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Abstract. The finite element method is now well established as a robust and reliable
numerical technique in many areas of solid mechanics. There are however problems where
the use of the finite element method is cumbersome like the modeling of moving discon-
tinuities due to the need to update the mesh to match the geometry of the discontinuity.
Even for stationary cracks, in three-dimensional solids, contsructing a mesh that matches
the geometry of the crack is not trivial for non-symmetric loading cases. Recently, a new
technique for modeling cracks in the finite element framework has been introduced. A
standard displacement-based approzimation is enriched near a crack by incorporating both
a discontinuous field and the near crack front asymptotic fields through a partition of unity
method. A methodology that constructs the enriched approximation from the interaction
of the crack geometry with the mesh is developed. This technique allows the entire crack
to be represented independently of the mesh, and so remeshing is not necessary to model
crack growth. Numerical experiments are provided to demonstrate the utility and robust-
ness of the proposed technique. Two-dimensional crack growth analysis are shown and
stress intensity factors for planar three-dimensional crack obtained with the X-FEM are
compared to available reference solutions from the literature.
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1 INTRODUCTION

Solving crack problems in fracture mechanics is imperative to quantify and predict
the behavior of cracked structures under service conditions. To this end, the accurate
evaluation of fracture parameters such as the stress intensity factors (SIF) is required for
simulation-based life-cycle design analysis.

The modeling of cracks using the finite element method is cumbersome in 3D for
complex structures or crack geometries. Even in 2D, fatigue crack growth is not a straight-
forward task. The present technique, the eXtended Finite Element Method, models cracks
independently of the mesh leading to a simplification in mesh generation and avoiding
remeshing as the crack grows.

The X-FEM exploits the partition of unity property of finite elements first identified in
[?], which allows local enrichment functions to be easily incorporated into a finite element
approximation. A standard approximation is thus “enriched” in a region of interest by
the local functions in conjunction with additional degrees of freedom. The enrichment
functions are the near-tip asymptotic fields [?] and a discontinuous function [?] to represent
the jump in displacement across the crack boundary. The extension to the 3D case was
carried out in [?]. The use of the partition of unity method in conjunction with the finite
element method to model cracks may also be found in [?] and [?].

The paper is organized as follows. The next section is devoted to the description of
the strong and weak forms of the elasto-statics equations in the presence of cracks. Then,
Section 3 introduces the X-FEM approximation in both two and three dimensions. Section
4 presents a 2D crack growth numerical experiment as well as the determination of the
stress intensity factors for an elliptical crack. Finally, Section 5 provides a summary and
some concluding remarks.

2 PROBLEM FORMULATION

In this section, we briefly review the governing equations for elasto-statics and give the
associated weak form. Specifically, we consider the case when an internal boundary is
present across which the displacement field may be discontinuous. The internal boundary
is a curve in two-dimensional problems and a surface in three-dimensional problems.

2.1 Governing equations

Consider the domain {2 bounded by I'. The boundary T' is composed of the sets T, T';,
and ', such that T =T, UT; UT. as shown in Fig. ??. The crack is located on I', and 1s
assumed to be traction-free. Prescribed displacements are imposed on I',,, while tractions
are imposed on [';.
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Figure 1: Body with an internal boundary
subjected to loads.

The equilibrium equations and boundary conditions are

V.o+b =0 in Q (1)
o-n =tonl, (2)
oc-n =0onTl+ (3)
o-n =0onl.- (4)

where I' .+ and T'.- are the crack faces, n the unit outward normal, o the Cauchy stress,
and b the body force per unit volume. In the present investigation, we consider small
strains and displacements. The kinematics equations therefore consist of the strain-
displacement relation

€ =¢€(u) = Vu (5)

where Vi is the symmetric part of the gradient operator, and the essential boundary
conditions

u=wuonl, (6)
The constitutive relation is given by Hooke’s law:
c=C:e¢ (7)

where C' is the Hooke tensor.



N. Moés, N. Sukumar, B. Moran and T. Belytschko

2.2 Weak form
The space of admissible displacement fields is defined by
U={veV:v=mwonT,} (8)

where the space V is related to the regularity of the solution. The details on this matter
when the domain contains an internal boundary or re-entrant corner may be found in [?]
and [?]. The test function space is defined similarly as

Uy={veV:v=00nT,} (9)

An important point to note is that the space V allows the trial and test functions to
be discontinuous across the internal boundary I'.. The weak form of the equilibrium
equations is given by

/a’:e(v) dQ:/b-de—l—/E-v dT'V v € Uy (10)
Q Q ry

Using the constitutive relation and the kinematics constraints in the weak form, the
problem is to find w € U such that

/e(u):C:e('v) dQ:/b-v dQ—I—/f-v dI'Vv e lfy (11)
Q Q Iy

The above weak form is equivalent to the strong form (??)-(??) (see [?]). In particular,
the fact that the test function ¥V may be discontinuous across I'. yields the traction free
conditions on the crack faces (77)-(77).

3 THE EXTENDED FINITE ELEMENT METHOD

In this section, we develop the approximation associated to the weak form (??). The
extended finite element approximation involves two terms: the classical finite element
approximation on the given mesh and an enriched finite element approximation obtained
through the partition of unity method [?]. The enrichment takes into account the dis-
placement discontinuity induced by the crack as well as the analytical asymptotic behavior
near the crack front.

3.1 Two-dimensional case

Consider Fig. 7?7 in which a crack is not modeled by the finite element mesh. The
extended finite element approximation introduced in [?, ?] takes the form:

uh(m) = Zuz¢z(w)+zaz¢z(w)H(w)

+ Z gil@)(Y_ bl File)) + Z dil@)(Y_ bl Fy(x)) (12)

where:
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Figure 2: An arbitrary crack placed on a mesh. Figure 3: Local axes for the polar coordinates
at the two crack tips.

I is the set of all nodes in the mesh;
e u; is the classical (vectorial) degree of freedom at node i;

e ¢; is the shape function associated with node 7. Each shape function ¢; has compact
support w; given by the union of the elements connected to node ¢;

o L C Iis the subset of nodes that are enriched for the crack discontinuity and a; are
the corresponding additional degrees of freedom; the nodes in L are such that their
support (we mean the support of the nodal shape function) intersects the crack but
do not contain any of its two tips. They are shown as circled nodes (Fig. ?7) on a
uniform or non-uniform mesh;

e A, C I and K; C I are the subset of nodes that are enriched for the first and
second crack tip, respectively. The corresponding additional degrees of freedom are
bi’,1 and bi’,25 the nodes in K; (K3) are such that their support contain the first
(second) crack tip. The squared nodes Fig. 7?7 belongs to Ky U K.

The near tip functions F/(«),l = 1,... ,4 are given by

{Fl(z)} = {\/;sin(g), \/;cos(g), \/Fsin(g)sin(e), ﬁcos(%)sin(@)} (13)

where (r,6) are the local polar coordinates at the first crack tip with § = 0 coinciding
with the tangent to the crack at the tip. Similarly, the near tip functions Fi(z) are also
given by (??) but the local polar coordinates being now defined at the second crack tip.
Fig. ?? shows the local axes for the definition of the polar coordinates at the two crack
tips.
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Figure 4: Crack on a uniform mesh (left) and on a non uniform mesh (right). The circled nodes belong
to the set L and are enriched by the jump function whereas the squared nodes belong to the set K7 U K>
and are enriched by the crack tip functions.

The function H(«) is a discontinuous function across the crack surface and is constant
on each side of the crack: +1 on one side of the crack and -1 on the other. More precisely,
the function H (@) is defined as follows. The crack is considered to be a curve parametrized
by the curvilinear coordinate s, as in Fig. ??7. Given a point & in the domain, we denote
by «* the closest point on the crack to . At &*, we construct the tangent and normal
vector to the curve, e, and e,,, with the orientation of e, taken such that e, x e,, = e.
where the unit vector e, points out of the page. The function H(z) is then given by the
sign of the scalar product (& —*)-e,. In the case of a kinked crack as shown in Fig. ??7b,
where no unique normal exists but a cone of normals is defined at *, H(z) = 1 if the
vector (& — &*) belongs to the cone of normals at #* and H(x) = —1 otherwise.

3.2 Three-dimensional case

The three-dimensional case is treated quite similarly to the two-dimensional case except
that now the front of the crack is no longer composed of a set of points but a set of curves.
The set K now gathers all the nodes to be enriched to model the crack front and the
approximation reads [?]

u'(x) = Zuiqﬁi(m)‘ani@(‘”)H(‘”)

+ Z@(:B)(ZbﬁF’(w)) (14)

where I, u;, ¢; have the same meaning as before, whereas the sets L and K are given by

o L C Iis the subset of nodes that are enriched for the crack discontinuity and a; are
the corresponding additional degrees of freedom; the nodes in L are such that their



N. Moés, N. Sukumar, B. Moran and T. Belytschko

enl

a) b)

Figure 5: Normal and tangential coordinates for a smooth crack, (a), and a kinked crack, (b). #* is the
closest point to & on the crack. The value of the function H is -1 at @ for (a) and (b).

support intersects the crack but not its front. Note that the support of a node is
now a volume;

o K C I the subset of nodes that are enriched for the front. The corresponding
additional degrees of freedom are bi», [ =1,....,4, the nodes in K are such that
their support intersects the front.

The front enrichment functions F!(z) are still given by (??) where the couple (r,6)
is defined as the polar coordinates in the z; — x5 plane, see Fig. 7?. The plane z; — z;
contains & and «* (the closest point on the crack front to @) and the x; axis is aligned
with the normal n to the crack at «*.

Crack front A¢

X3

Figure 6: Coordinate configuration for crack front enrichment functions.
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The crack discontinuity enrichment function H(:B) is still +1 above the crack and -1
below. The 2D definition of H (&) depicted in Fig.?? may directly be generalized to 3D.

3.3 Implementation aspects

The cracks are modeled by a set of geometrical entities. The simplest is to use segments
in 2D and planar surfaces in 3D as geometrical entities. To determine whether a point
x is above or below the crack and to evaluate H(z), we find the geometrical entity the
point & is closest to and compute the signed convex area (2D) or volume (3D) enclosed
by the point and the entity. The sign of this area or volume determines whether the point
is above or below the crack.

For elements cut by the crack and enriched with the jump function H(x), it is necessary
to make a modification to the element quadrature routines in order to accurately assemble
the contribution to the weak form on both sides of the discontinuity. As the crack is
allowed to be arbitrarily oriented in an element, the use of standard Gauss quadrature
may not adequately integrate the discontinuous field. If the integration of the jump
enrichment is indistinguishable from that of a constant function, spurious singular modes
can appear in the system of equations. In order to avoid this situation, an element cut
by the crack is decomposed into simplexes all being on one side or the other of the crack.
The integration is then performed by first looping over these simplexes and then the
integration points in each simplex.

4 NUMERICAL EXPERIMENTS
4.1 Crack growth from two holes

We consider the modeling of crack growth in a plate with cracks emanating from two
holes subjected to a far-field uniform tension. Fig. ?? shows the geometry and loads under
consideration. In the initial configuration, both cracks have a length of 0.1 in. and are
oriented at angles § = 45° and § = —45° for the left and right holes, respectively. The
mesh used in the analysis is also shown in Fig. 7?7 (2650 nodes). It is refined towards
the center of the plate, where the cracks are expected to propagate. It is emphasized
that the mesh does not conform to the crack geometries, and that the same mesh is used
throughout the simulation.

The cracks are driven by a Paris fatigue law with the maximum circumferential stress
hypothesis used to determine the angle of crack propagation. The change in crack length
for each iteration is taken to be a constant Aa = 0.05 in., and the cracks are grown for
16 steps. The two cracks grow in a nearly symmetrical pattern, despite the fact that the
mesh is not symmetric (see Fig. 7?7 and a zoom around the right hole which is shown in
Fig. ??). In this example, the cracks eventually grow into the holes. See [?] for more
details on this numerical experiment.
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Figure 8: Mesh and final crack configuration.
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Figure 9: Mesh and final crack configuration near the right hole.

4.2 Elliptical crack

We consider an elliptical crack with semi-major axis ¢ = 0.1 and semi-minor axis
b = 0.05 inside a bi-unit cube. The body is subjected to unit tractions o3, = 1 on
x3 = +1. The coordinate axis x3 is normal to the plane of the crack. Since the crack-
dimensions are small compared to the specimen, we use the infinite domain solution as
the reference solution. The exact stress intensity factor solution for a planar elliptical

crack in an infinite domain is [?]:

KIE =3 " Jsin?f + — cos?f
a

i faes G} i

where 6 is the elliptic angle defined Fig. ??, 09, is the far-field applied stress in the

zs-direction, and E(k) which is the elliptic integral of the second kind is given by

w/2

a? — b?
E(k) = / V1—k2sin?6d, k= . (16)
0

a

The finite element mesh consists of 24 x 24 x 24 hexahedral elements. The number of
unknowns in the matrix system is 48324. The stress intensity factors (SIF) are computed

10
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in a post-processing step using domain integral methods [?]. The SIF results have four-
fold symmetry; hence results for only 0° < 8 < 90° are presented. For the chosen values
of a and b, the value of the elliptic integral E(k) = 1.211096 [?]. In Table ??, the SIF
results are presented as a function of the elliptic angle 8, and Fig. 7?7, the normalized SIF
is plotted versus #. The agreement between the exact solution and the numerical results
is good for the entire range of . The minimum (§ = 10°) and maximum (6 = 30°) errors
in the stress intensity factors are 0.6 per cent and 3.7 per cent, respectively. More details

on this problem as well as other examples with penny-shaped and edge cracks can be
found in [?].

5 CONCLUSIONS

The eXtended Finite Element Method allows the representation of cracks independent
of the mesh As a consequence no remeshing is necessary for the crack growth simulation.
On the basis of the Paris fatigue law, the growth of two cracks emanating from a hole
was analyzed in a two-dimensional problem on a fixed mesh. For the three-dimensional
case, accurate stress intensity factors were obtained for an elliptical crack using a uniform
hexahedral mesh.

11
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Table 1: Stress intensity factors for the elliptical crack problem.

9 | KF | K

0° | 0.2314 | 0.2358

10° | 0.2365 | 0.2378

20° | 0.2495 | 0.2459

30° | 0.2662 | 0.2564

40° | 0.2830 | 0.2776

30° | 0.2983 | 0.2965

60° | 0.3107 | 0.3089

70° | 0.3198 | 0.3163

80° | 0.3253 | 0.3194

90° | 0.3273 | 0.3202

12
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Figure 10: Geometric definitions for an elliptical crack.
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Figure 11: Stress intensity factors for the elliptical crack problem.
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