom are statically condensed on an element
level to obtain the tangent stiffness matrix for the element. It is to be noted that, in this
approach, the discontinuity surface can only terminate on element boundaries. A comprehen-
sive review and comparison of various embedded discontinuity approaches is provided by
Jirasek [34].

The use of finite elements to study discrete crack propagation through a polycrystalline
microstructure has not been fully explored todate. This stems from the fact that in order
to accurately capture the microstructural features and the crack path, refined meshes with
continuous adaptive remeshing techniques are required for discrete crack growth simulations.
The computational effort and complexity involved is significant even in two-dimensions, and
hence the above approach has not attracted wide attention.

A significant improvement in discrete crack modelling has been realized with the devel-
opment of the extended finite element method (X-FEM) [35-37]. In this approach, the do-
main is modelled by finite elements with no explicit meshing of the crack surfaces. The
location of the crack discontinuity can be arbitrary with respect to the underlying finite
element mesh, and quasi-static or fatigue crack propagation simulations can be performed
without the need to remesh as the crack advances. In the X-FEM, a discontinuous func-
tion (generalized Heaviside step function) and the two-dimensional asymptotic crack-tip dis-
placement fields are added to a standard displacement-based finite element approximation to
account for the presence of the crack using the notion of partition of unity [38,39]. A par-
ticularly appealing feature is that the finite element framework and its properties (sparsity
and symmetry) are retained, and a single-field (displacement) variational principle is used
to obtain the discrete equations. The classical finite element degrees of freedom as well as
the enriched degrees of freedom are found simultaneously by solving the discrete system.
This technique provides an accurate and robust numerical method that removes the need
to mesh the crack geometry in both two-dimensional [35,36] and three-dimensional crack
modelling [40].
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In this paper, we present a numerical technique to carry out crack propagation simulations
through arbitrary material microstructures. Quasi-static crack propagation is modelled using the
X-FEM (Section 2) and microstructures are simulated within the framework of the Potts model
for grain growth (Section 3). The microstructural calculations are carried out on a regular
lattice, and a novel constrained Delaunay triangulation algorithm is developed to construct
the initial finite element mesh of the microstructure. A detailed description of the Delaunay
algorithm is presented in Section 4. A standard displacement-based Galerkin method is used
to obtain the discrete equations for linear elastostatics (Section 5). The fracture properties of
the microstructure are characterized by assuming that the critical fracture energy of the grain
boundary (Gcgb) is different from that of the grain interior (G'). The crack growth criterion
in the grain interior is governed by the maximum circumferential stress criterion, whereas
along the grain boundary, the growth direction is determined by selecting the one that has the
maximum value for G/G¥ (k is either gb or i). In Section 6, numerical simulations of crack
propagation through a microstructure are performed for different toughness ratios Gcgb/Gci, to
study the transition from the intergranular to the transgranular mode of crack growth. The
main results and conclusions from this study are discussed in Section 7.

2. EXTENDED FINITE ELEMENT METHOD

The X-FEM [35,36] is a numerical method to model internal (or external) boundaries such
as holes, inclusions, or multiple cracks, without the need for the mesh to conform to these
boundaries. The X-FEM is based on a standard Galerkin procedure, and uses the concept of
partition of unity [38,39] to accommodate the internal boundaries in the discrete model. The
partition of unity method generalized finite element approximations by presenting a means to
embed local solutions of boundary-value problems into the finite element approximation. This
idea was exploited in References [41,42] for problems with cracks and holes—the numerical
technique was referred to as the generalized finite element method (GFEM).

Partition of unity enrichment for discontinuities and near-tip crack fields was introduced
by Belytschko and Black [43]. The displacement enrichment functions for crack problems are
functions that span the asymptotic near-tip displacement field. A significant improvement in
discrete crack growth modelling without the need for any remeshing strategy was conceived
in Reference [35], with further extensions of the technique for modelling holes and branched
cracks presented in Reference [36]. The generalized Heaviside step function was proposed as
a means to model the crack away from the crack-tip, with simple rules for the introduction
of the discontinuous and crack-tip enrichments. This advance has clearly provided an accurate
and robust computational tool for modelling discontinuities independent of the mesh geometry
in two-dimensions [35, 36] and three-dimensions [40]. In addition, recent studies have explored
the use of fast marching and level sets for evolving crack discontinuities in three-dimensions
within the X-FEM framework: growth of multiple planar cracks are handled using the fast
marching method [44,45], whereas non-planar crack growth is carried out using level sets
[46,47]. The ideas and developments in the X-FEM have had an impact in other related areas.
For example, Wells and Sluys [48] proposed a cohesive crack model using finite elements
that adopts the notion of partition of unity and the use of the Heaviside step function as an
enrichment function to model the displacement discontinuity.
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2.1. Displacement approximation

The enrichment of the finite element approximation is described as follows. Consider a point
x of R? (d=1-3) that lies inside a finite element e. Denote the nodal set N= {n,ns,...,n,},
where m is the number of nodes of element e. (m=2 for a linear one-dimensional finite
element, m =3 for a constant-strain triangle, m =8 for a trilinear hexahedral element, etc.)
The enriched displacement approximation for a vector-valued function u(x): R? — R? assumes
the form:

vx)= 3 g(xu+ Y ¢ xW(x)a,  (w, a, €RY) (1)
1 J

NreN njeNg

classical enriched

where the nodal set NY is defined as
NY={n;:n;eN, w;NQ, # 0} 2)

In the above equation, w; =supp(n,) is the support of the nodal shape function ¢;(x), which
consists of the union of all elements with n; as one of its vertices, or in other words the
union of elements in which ¢,(x) is non-zero. In addition, ), is the domain associated with
a geometric entity such as crack-tip [35], crack surface in three-dimensions [40], or material
interface [49]. In general, the choice of the enrichment function y/(x) that appears in Equation
(1) is dependent on the geometric entity.

2.2. Two-dimensional crack modelling

The crack is assumed to consist of linear one-dimensional segments. The crack is modelled
by enriching the nodes whose nodal shape function support intersects the interior of the crack
by a discontinuous function, and enriching the nodes whose nodal shape function supports
intersect the crack tip by the two-dimensional asymptotic crack-tip fields. A short description
of the selection of nodes for enrichment as well as the computation of enrichment functions
follows; for further details, the interested reader can refer to Reference [35]. In addition to the
above, partitioning algorithms are also implemented if the crack intersects the finite elements;
in this study, the algorithm described in Reference [40] is used with some minor additions
for improvement.

2.2.1. Enrichment functions. Consider a single crack in two-dimensions, and let I}, be the
crack surface and A. the crack tip. The interior of a crack is modelled by the enrichment
function H(x), which we refer to as a generalized Heaviside function. The function H(x)
takes on the value +1 above the crack and —1 below the crack. More precisely, let x* be the
closest point to x on the crack I, and n be the normal to the crack segment that contains
x*. The H(x) function is then given by

HEx) 1 if (x—x")-n=0 3)
X)=
—1 otherwise

To model the crack tip and also to improve the representation of crack-tip fields in fracture
computations, crack-tip enrichment functions are used in the element which contains the crack
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tip. The crack-tip enrichment consists of functions which incorporate the radial and angular
behaviour of the two-dimensional asymptotic crack-tip displacement field. The use of the
crack-tip functions serves two main purposes:

1. If the crack were to terminate in the interior of an element, then enriching the crack-
tip element with the Heaviside function would be erroneous. This is so, since by such
a choice the crack would be modelled as though the segment containing the crack-tip
were extended till it intersected the element edge. The crack-tip enrichment functions
ensure that the crack terminates precisely at the location of the crack-tip, and hence
these functions are clearly required to model the crack for this case.

2. The use of the linear elastic asymptotic crack-tip fields serve as ideal enrichment func-
tions for they possess the correct near-tip behaviour with one of the functions being
discontinuous across the crack, and in addition, their use also leads to better accuracy
on relatively coarse finite element meshes [35, 40].

The crack-tip enrichment functions are:

®D(x) = (Y1, Yo, Y5, Y} = |\/F cos g, \r sin g, V/r sin 0 sin g, V¥ sin 0 cos g 4

where r and 0 are polar co-ordinates in the local x; — x5 crack-tip co-ordinate system. Note
that the second function in the above equation is discontinuous across the crack.

2.2.2. Selection of enriched nodes. The enriched finite element approximation is given
by [35]:

W= S Gow+ Y dOH®a - Y ¢K<x>(lil wz<x>b5<) (5)
I J K =

n €N ny €N HKEN/

The second and third terms on the right-hand side of the above equation are the discontinuity
and tip enrichments, respectively. The set N/ consists of those nodes for which the closure
of the nodal shape function support intersects the crack tip. The set IN° is the set of nodes
whose nodal shape function support is intersected by the crack and which do not belong
to N/:

Nf = {I’ZK ZI’ZKEN, (I)KﬂAC 75 @}, (6)
ch{nJ:nJGN,a)JﬂFC#@,njgéNf} (7)

3. POLYCRYSTALLINE MICROSTRUCTURE

In order to simulate quasi-static crack propagation in a polycrystalline material, a realis-
tic microstructure was first produced using the framework of the Potts model [12,50] for
grain growth. Such a procedure was introduced by Srolovitz and co-workers [13—16], and
was shown to produce microstructures with grain size and grain topology distributions in
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two- and three-dimensions which were in excellent agreement with experiment. A summary
of the grain growth model follows.

A continuum microstructure is mapped onto a regular two-dimensional square lattice con-
taining N =10,000 sites. Each lattice site is assigned an integer s;, which corresponds to the
orientation of the grain in which it is embedded. The number of distinct grain orientations
(spins) is Q (Q-state Potts model). Lattice sites which are adjacent to neighbouring sites hav-
ing different grain orientations are regarded as being adjacent to a grain boundary, whereas
a site surrounded by sites with the same grain orientation is in the grain interior. The grain
boundary energy is specified by associating a positive energy with grain boundary sites and
zero energy for sites in the grain interior, in accordance with the Potts Hamiltonian:

N nn(i)

E=JY S (1-dy) (8)

i=1 j=1

where J is a constant proportional to the grain boundary energy per unit length, and J;; is
the Kronecker delta. In the above equation, the summation on i is over all the sites in the
lattice, whereas that on j is over the first and second nearest neighbours nn(i) of site i. The
kinetics of the boundary motion are simulated via a zero-temperature Monte Carlo technique
in which a lattice site is selected at random and its orientation is randomly changed to one of
the other grain orientations. The change in energy associated with the change in orientation
is then evaluated. If the change in energy is less than or equal to zero, the reorientation is
accepted; if the energy is raised, the reorientation is rejected.

The microstructures are produced by initially assigning a random value s; of the grain
orientation (1<s;<Q) to each site. Time is directly proportional to Monte Carlo steps: one
MCS corresponds to N attempted changes, with the time increment Ar=1/N MCS after every
reorientation. The Monte Carlo procedure is executed until the desired grain size is produced.
A pseudo-code for the grain growth algorithm is presented in Table I.

4. DELAUNAY TRIANGULATION OF MICROSTRUCTURE

The determination of the macroscopic mechanical properties and response of materials from
those of their microscopic constituents requires the incorporation of a description of these
microstructural features into a continuum-based numerical (finite element) model. The object-
oriented finite element analysis program 00F [51, 52] was developed to meet this goal. OOF is
an image-based program that reads material microstructures in a suitable image format (such as
portable pixel map), assigns properties to the microscopic features, and then creates a finite
element mesh for further analysis. Alternatively, a microstructure produced from a kinetic
Monte Carlo simulation (Potts model) can also be used to generate the finite element mesh
[18]. In Reference [18], where OCOF is used for the microstructure-meshing, the construction of
the finite element mesh is directly based on the bonds between adjacent lattice sites in the Potts
model. If neighbouring lattice sites have the same grain orientation (say A), then properties of
the bulk (grain interior) are assigned to the two triangular elements associated with this bond
(4-A4). On the other hand, if neighbouring lattice sites have different grain orientations (say
A and B), then grain boundary properties (such as crack resistance energy) are assigned to
the two triangular elements associated with this bond (4-B). In addition, the properties (such
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Table 1. Pseudo-code for Potts grain growth model.

1. read input data—number of lattice sites in each co-ordinate direction (), total number of orientations
(spins) O, and number of MCS steps fmax

2. set-up a square lattice of N =m? sites and neighbour list nn(i) for each site i (i=1— N)

3. fori=1— N{

e get random number (integer) s between 1 and Q:s=iran(l,Q);
e assign s as the spin for the site: spins[i]=s;

4. set-up function likes(i,s) that computes the number of neighbours of site / with spin s
initialize ¢t =0; At=1/N;
6. while (#<tmax) {

e

e get a site ¢/ at random: i =iran(1,N);
e spin of site i is: Soiq = spins[i];
e choose a new spin at random: spew = iran(l, Q);
e compute AE =1ikes(i,Sold) — Likes(, Snew);
e if (AE<0) { change the spin of site i : spins[i] = Spew; }
e increment time: t =t + At
}
7. end

as elastic and thermal) of the element connected to the site with orientation A4 is assigned the
bulk properties of 4 and likewise for the element connected to the site with orientation B.
This approach ensures that the whole domain is partitioned into triangles, with grain boundary
elements demarcating the transition between two grains of different bulk properties. Clearly,
the merits of the method are in its simplicity and ease of implementation. However, we note
from the perspective of crack propagation modelling, that the grain boundary which is of zero
measure in a two-dimensional continuum description, is replaced by one that has finite width
which spans two finite elements. As opposed to relying on finite element (Delaunay) meshes
for microstructural analysis, Ghosh and co-workers [53, 54] have used the Voronoi tessellation
for characterizing and modelling the elasto-plastic response of heterogenous materials with
arbitrary size, shape, orientation, and spatial distribution. They use the Voronoi Cell Finite
Element Method (VCFEM) [55] for multiscale analysis of heterogeneous materials.

In the work presented in this paper, the crack propagation simulations are performed on
a finite element mesh that is constructed using a newly developed constrained Delaunay
triangulation algorithm. The input to the meshing algorithm is a polycrystalline microstructure
produced by the Potts model, with known spins s; (1 <5, <0, 1<i<N). A detailed description
of the Delaunay meshing algorithm is provided in the following sub-sections.

4.1. Grain meshing

There exists a uniquely defined set of grain boundaries for any square lattice with spins
assigned to the lattice sites. Let /# be the length of an edge e that joins two adjacent lattice
sites. If the spin values of these two sites are not equal to each other then a segment of grain
boundary must pass through edge e. If we assume that this segment should be equidistant
from the two sites then it follows that the segment is formed by a straight line connecting
the centres of the two lattice cells incident to edge e. The union of all such grain boundary
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(a) (b) n, €, N3
c(b
b e, (-) e,
n, € n,

Figure 1. Lattice notations used in the Delaunay meshing algorithm: (a) lattice sites and cell b; and
(b) sites, edges and centre ¢ of lattice cell b.

segments constitutes the entire set of grain boundaries that separates the microstructure into
discrete regions, or grains, each of which is associated with a particular spin value. Each grain
boundary consists of a sequence of straight line segments and right angle corners. In other
words, the curve defining a grain boundary does not have a continuously turning tangent, and
where a tangent is defined, it is either parallel to the x- or y-axis.

In order to carry out a finite element computation it is desirable to generate a mesh for each
grain so that the elements are of approximately uniform size, and the elements also conform
to the shape of the grain boundary curve. Since the grain boundary curve will, in the most
general case, have a staircase shape with steps of length / it follows that the linear element
size, or element width, will always be O(%). One would like, however, to have the option of
specifying an element width that is independent of the lattice edge length 4.

A more insidious effect of the grain boundary shape lies in the interaction between the grain
boundary and a crack path. Since the tangent to the grain boundary can assume one of only
two possible directions there is the possibility that the interaction may be incorrectly influenced
by the geometry of the problem. There are, therefore, compelling reasons to approximate the
true, pixelated grain boundary, by a smooth curve that provides a physically more realistic
representation of the grain boundary.

In the next two sub-sections we describe a method to determine the precise shape of each
grain boundary curve (i.e. to find the correctly ordered sequence of lattice cell centres through
which the true grain boundary passes). Next, we present details of the curve smoothing
technique and in the following sub-section we provide a brief discussion of the meshing
algorithm.

4.2. Data structures

Let the lattice have N sites and let r(n) be the position vector associated with the nth site.
Each site is assigned an integer valued number known as the spin. Write s, for the spin of
the nth site. Let b denote a lattice cell whose sites have the addresses n;, n,, n3, ns and
define the set V(b)={ni,ny,n3,ns}. Let ¢(b) be the position vector whose co-ordinates are
the x- and y-components of the centre of the lattice cell b. In Figure 1(a), a schematic of a
4 x 4 lattice is shown with the above lattice notations indicated in Figure 1(b) for a particular
lattice cell 5. Thus,

c(b)=3(r(ny) +r(n) +r(n3) +1(ns))
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Now create a butterfly data structure edge(i,e),i=1,2,3,4, such that for each lattice edge
e, edge(l,e)=n;, edge(2,e)=n,, where n; and n, are the lattice site addresses associated
with the end-points of e. Set edge(3,e)=b; and edge(4,e)=b,, where b, and b, are the two
lattice cells that are incident to e (Figure 1(b)). If there is only one lattice cell » incident to
e, we call this a boundary edge and set edge(3,e)=25 and edge(4,¢)=0. We also associate
with each lattice cell b the set S(b)={ej, ez, e3,e4}, Where the ¢; (i=1,2,3,4) are the edge
addresses of the four sides of the lattice cell b.
Given an edge e, let ny=edge(1,¢) and n,=edge(2,¢), and define the function

gle)=1- 5snlsn2 )

where 6;; is the Kronecker delta. In other words, g(e) takes the value 1 if a segment of a
grain boundary passes through edge e. This segment connects the centres ¢(b;) and ¢(b;) of
the two lattice cells b; and b, that are incident to this edge. If e is a boundary edge for which
g(e)=1 then the associated grain boundary segment starts at the mid-point of the edge and
ends at the point ¢(b) where b =-edge(3,e).

We can now classify each lattice cell b as either:

1. Interior if no grain boundary passes through b (i.e. if g(e)=0 Ve e S(b));

2. boundary if a single grain boundary passes through & (i.e. if g(e)=1 for two edges in
S(b) and g(e)=0 for the remaining two edges in S(b));

3. a junction if one or more boundaries start and/or terminate in b. In this case g(e)=1
for 3 or 4 edges in S(b).

For each lattice cell b we assign an integer-valued function f(b) that counts the number of
edges e € S(b) for which g(e)=1. Thus,

0 if b is in the interior
f(b)y=<2 if b is a boundary (10)
3 or4 if bis a junction

The case f(b)=4 is mentioned so as to cover all the possibilities. We do emphasize that the
case f(b)=4 does not arise in microstructural evolution processes such as grain growth in
isotropic systems, since it is a thermodynamically (energetically) unfavourable configuration
and splits into two triple junctions [56]. The case f(b)=3 (triple junction) is energetically
favourable. In addition, we note that f(b) cannot assume the value 1 since a grain boundary
cannot start or terminate inside a lattice cell unless the terminal point is incident to at least
one other grain boundary that enters b.

This leads to the following classification of the grain boundary curves into two distinct

types:

1. The curve starts at a boundary edge. This curve may end either (a) inside a lattice cell
(i.e. at a junction), or (b) at another boundary edge.
2. The curve starts and ends at a junction.

There exists a third possibility, namely, the grain boundary curve is isolated (i.e. f(b)=2 for
each lattice cell b through which the curve passes). However, this case is not physical since
grain boundaries may only end on other grain boundaries; hence this type is not taken into
consideration.
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4.3. Assembling grain boundary segments

The individual segments of each grain boundary can be assembled in the correct order by
using the butterfly edge data structure to traverse the lattice. It is convenient to maintain a
list of all edges for which g(e)=1 and which have not yet been examined. Thus, we start
by establishing the set G={e:g(e)=1} and remove an edge e from G after this edge has
been examined. The task is finished and the complete set of grain boundary curves has been
found when the cardinality of G is zero.

We first assemble all type 1 grain boundaries; these start on the lattice boundary. Then,
assuming G is not yet empty, we assemble the remaining grain boundaries; these must nec-
essarily be type 2.

Consider, for example, the assembly of a type 2 grain boundary curve I'. Let by be the
junction at which the I" starts. Search through the edges e € S(by) to find a side ¢’ € S(by)N G.
Write by for the lattice cell adjacent to by that is also incident to e’. If b; is a junction then
by is the final lattice cell associated with I'. If b; is not a junction then the procedure is
repeated. Let b,,,m>1 be the final lattice cell (i.e. the first junction found by this search
procedure). Then the sequence of lattice cells {b;:k=0,...,m} defines I', and the segment
of T' that connects lattice cell £ to lattice cell £ + 1 is given by

r(t) = (b)) + [e(brsr) — (bt — kh), kh<t<(k+ 1)h

where £ is the lattice edge length. Apart from minor adjustments, type 1 grain boundary
curves are also handled in essentially the same way.

4.4. Smoothing of grain boundaries

Each grain boundary curve I' is approximated by cubic polynomials x(z) and y(¢) that pass
through the two end-points of I'. Each of these cubics has two remaining degrees of freedom
which we can adjust to achieve a least-squares fit. Let by be the lattice cell at the start of
I' and b,, be the lattice cell at the other end-point of I'. Write #, =kh, k=0,...,m and let
(x%, y¢) be the x and y components of ¢(b;), the centre of lattice cell b,. We seek a cubic
polynomial that passes through (xo, o) and (x,,, y»,) and is the best fit to the remaining points
(xk, vi)sk=1,...,m — 1 in the least-squares sense. Define

t—1

T= and T4
tm — b

_lh—1
_tm_toj

k=0,...,m (11)
Then the x and y components of the smoothed curve are given by

x(t)=a(t® — 1)+ b(t* — 1) + (X — X0)T + X0 (12a)
WO =@ = 1) +d(@ =)+ (ym— 10)T+ 2o (12b)

The mean square error is
m—1
E(a,b;c,d)= Y [(x(t) — x¢)* + (¥(t) — ye)’] (13)
k=1
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Setting

B, 0
oa  0b

0E . OE

we find the coefficients a, b, ¢, and d by solving the following two sets of equations:

2 6)-0) G -0 w

where
a—kz (2 - 1), ﬁ—kZ (@ — 1)z — D, /—kz (t — 172 (16)
and
p= kz [ — x0— (o —x0)5d( — Dz (17)
qg= ’ZZII [xx — x0 — (xm — x0)T](Tk — 1)7s (17b)

The terms » and s are determined in a similar way on replacing x; by yx, xo by yo, and x,,
by y, in the definition of p and g¢.

4.5. Mesh generation

The domain to be meshed consists of the interior of the lattice boundary. It is important,
however, that the smoothed grain boundaries are maintained within the final mesh. The lattice
boundary and grain boundaries are discretized and approximated by a series of contiguous
straight line segments whose length is chosen by the user. These straight line segments form
the set of mesh boundary edges, and their end-points the set of mesh boundary points. A
constrained Delaunay triangulation of this collection of edges and points is then created. It
is known that the constrained Delaunay triangulation of any planar domain, containing a
given set of prescribed edges, always exists [57]. This initial triangulation is generated by the
Tanemura—Ogawa—Ogita algorithm [58].

The initial mesh is then refined to create a mesh of good quality triangles that also con-
forms to all boundary edges. The refinement is based on incremental point insertion using
the Bowyer—Watson algorithm [59, 60]. The quality of the final mesh will depend on the
placement of the interior mesh points. Several possibilities have been considered for select-
ing the position of point placement (e.g. at element barycentres [61], along edges [62], at
element circum-centres [63] or along Voronoi segments [64]). The circum-centre point inser-
tion method generates provably good quality meshes in two-dimensions [65, 66]. The Voronoi
segment method [64,66] works extremely well for planar domains and has been shown to
generate meshes whose triangles are mostly close to equilateral in shape [66].
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The decision, whether or not to refine a particular region of the mesh, is based on a
comparison between the actual local length scale / (e.g. element width, circum-radius) and
the desired length scale specified by a scalar variable p called the length density function.
The value of the mesh density function at each point on the boundary is computed as the
average length of the incident boundary edges and values of p at interior points are found
by linear interpolation over the triangles. In the computations carried out in this paper, a
user-defined constant value of p is specified for all points on the boundary. Hence, the value
of p for all interior points in the domain is also approximately the same constant. If the value
of p at any position in the mesh is less than the actual local length scale / then the mesh
is refined by the insertion of an extra point followed by a local mesh reconstruction using
the incremental Delaunay algorithm. It can be shown that the maximum circum-radius of the
Delaunay triangulation is monotone decreasing if each new mesh point is always placed in a
triangle whose circum-radius has the maximum value [66]. It follows that the circum-radii of
all triangles in the mesh will eventually fall below the value determined by the desired local
length scale p and the algorithm is therefore guaranteed to halt after a finite number of steps.

In Figure 2, examples of the finite element meshes generated by the microstructure-meshing
algorithm are presented. The initial triangulation of the domain which preserves all grain
boundary edges is shown in Figure 2(a) and (b) for p=0.1 and 0.04, respectively. After
carrying out the refinement procedure for a given p, the final triangulation of the microstructure
is shown in Figure 2(c) (p =0.1) and Figure 2(d) (p =0.04). The mesh in Figure 2(c) consists
of 395 three-noded constant strain triangular elements, whereas the mesh presented in Figure
2(d) has 2002 elements.

5. GOVERNING EQUATIONS AND WEAK FORM

Consider a body 2 C R?, with boundary I". The boundary I' consists of the sets I}, (essential
boundary), I, (natural boundary), and I (internal crack), such that I' =T, UI; UI.. The crack
I, is assumed to be traction-free.

The field equations of elastostatics are:

V:-6+b=0 in (18a)
c6=C:¢ (18b)
e=Vu (18¢c)

where V; the symmetric gradient operator, u the displacement vector, & the small strain tensor,
o the Cauchy stress tensor, b the body force vector per unit volume, and C the tensor of
elastic moduli for a homogeneous isotropic material.

The essential and natural boundary conditions are:

u=u on [ (19a)
c-n=t onl (19b)
6-n=0 on I, (19¢)
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(a) (b)

(©) (d)

=

Figure 2. Delaunay triangulation of polycrystalline microstructure: (a) initial boundary conforming tri-
angulation (p=0.1); (b) initial boundary conforming triangulation (p =0.04); (c) final triangulation
(p=0.1); and (d) final triangulation (p =0.04).

where n is the unit outward normal to 2, and @ and t are prescribed displacements and
tractions, respectively. Note that Equation (19c) imposes the condition that the crack Ii, be
traction-free [43].

The weak form (principle of virtual work) for linear elastostatics is stated as: Find u” € V*
such that

/c(uh):s(vh)dQ:/ b-vth+/ t-vidlL wWheV (20)
Qh Oh I

where u(x)€ V" and v"(x) €V} are the approximating trial and test functions used in the
X-FEM. The space V" is the enriched finite element space that satisfy the essential boundary
conditions, and which include basis functions that are discontinuous across the crack surfaces.
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/ traction-free

pre-crack

\ traction-free

Figure 3. Model geometry and boundary conditions.

The space V{ is the corresponding space with homogeneous essential boundary conditions.
The trial and test functions, which are based on Equation (5) are used in a standard Galerkin
procedure to obtain the discrete equation [35, 36].

6. NUMERICAL EXAMPLES

We first describe the simulation procedure for crack growth through a microstructure. Next,
we present the numerical simulation results for crack propagation in a polycrystalline material
for different grain boundary toughness, showing the transition from the intergranular to the
transgranular mode of fracture. A detailed study that takes into account the statistical variations
in the microstructure, and the dependence of grain size and toughness on crack propagation is
currently under investigation; in this paper, we focus on the development and implementation
of the numerical algorithms together with a few crack propagation simulations that demonstrate
the promise and potential of the proposed approach.

6.1. Simulation procedure

A polycrystalline microstructure is obtained using the Potts grain growth model outlined in
Section 3. The polycrystal is assumed to be elastically homogeneous—all grains and grain
boundaries have the same elastic constants (£ and v). A finite element mesh of the microstruc-
ture is generated using the Delaunay algorithm described in Section 4. The problem domain
is a square of edge length L. An initial pre-crack of size 0.02L is introduced along a grain
boundary that emanates from x;=0.5L on the top surface. The top and bottom surfaces are
traction-free; uniaxial strain is applied in the x;-direction by fixing the left edge and imposing
displacement boundary conditions on the right edge (Figure 3). A user-defined crack growth
increment Aay, is also prescribed as an input. At any strain step j, the X-FEM solution is
obtained for an initial (guess) applied strain that is taken from the previous converged step
g j’ =¢&;_1 (& =1). Fracture parameters such as the mode I and mode II stress intensity factors
are computed using the domain form [67, 68] of the interaction integral [69]; see Reference
[35] for details on the stress intensity factor computations in the X-FEM. The strain energy
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release rate G under plane strain conditions is related to the stress intensity factors through
Irwin’s relation:

(- )KE 4K

G 7 1)

where £ and v are Young’s modulus and Poisson’s ratio, respectively, of the material.
Depending on the crack-tip position, one of two cases may occur, namely

(A) Crack-tip is in the grain interior.

(B) Crack-tip is on a grain boundary.

If the crack-tip is in the grain interior, then the following steps are carried out:

(A.1) The maximum circumferential stress criterion [70] is used to determine the crack
growth direction (0, =0,):

2
0, =2 tan’li I%ﬁ: <II§III) +8 if Ky #0 (22)

where 0, is the crack growth angle in the local crack-tip co-ordinate system.
(A.2) The crack increment in this case is given by

Aa= min(AamaX> Aagb: Aahull) (23)
where Aay, is the distance from the crack-tip to the nearest grain boundary along
0, and Aay,y is the distance from the crack-tip to the convex hull along 6.

If the crack-tip is on a grain boundary, then the steps involved are:

(B.1) All directions along the grain boundary from the crack-tip are considered along with
the maximum circumferential stress direction 0j,.
The maximum allowable crack increment Ag, is determined from the following
equation:

Aa,, = min(Admax, Adgy, A, Adgy) (24)
where Aay,; is the distance to the nearest grain boundary junction along Og. The
crack is advanced by 10% of Aa,, in each permissible direction and the strain energy

release rate G is computed for each case. We disregard any of the grain boundary
directions that lead to crack closure. The crack faces are not in contact if

(ut —u7)-n">0 (25)
in the middle of the crack segment which contains the crack-tip. In the above equa-
tion, ut and u~ are the displacement vector solutions above and below the crack

segment, respectively, and n* is the unit normal to the crack segment.
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(B.3) The ratios G/G* are computed, where k =i (grain interior) or k =gb (grain bound-
ary), and the one with the largest ratio is chosen as the growth direction.

(B.4) If a grain boundary direction is selected as the growth direction (0, =0y ), then the
crack increment in this case is given by

Aa = min(Adpax, Adgi) (26)

Once the growth direction and crack growth increment are determined in step j, the critical
applied strain for step j is computed so that crack growth takes place when G>G! (k=i or
k =gb). Since the problem is linear elastic, the strain energy release rate is proportional to
the square of the applied strain. Hence if G<G¥ (k=i or k=gb) at step j (j>1, since for
j =1 the critical applied strain is computed even if G>GF), the critical applied strain &; is

computed using:
_ Gk,
&= 6 SI]J- (27)

After the X-FEM analysis has been carried out with the critical applied strain for the ap-
propriate growth direction and crack growth increment, the simulation proceeds to the next
(j+ 1) step and the above sequence is repeated. The simulation is carried out till fracture of
the specimen. In all simulations, plane strain conditions are assumed, with Young’s modulus
E=10° and Poisson’s ratio v=0.3 used in the computations.

6.2. Numerical simulations

In the numerical simulations, we study the dominant mode of crack propagation in terms of
the fracture toughness (critical fracture energy) of the grain boundary vis-a-vis that of the
grain interior. Let R=GE*/G! denote the ratio of the critical fracture energy of the grain
boundary to that of the grain interior. In all simulations, a unit square lattice was used in
the Potts grain growth model with N =10* (lattice sites) and Q=100 (spins). The grain
sizes in the polycrystalline microstructures were obtained after executing the kinetic Monte
Carlo simulation for 10* MCS steps. The scalar length density function p=0.02 was used to
construct the finite element mesh from the microstructure. The crack propagation simulations
were performed using the procedure outlined in Section 6.1.

In Figure 4, the grain boundaries and the crack path are shown for the case of very weak
grain boundaries (R=0.1). As one might expect, the fracture mode is entirely intergranular,
with the crack propagating entirely along the grain boundaries. Since the extreme values of R
will result in intergranular (0 <R <0.2) or transgranular (0.8 <R < 1) fracture paths, we focus
on intermediate values of R for the remaining simulations.

We consider three different values of R in our crack propagation studies: R =0.3, 0.5, 0.7. In
addition, for each case the percentage of the crack length that lies along grain boundaries (i.e.
the intergranular fraction, IG) is also indicated in the plots. We show results obtained for two
different material microstructures to emphasize the inherent statistical variability of these type
of microstructures. Figures 5 and 6 show results obtained for two different microstructures.
Clearly, the same trends are evident in both cases—the transition from an intergranular to a
transgranular mode of fracture is observed as R is increased. For R=0.3, both Figures 5(a)
and 6(a) illustrate a predominantly intergranular mode of fracture; the growth is mixed mode
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{a) (b}

() (d)y

Figure 5. Crack propagation through polycrystalline microstructure I. The thin grey lines delineate

the finite element mesh, the artificially thickened (for clarity) grey lines represent the grain bound-

aries and the black line indicates the crack path: (a) R=0.3 (IG=100%); (b) R=0.5 (IG=42%);
(¢) R=0.7 (IG=21%); and (d) all cases.

vertices; in addition, the flexibility of a user-specified scalar local mesh density p was
also provided.

3. A quasi-static crack growth criteria was proposed that was based on the local mechanical
state at the crack-tip, which was driven by the direction of maximum circumferential
stress in the grain interior and along the local direction with maximum energy release
rate from a grain boundary: the toughness (critical energy) of the grain boundary and
the grain interior were assumed to be different. Crack growth took place if the condition
G =G, was met, where G, depended on the microstructural constituents.
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(b)

(ch (d)

~R=07

R=0.30.5
{
_R=03
R = 0.5,0.7—]

Figure 6. Crack propagation through polycrystalline microstructure II: (a) R=03 (IG = 81%);
(b) R=0.3 (IG=40%); (c) R=0.7 IG=13%); and (d) all cases.

Crack propagation simulations were presented as a function of the ratio of the critical fracture
energy of the grain boundary to that of the grain interior: R = Gcgb/GCi. In the simulations, we
observed the transition from an intergranular to a transgranular mode of fracture as the grain
boundary toughness was increased, which is in qualitative agreement with the results obtained
in previous studies [11, 19]. This study has demonstrated the utility and potential of the X-
FEM as a computational fracture tool to study complex failure mechanisms in polycrystalline
materials.
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