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Abstract

A numerical technique for modeling fatigue crack propagation of multiple coplanar cracks is presented.

The proposed method couples the extended finite element method (X-FEM) [Int. J. Numer. Meth. Engng.

48 (11) (2000) 1549] to the fast marching method (FMM) [Level Set Methods & Fast Marching Methods:
Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Sci-

ence, Cambridge University Press, Cambridge, UK, 1999]. The entire crack geometry, including one or

more cracks, is represented by a single signed distance (level set) function. Merging of distinct cracks is

handled naturally by the FMM with no collision detection or mesh reconstruction required. The FMM in

conjunction with the Paris crack growth law is used to advance the crack front. In the X-FEM, a dis-

continuous function and the two-dimensional asymptotic crack-tip displacement fields are added to the

finite element approximation to account for the crack using the notion of partition of unity [Comput. Meth.

Appl. Mech. Engng. 139 (1996) 289]. This enables the domain to be modeled by a single fixed finite element
mesh with no explicit meshing of the crack surfaces. In an earlier study [Engng. Fract. Mech. 70 (1) (2003)

29], the methodology, algorithm, and implementation for three-dimensional crack propagation of single

cracks was introduced. In this paper, simulations for multiple planar cracks are presented, with crack

merging and fatigue growth carried out without any user-intervention or remeshing.
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1. Introduction

Numerical methods for capturing moving interfaces have played a vital role in a broad range of
modeling applications from multi-phase fluid flow to thin-film deposition and etching. In many of
these applications, solution of an elliptic equation involving irregularly shaped moving boundaries
is required in order to obtain the velocity field of the interface. Many different techniques are
available, each with their own strengths and weaknesses making no single technique optimal for
all moving interface problems.
In this paper, we present a recently developed numerical method, which has a different set of

strengths than existing methods. It is the result of coupling a popular interface capturing method,
the fast marching method (FMM) [8,32,33], with an extended form of the classical finite element
method, the extended finite element method (X-FEM) [22,40]. The two methods form a natural
partnership for capturing a monotonically advancing front which requires a coupled elliptic
equation solution for determining the front velocity. In the FMM, the motion of the interface is
embedded in the solution u of a static Hamilton–Jacobi equation which describes the position of
the interface at time t by the level contour uðxÞ ¼ t. This function u is computed using a single
pass through the mesh by carefully selecting the order in which the nodal values are evaluated. In
the X-FEM, additional non-linear functions are added to the finite element approximation to
account for the interface using the notion of partition of unity. This enables the domain to be
modeled by finite elements with no explicit meshing of the crack surfaces. In the coupled method,
the FMM maintains the location and motion of the crack front whereas the X-FEM is used to
compute the local front velocity. For a treatment of non-monotonically advancing fronts, the
FMM is replaced by the level set method [28], see [19].

Fig. 1. Comparison of penny crack growth to the exact solution.
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In [39], Sukumar and co-workers applied this algorithm to single planar three-dimensional
fatigue cracks. In that paper, the accuracy of the SIF calculations, as well as the algorithm as a
whole, tested favorably against the known solution of a single circular penny crack embedded in
an infinite domain. A sample of the results are shown in Fig. 1. However, that algorithm was not
able to handle multiple cracks which may merge as they grow. The ease with which the FMM can
handle merging interfaces is one of its strongest features, but difficulties remain in the corre-
sponding implementation of the X-FEM. At issue is how to properly employ the X-FEM when
separate interfaces, such as distinct cracks, approach each other.
In this paper, we give an overview of the original method, then describe how to incorporate

multiple cracks which are able to coalesce. We begin by describing existing numerical methods for
modeling fatigue cracks and then give a description of both the X-FEM in Section 3 and the
FMM in Section 4. In Section 5.1, the enrichment functions that appear in the displacement-based
finite element approximations are discussed. The FMM in conjunction with the Paris crack
growth law is used to advance the crack front (Section 5.4). The governing equations of elasto-
statics and the associated weak form are presented in Section 6. In Section 7, fatigue crack growth
simulations for multiple planar cracks are presented, with crack merging and fatigue growth
carried out without any user-intervention or remeshing.

2. Review of numerical methods for fatigue crack propagation

Failure in engineering structures is very often caused by defects such as cracks that grow be-
yond a safety-critical size. Initial defects such as pre-cracks are present in structures as fabrication
defects during manufacturing, or due to localized damage during service. Fatigue crack growth is
one of the principle modes of failure for structures under cyclic loading conditions. Damage
tolerant assessment of structures provides a means to assess the critical crack size that is tolerable
from the viewpoint of structural strength, and also the number of cycles to eventual failure.
Numerical simulations using the principles of linear elastic fracture mechanics provide a sound
tool to carry out damage tolerant analyses, and hence the development of numerical models for
three-dimensional crack growth of multiple cracks and their interactions is important.
Exact solutions for the evolution of arbitrary-shaped cracks in three-dimensional structural

components are not available, and hence numerical methods are the only recourse for three-
dimensional fatigue crack growth simulations. Some of the prominent numerical methods used
for modeling fatigue crack growth are: finite element and boundary element methods
[6,7,11,15,21], boundary integral equations [42], finite element alternating method [26,41], and the
dislocation distribution approach [9,18]. Much of the progress in finite element remeshing algo-
rithms and the capability to carry out three-dimensional crack modeling and fatigue crack
propagation in complex structural components is due to contributions of the Cornell Fracture
Group. 1 The finite element framework is particularly attractive for it provides the ease and
flexibility of modeling complex structural components with arbitrary boundary conditions, non-
linear material behavior, and anisotropic material properties. In spite of the successes achieved in
computational fracture mechanics with finite elements, mesh generation in three-dimensions for

1 See http://www.cfg.cornell.edu.
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crack growth simulations is still a formidable task. This is because in order to capture the evo-
lution of the crack in fatigue growth simulations, remeshing along with local refinements around
the crack front are required to obtain accurate solutions for fracture parameters such as the stress
intensity factor (SIF). Hence, a computational method that can automate three-dimensional crack
propagation simulations on relatively coarse meshes without the need for remeshing or user-in-
tervention is of significance. The use of the FMM with the X-FEM removes the need to represent
and maintain the geometry of the crack at every step, which is a burden in most existing numerical
methods for fracture modeling.
The first three-dimensional crack modeling study using the X-FEM [40] discussed the com-

putational geometric issues for the representation of the crack surface and its interaction with the
finite element mesh for the enrichment. In [39], the methodology for crack propagation of single
cracks was presented. That basic algorithm coupled with the work in [35] has led to three-di-
mensional non-planar crack growth in [17]. This advance points to the promise and potential of
the X-FEM towards the automated modeling of arbitrary crack propagation in three-dimensional
structural components.

3. Extended finite element method

The X-FEM [10,22,40] is a numerical method to model internal (or external) boundaries such
as holes, inclusions, or cracks, without requiring the mesh to conform to these boundaries. The X-
FEM is based on a standard Galerkin procedure, and uses the concept of partition of unity [20] to
accommodate the internal boundaries in the discrete model. The partition of unity method [20]
generalized finite element approximations by presenting a means to embed local solutions of
boundary-value problems into the finite element approximation. This idea was exploited by Oden
and co-workers [12,27] for problems with internal boundaries––the numerical technique was re-
ferred to as the generalized finite element method (GFEM). Stroubolis et al. [36,37] have used the
partition of unity framework to model holes and cracks in two-dimensions, whereas Duarte et al.
[13] have studied the simulation of three-dimensional dynamic crack propagation.
Partition of unity enrichment for discontinuities and near-tip crack fields was introduced in [5].

The displacement enrichment functions for crack problems are functions that span the asymptotic
near-tip displacement field––see [14] for their use in the element-free Galerkin method. A sig-
nificant improvement in discrete two-dimensional crack growth modeling without the need for
any remeshing strategy was conceived by Mo€ees et al. [22], with further developments in [10] for
holes and branched cracks. The generalized Heaviside step function was proposed as a means to
model the crack away from the crack-tip, with simple rules for the introduction of the discon-
tinuous and crack-tip enrichments. The extension of the X-FEM to three-dimensional crack
problems was presented in [40]. This advance clearly provided a robust and accurate computa-
tional tool for modeling discontinuities independent of the mesh geometry. The X-FEM has been
successfully applied to quasi-static and fatigue crack propagation in two-dimensions [10,22] and
three-dimensions [17,23,39,40]. The coupling of level sets with the X-FEM for the description and
evolution of cracks has also been explored in two-dimensions [35].
The enrichment of the finite element approximation is described as follows. Consider a point x

of Rd (d ¼ 1, 2, 3) that lies inside a finite element e. Denote the nodal set N ¼ fn1; n2; . . . ; nmg,
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where m is the number of nodes of element e. (m ¼ 2 for a linear one-dimensional finite element,
m ¼ 3 for a constant-strain triangle, m ¼ 8 for a trilinear hexahedral element, etc.) The enriched
displacement approximation for a vector-valued function uðxÞ : Rd ! Rd assumes the form:

uhðxÞ ¼
X
I

nI2N

/IðxÞuI

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
classical

þ
X
J

nJ2Ng

/JðxÞwðxÞaJ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
enriched

; ðuI ; aJ 2 RdÞ ð1Þ

where the nodal set Ng is defined as:

Ng ¼ fnJ : nJ 2 N;xJ \ Xg 6¼ ;g: ð2Þ

In the above equation, xJ ¼ suppðnJÞ is the support of the nodal shape function /JðxÞ, which
consists of the union of all elements with nJ as one of its vertices, or in other words the union of
elements in which /JðxÞ is non-zero. In addition, Xg is the domain associated with a geometric
entity such as crack-tip [22], crack surface in three-dimensions [40], or material interface [38]. In
general, the choice of the enrichment function wðxÞ that appears in Eq. (1) depends on the geo-
metric entity.

4. Fast marching method

The FMM was first introduced by Sethian [32], and later improved by Sethian [33] and Chopp
[8]. The method computes the crossing time map for a monotonically advancing front in an
arbitrary number of spatial dimensions. The crossing time map is constructed by solving an
equation of the form

kruðxÞk ¼ 1

F ðxÞ ; ð3Þ

where F ðxÞ is the front speed at the point x and uðxÞ is the time at which the evolving front passes
through the point x. The initial front is then given by u�1ð0Þ, and the level contour u�1ðtÞ is the
location of the front at time t.
The solution of Eq. (3) is constructed by first replacing the gradient by suitable upwind op-

erators, and then systematically advancing the front by marching outwards from the boundary
data in an upwind fashion. For N nodes, the method has a total operation count of OðN logNÞ. If
F ðxÞ � 1, then Eq. (3) becomes the Eikonal equation and the solution uðxÞ of Eq. (3) gives the
distance from x to the zero contour u�1ð0Þ. In this paper, we use this application to compute the
distance map from the grid nodes to the crack front.
In the FMM, all the nodes in the mesh are sorted into three disjoint sets, the set of all accepted

nodes A, the set of all tentative nodes T , and the set of all distant nodes D. The method system-
atically moves nodes from the set D to the set T and finally into the set A and terminates when all
nodes are in the set A. Briefly, the set A consists of all nodes x whose value of uðxÞ has been
computed, the set T consists of all nodes that are candidates for inclusion into the set A, and the
set D consists of all nodes which are too far from the set A to be candidates. With these sets in
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mind and denoting xi;j as the coordinate of node ði; jÞ and ui;j � uðxi;jÞ, the algorithm proceeds as
follows:

(1) Initialize a core set of nodes to be in the set A. The value of uðxÞ for x 2 A is determined by
direct computation. Each element of the mesh through which the zero contour of u crosses,
i.e. the initial front position, has each of its nodes start in the set A and the value of each node
is determined by directly computing the distance from each node to the level contour in the
element. We use bicubic interpolation on the rectilinear FMM grid to approximate the con-
tour. A variant of Newton�s method is used to compute the distance to that contour. For ad-
ditional details, see [8].

(2) For each node x 2 A, each neighboring node y 62 A connected to x is assigned a tentative value
uðyÞ and placed in the set T . The tentative value is constructed by using second-order one-
sided finite difference approximations for Eq. (3). For example, if we wish to compute ui;j with
xi�1;j, xi;jþ1 2 A, then ui;j is constructed by solving

max D�x ui;j

��
þ s�1 Dx

2
D�x D

�
x ui;j;� Dþx ui;j þ

sþ1 Dx
2

Dþx D
þ
x ui;j; 0

	
2
þ max D�y ui;j

��
þ s�2 Dy

2
D�y D

�
y ui;j;� Dþy ui;j þ

sþ2 Dy
2

Dþy D
þ
y ui;j; 0

	
2
¼ 1=F 2

i;j; ð4Þ

where

D�x ui;j ¼
ui;j � ui�1;j

Dx
; Dþx ui;j ¼

uiþ1;j � ui;j

Dx
; ð5Þ

and

s�1 ¼
1 xi�1;j 2 A;
0 xi�1;j 62 A;

�
sþ1 ¼

1 xiþ1;j 2 A;
0 xiþ1;j 62 A:

�
ð6Þ

Expressions for D�y , D
þ
y , s

�
2 , s

þ
2 are similar (see [33]). Eq. (4) is actually a quadratic in the

unknown quantity ui;j and can be solved to produce two possible values. The larger of the two
solutions is taken for ui;j. The set T is maintained as a sorted list by a heap sort method with
the smallest value always at the top.
Pictorially, the set A now consists of all nodes immediately adjacent to the zero contour

u�1ð0Þ, the set T is a thin layer of nodes surrounding the nodes in A, and the set D is every-
thing else (Fig. 2).

(3) The main loop now begins by taking the node x 2 T with the smallest value for uðxÞ and
moves it from the set T to the set A.

(4) Each node y adjacent to the node x selected in step 3, and not already in A, has its value uðyÞ
updated using Eq. (4). If y 2 T , then T must be re-sorted to account for the changed value of
uðyÞ. If y 2 D, it is moved from D to T .

(5) If T 6¼ ;, then go to step 3.

For further information regarding the FMM and the level set method, see [34].
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5. Three-dimensional crack modeling

The merits of coupling level sets to the X-FEM was first explored in [38] to model static ma-
terial interfaces, and subsequently its advantages further realized in [17,23,35,39] for modeling
crack discontinuities. The advantages that accrue by using the level set framework in the X-FEM
are the following:

(1) Level sets provide greater ease and simplification in the representation of geometric entities
such as holes, inclusions (material interfaces) and cracks, which are typically encountered
in solid mechanics applications. Instead of a simplex or B�eezier surface representation of the
geometry, now a simple function-representation (level set u) is used, which requires only

Fig. 2. Nodal sets used in the FMM: (a) initial step t ¼ 0 and (b) intermediate step t > 0.
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the storage of signed distance values at discrete points (nodes) with finite element interpola-
tion used to obtain the value of the level set at any point in the domain.

(2) Geometric computations for the crack in relation to the finite element mesh as well as geomet-
ric properties of the crack front (such as normal and tangent vectors) are readily computed
knowing the level set function [39].

(3) The selection of nodes to be enriched and the computation of the enrichment functions for
crack problems [35,39] or material interfaces [19,38] use the level set function(s).

(4) For crack modeling in three-dimensions, the level sets also provide a means to easily compute
the local orthogonal crack front coordinate system that is required for SIF computations
using domain integral representations [17,23,39]. This task is presently carried out using New-
ton�s method (iterative procedure) in three-dimensional fracture computations using finite
element techniques [16].

Geometric issues associated with the representation of the crack surface, the evolution of the
crack front, and the merging of multiple cracks, are all resolved by using level set (signed distance)
functions and the FMM. All the cracks are represented by a single two-dimensional signed dis-
tance function corresponding to the crack plane. In the X-FEM, each crack is modeled by en-
riching the nodes whose nodal shape function supports intersect the interior of the crack. The
selection of nodes for enrichment as well as the computation of enrichment functions is carried
out using signed distance functions. In addition to the above, partitioning algorithms are
also implemented if the crack intersects the finite elements––see [40] for details. In the following,
we restrict the description of the implementation to planar cracks (x1–x2 plane) in three dimen-
sions.

5.1. Enrichment functions

Consider a single crack in three-dimensions, and let Cc be the crack surface and Kc the crack
front. Note that for an internal crack, the crack front corresponds to the boundary of the crack:
Kc ¼ oCc whereas for an edge crack, the crack front is only part of the boundary: Kc � oCc. The
interior of a planar crack is modeled by the enrichment function HðxÞ, which we refer to as a
generalized Heaviside step function. The function HðxÞ takes on the value þ1 above the crack and
)1 below the crack. More precisely, let x� be the closest point to x on the crack Cc, and n be the
normal to the crack plane (Fig. 3). The HðxÞ function is then given by

HðxÞ ¼ 1 if ðx� x�Þ � nP 0;
�1 otherwise:

�
ð7Þ

In the neighborhood of the crack front, the asymptotic fields are two-dimensional in nature, and
enrichment functions which incorporate the radial and angular behavior of the asymptotic near-
tip displacement field are used. The crack-front enrichment functions are:

UðxÞ � fw1;w2;w3;w4g ¼
ffiffi
r
p

cos
h
2
;
ffiffi
r
p

sin
h
2
;
ffiffi
r
p

sin h sin
h
2
;
ffiffi
r
p

sin h cos
h
2

� 

; ð8Þ
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where r and h are polar coordinates in the x1̂1–x2̂2 plane (Fig. 3). Note that the second function in
the above equation is discontinuous on the crack plane.
At any point x, let xp be the orthogonal projection of x onto the crack plane. Next, the signed

distance function u1 represents the crack geometry, so u1ðxÞ is the signed distance from xp to the
crack front. Also define u2ðxÞ to be the signed height of x above or below the crack plane.
Therefore, at a point x, for which the crack front enrichment functions are to be computed,
x1̂1 ¼ u1ðxpÞ, and x2̂2 ¼ u2ðxÞ [39]. Using the above, the enrichment functions Eq. (7), Eq. (8) can be
computed from

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1̂1
þ x2

2̂2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1ðxpÞÞ

2 þ ðu2ðxÞÞ
2

q
; ð9Þ

h ¼ tan�1ðx2̂2=x1̂1Þ ¼ tan�1ðu2ðxÞ=u1ðxpÞÞ; ð10Þ

HðxÞ ¼ signðu2ðxÞÞ ¼
1 if u2ðxÞP 0;
�1 otherwise:

�
ð11Þ

The use of the crack-front enrichment functions serves two main purposes:

(1) sub-mesh resolution of the crack-front location; and
(2) better accuracy on relatively coarse finite element meshes [22,40].

5.2. Selection of enriched nodes

We next describe the enrichment for three-dimensional crack modeling. The enriched finite
element approximation is [40]:

uhðxÞ ¼
X
I

nI2N

/IðxÞuI þ
X
J

nJ2Nc

/J ðxÞHðxÞaJ þ
X
K

nK2Nf

/KðxÞ
X4
l¼1

wlðxÞblK

 !
: ð12Þ

Fig. 3. Coordinate configuration for crack front enrichment functions.
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The second and third terms on the right-hand side of the above equation are the discontinuity and
front enrichments, respectively. The set Nf consists of those nodes for which the closure of the
nodal shape function support intersects the crack front. The set Nc is the set of nodes whose nodal
shape function support is intersected by the crack and which do not belong to Nf :

Nf ¼ fnK : nK 2 N; �xxK \ Kc 6¼ ;g; ð13Þ

Nc ¼ fnJ : nJ 2 N;xJ \ Cc 6¼ ;; nJ 62 Nfg: ð14Þ

By using the sign of the level set (signed distance) functions u1 and u2 (see Section 5.1), the nodal
sets Nc and Nf are easily determined for a planar crack. The approach we use is similar in
principle to that used in [38] to determine the enriched nodes for a material interface. Let eTTc, Tf ,
and Tc denote sets that contain a list of finite elements. For a given element e, let umin

i , umax
i be the

minimum and maximum values of ui on e. If umin
2 umax

2 6 0 and umax
1 < 0, then we add e to the seteTTc, whereas if umin

2 umax
2 6 0 and umin

1 umax
1 6 0, then we add e to the set Tf . The enriched nodal set

Nf consists of all nodes that are in the connectivity of the elements in the set Tf . In addition, let
V þJ and V �J (VJ ¼ V �J þ V þJ ) be the volumes of the support xJ of node J above and below the
crack, respectively. If eNNc is the set of nodes that are in the connectivity of the elements in eTTc, then

Nc ¼ fnJ : nJ 2 eNNc; nJ 62 Nf ; V þJ =VJ > �; V �J =VJ > �g; ð15Þ

where � ¼ 10�4 is used in the computations. For an elliptical crack that is located along element
facets (boundaries), the enriched nodes that lie on the crack plane are shown in Fig. 5. The mesh
shown in Fig. 4 is used, with the semi-major axis a ¼ 0:1 and the semi-minor axis b ¼ 0:05; there
are about eight elements that span the major axis of the crack. The nodes enriched by the
Heaviside function are shown in Fig. 5a, whereas nodes enriched by the crack-front enrichment
functions are shown in Fig. 5b. Note that the corresponding nodes that belong to the hexahedral
elements above and below the crack are also enriched with the crack-front enrichment functions.

5.3. Enrichment for multiple cracks

For the case of m coplanar cracks, the signed distance function u1 represents the entire crack
geometry (all m cracks on the given crack plane) (Fig. 6). Two points x1, x2 are defined to be in the
same crack if there is a path from x1 along connected nodes to x2 such that each node on that path
is also inside a crack (i.e. u1ðxÞ < 0 for all x along the path).
This test is computed quickly using a simple recursive paint-fill type algorithm. Each node is

initially painted color 0. The mesh is searched for any node x with u1ðxÞ < 0 and with color 0. It is
then painted a new color c where c counts the number of distinct cracks found. All nodes within
the same crack are recursively located and painted the same color. Once the whole crack is
painted, the search for new cracks resumes, each new crack being painted a new value of c. In this
way, both the number of cracks can be counted as well as each crack being properly separated.
The FMM can now be used to generate a separate distance function ui

1 for each distinct crack i,
which gives the distance to crack i independent from any other cracks. Fig. 7 illustrates the re-
sulting pair of distance functions for two neighboring cracks.
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For a single convex crack front, the nodal enrichment is straightforward. However, when
multiple crack fronts approach each other, the handling of the enrichment has additional com-
plications. As illustrated in Fig. 6, as two growing cracks approach each other, there can be nodes
which are enriched due to proximity to two distinct crack fronts. If a single distance function u1 is
used, then at a node which is enriched twice, an error in the evaluation of the distance can be
introduced (in Fig. 6 this is the case for the enrichment from the right crack front). This error will
then appear in the construction and evaluation of the enriched function approximation Eq. (8) in
that region. Splitting the distance function into multiple independent distance functions for each
separate crack alleviates this problem. In Fig. 6, this corresponds to extending the single distance
function u1 into u1

1, u2
1 with the dashed lines. This then separates the coordinate systems for the

two enrichments, correcting the error in the distance calculation at multiply-enriched nodes.
Of course, the multiple enrichment error from using only a single level set function for multiple

cracks also arises for a single crack with a deep non-convexity such as at a cusp immediately after
two cracks have merged. Qualitatively, the solutions we obtain still look reasonable, but there are
no theoretical or computational results against which we can compare. Correcting this error is the
subject of on-going research.
Apart from the difficulties associated with level set representations of merging cracks, the

computation of the SIFs (required to determine the velocities on the front) along the crack front

Fig. 4. Hexahedral mesh (surface) for the crack growth problems.
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also present a few theoretical as well as computational challenges. The computation of the mode I
SIF KI is based on a domain integral representation: a box (cuboid) around the point s which lies
on the crack front (of say the first crack) is constructed and a volume integral is evaluated within
the box to determine KI (see [24,25]). Consider the case when two planar cracks are within some
small distance � (�nh) prior to merging, where h is the characteristic mesh spacing in the vicinity
of the crack front. In this case, a constraint is imposed on the box dimension in the plane of the
crack since the box can encompass only one discontinuity (first crack); a similar situation arises if

Fig. 5. Enriched nodes for an elliptical crack. The enriched nodes are indicated by filled circles and the labels denote the

number of nodes enriched in each four-noded surface element. (a) Heaviside function and (b) crack-front enrichment

function.
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the point s is on the crack front of the second crack. In the computations we assume normal
velocity values to be such that merger takes place when the cracks are a finite distance apart.
Theoretical as well as computational issues arise for the case of a single crack with a deep cusp
which was alluded to in the previous paragraph. In addition, the case of three or more coplanar

crack fronts
at ϕ1 = 0

ϕ1
1ϕ1

2

ϕ1

= enriched nodes

enriched from
both sides

Fig. 6. Example of multiply-enriched node. Solid line is for single distance function, dashed line is for separate distance

functions.

Fig. 7. Level set distance functions for two coplanar cracks.
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cracks merging also poses fundamental questions in the transition of enrichment from three
cracks to just a single one. At present, some of these issues are still open questions and are not
resolved in the current implementation. Possible remedies to overcome some of these situations
include the development of alternative approaches to compute the SIFs––as unknowns themselves
in the displacement approximation, or possibly through alternative techniques to compute the
SIFs.

5.4. Crack growth algorithm

Fatigue crack growth is assumed to be governed by the Paris law [29]:

da
dN
¼ CðDKÞm; ð16Þ

where C and m are material constants and DK is the SIF range. For the mode I problems con-
sidered here, we use DK ¼ KI . Let n be the number of points on the crack front at which the SIF is
evaluated, and Damax the maximum user-specified increment normal to the crack front. Then,

Dai
Damax

¼ Ki
I

Kmax
I

� 	m

; ð17Þ

which gives the normal growth increment at any point xi 2 Kc (i ¼ 1; 2; . . . ; n). In the computa-
tions, for a user-specified n, the crack front is parameterized by arc length s such that st is the total
length of the crack front. Then, ds ¼ st=n is used as the increment on the crack front to find the
coordinates of the n points on the crack front. The complete crack growth algorithm now follows:

(1) Step t ¼ 0 (tmax is user-specified). Let u1 be a level set function for the crack front(s) with
u1 ¼ 0 on the crack front(s), u1 < 0 in the crack interior, and u1 > 0 otherwise. For example,
u1 for two ellipses on the x1–x2 plane could be

u1 ¼ min
ðx1 � c1Þ2

a21

 
þ ðx2 � d1Þ2

b21
� 1;
ðx1 � c2Þ2

a22
þ ðx2 � d2Þ2

b22
� 1

!
: ð18Þ

(2) Label each distinct crack using the recursive paint-fill algorithm.
(3) Compute the signed distance function(s) ui

1 using the FMM with F ¼ 1 in Eq. (3) where
ui�1
1 ð0Þ describes the crack front (zero level set curve) for the ith crack as labelled in step 2.

Note that the global signed distance function u1 is easily recovered via

u1 ¼ min
i

ui
1: ð19Þ

(4) Evaluate the front speed F at n discrete points on the front(s). Assuming unit time increment
in the FMM, we have Fi ¼ Dai, where Dai are computed using Eq. (17).

(5) Given the distance map and a front speed function F defined on the crack front identified by
u�11 ð0Þ, a speed function Fext can be computed by solving the equation
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rFext � ru1 ¼ 0; ð20Þ

where Fextju�1
1
ð0Þ ¼ F ju�1

1
ð0Þ using the FMM [1]. The speed function so constructed is designed so

that the speed is constant along lines normal to the crack front.
(6) Once Fext is constructed, it is inserted into Eq. (3) and the FMM is again applied to compute

the crossing time map for the advancing crack front, namely

krwk ¼ 1

Fext
; w�1ð0Þ ¼ u�11 ð0Þ: ð21Þ

Note that the solution w of the above equation is a level set function, but is not a distance
map. Now, the advancing crack front location at any time Dt later is given by the level curve
w�1ðDtÞ. The advantage of this technique over a standard level set method approach is that an
arbitrarily large time step Dt can be taken without introducing instability and the method is
second-order accurate. This is ideal for a problem such as crack propagation where compu-
tation of the speed is very expensive and accuracy of the distance map u1 is critical to ob-
taining good approximations for the speed.

(7) The FMM is again used to solve

kru1k ¼ 1; u�11 ð0Þ ¼ w�1ð0Þ ð22Þ

to reconstruct the distance function u1.
(8) if t < tmax, then increment t (t t þ 1) and go to step 2.

6. Governing equations

6.1. Strong form

Consider a body X � R3, with boundary C (Fig. 8). The boundary C consists of the sets Cu, Ct,
and Ci

c, such that C ¼ Cu [ Ct [m
i¼1 Ci

c. All the internal surfaces Ci
c are assumed to be traction-free.

The field equations of elastostatics are:

r � rþ b ¼ 0 in X; ð23aÞ

r ¼ C : e; ð23bÞ

e ¼ rsu; ð23cÞ

where rs is the symmetric gradient operator, u is the displacement vector, e is the small strain
tensor, r is the Cauchy stress tensor, b is the body force vector per unit volume, and C is the tensor
of elastic moduli for a homogeneous isotropic material.
The essential and natural boundary conditions are:

u ¼ �uu on Cu; ð24aÞ

r � n ¼ �tt on Ct; ð24bÞ
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r � n ¼ 0 on Ci
c; ði ¼ 1; 2; . . . ;mÞ; ð24cÞ

where n is the unit outward normal to X, �uu and �tt are prescribed displacements and tractions,
respectively, and m is the number of internal surfaces. Note that Eq. (24c) imposes the condition
that the internal surfaces Ci

c be traction-free.

6.2. Weak form and discrete equations

The weak form (principle of virtual work) for linear elastostatics is stated as: Find uh 2 Vh such
that Z

Xh
rðuhÞ : eðvhÞdX ¼

Z
Xh
b � vh dXþ

Z
Ch
t

�tt � vh dC 8vh 2 Vh
0; ð25Þ

where uhðxÞ 2 Vh and vhðxÞ 2 Vh
0 are the approximating trial and test functions used in the X-

FEM. The space Vh is the enriched finite element space that satisfy the essential boundary con-
ditions, and which include basis functions that are discontinuous across the crack surfaces. The
space Vh

0 is the corresponding space with homogeneous essential boundary conditions.
The trial and test functions, which are based on Eq. (12) are:

uhðxÞ ¼
X
I

nI2N

/IðxÞuI þ
X
J

nJ2Nc

/JðxÞHðxÞaJ þ
X
K

nK2Nf

/KðxÞ
X4
l¼1

wlðxÞblK

 !
; ð26Þ

Fig. 8. Elastostatic boundary-value problem.
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vhðxÞ ¼
X
I

nI2N

/IðxÞvI þ
X
J

nJ2Nc

/JðxÞHðxÞcJ þ
X
K

nK2Nf

/KðxÞ
X4
l¼1

wlðxÞelK

 !
; ð27Þ

where /IðxÞ are the finite element shape functions, and wjðxÞ (j ¼ 1–4) are the enriched functions
for the crack front, which are given in Eq. (8). On substituting the trial and test functions in the
weak form given in Eq. (25), and using a standard Galerkin procedure, the discrete linear system
Kd ¼ f is obtained. For further details, the interested reader can refer to [40].

7. Numerical examples

We present fatigue crack propagation simulations of multiple cracks to demonstrate the ver-
satility of the proposed technique. In all problems, numerical integration is carried out using
Gauss–Legendre quadrature. In hexahedral elements associated with only the finite element shape
functions, 2� 2� 2 quadrature is used, and in elements that also have enriched degrees of
freedom, 6� 6� 6 quadrature is used. The elastic constants used in the computations are:
Young�s modulus E ¼ 105 and Poisson�s ratio m ¼ 0:3. The finite element public-domain package
gmsh [30] is used in the finite element mesh generation.
Fatigue crack growth studies of coplanar cracks are carried out using the Paris law. The Paris

exponent m is assumed to be 3 (m ¼ 2–4 are typical values for metals). Unless otherwise stated, we
use a mesh that consists of 24� 24� 24 hexahedral elements for all simulations. The mesh
spacing in the vicinity of the crack front is about five percent of that near the boundary of the
domain (Fig. 4).
For the examples considered in this paper, a 2� 2� 2 hexahedral mesh with domain dimen-

sions of 0:01� 0:01� 2a is constructed around the crack front to compute the SIFs (a is the semi-
major axis for an elliptical crack). The SIFs are computed at n ¼ 18m (see Section 5.4) points on
the crack front, where m is the number of initial cracks. For example, for a single penny crack, the
normal velocity is evaluated at eighteen (n ¼ 18) points on the crack front, whereas for two el-
liptical cracks, it is computed at thirty-six (n ¼ 36) points on the crack front of the evolving
cracks. The SIFs on the crack front are required to compute the normal velocity of the front
which is used in the FMM to update the signed distance functions ui

1 (i ¼ 1; . . . ;m), where m is the
number of cracks.

7.1. Discretization in the fast marching method

For the FMM, we use a 1000� 1000 rectilinear grid with bilinear interpolation in each grid cell.
This might be considered to be prohibitively expensive, however, the efficiency of the FMMmeans
these computations form only a tiny fraction of the overall simulation time. In return for the more
refined mesh, it was shown in [39], that on using such a refined grid the SIFs were computed
within 10�4% of the values obtained using the exact geometric description. While a less refined
mesh could in principle be used, we find the marginal increase in speed to not be worth the
potential decrease in accuracy.
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7.2. Comparison with using mesh-generation algorithms

The algorithm presented here is one technique for propagating cracks. An alternative approach
is to employ traditional finite element-based techniques coupled with an automatic mesh-gener-
ation tool. Today, three-dimensional tetrahedral mesh generation has reached a fairly sophisti-
cated state of development. Complex meshes can typically be generated within minutes [2,4].
However, in the case of three-dimensional crack modeling, a mesh with gradual changes in the
mesh size is desired, where the mesh size may vary from Oð1Þ on the external boundaries to
Oð10�4Þ or less near the crack front in order to obtain accurate SIFs [16]. In this case, adaptive
refinement is required with careful control of the aspect ratios of the finite elements: bad aspect
ratios can lead to poor finite element approximations and loss of accuracy. Adaptive unstructured
meshing algorithms in three dimensions prove to be more challenging. The mesh-generation
problem for domains with rapidly evolving surfaces is still open, and few if any robust algorithms
are available at this time. Such problems are of interest in crash simulation, aeroelasticity, crack
propagation, and metal forging applications. For a recent approach in this direction, see [3].
The approach presented in this paper offers several advantages over automatic mesh genera-

tion. In comparison to automatic mesh-generation methods, the X-FEM method offers good
accuracy on comparatively coarse meshes. This means there are potential savings in computa-
tional cost to achieve the same level of accuracy. Also, this method provides greater flexibility for
different types of discontinuous fields, making it possible to model cracks in isotropic as well as
bimaterial media. Finally, the X-FEM approach can treat multiple cracks with arbitrary orien-
tation in three dimensions without any user-intervention.
It is difficult to compare the computational cost of the X-FEM method with mesh-generation

techniques. In the X-FEM method, the mesh-generation task is simpler: the mesh must only
conform to the domain, and is generated only once. By comparison, the FEM with mesh gen-
eration must regenerate the mesh each time step, including both the domain boundary and the
internal discontinuities such as the crack. On the other hand, for comparable meshes, the X-FEM
method will take longer each step due to the increased number of degrees of freedom from en-
richment. For comparison purposes, the calculation in Fig. 1 required about 30 min per time step.
In the final analysis, for the single crack, the total computational cost for both methods are
comparable for similar mesh densities [31].

7.3. Fatigue growth of coplanar cracks

Numerical simulations of fatigue crack growth of coplanar multiple cracks are presented. In
order to demonstrate the merging and evolution of multiple cracks, we consider the problem of
multiple planar cracks embedded in full space under a uniform oscillating (in time) tension
r0
33 ¼ 1. The coordinate axis x3 is normal to the plane of the crack. Three examples are considered:
two penny-shaped cracks, two elliptical cracks, and three penny-shaped cracks. In all examples,
the numerical model consists of a finite body (bi-unit cube) with the cracks embedded inside the
cube. The crack dimensions are typically a tenth or less of the specimen dimensions, and hence
finite-specimen effects are minimal initially. Due to crack interactions, there are variations in the
SIFs along the crack fronts. The effect of fatigue is to smooth out these variations so that after
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merger and growth, it evolves towards a penny shape (if one neglects boundary effects) with a
constant KI along the crack front.

7.3.1. Two penny-shaped cracks
Consider two penny-shaped cracks of radii a ¼ 0:05 that are a distance d ¼ 0:05 apart. Unit

tractions are specified on the surfaces x3 ¼ �1. Crack growth simulations are carried out for 57
steps, and the results for the evolution of the cracks are shown in Fig. 9. The location of the crack
fronts before and after merger are shown in Fig. 9b, and in addition a few intermediate config-
urations are shown in Fig. 9c. As one can observe from Fig. 9d, the crack front shape is nearly
circular after 57 steps.

Fig. 9. Fatigue crack growth simulation of two penny-shaped cracks. The step number is indicated in the plots. (a)

Initial cracks; (b) before and after merging; (c) intermediate configurations; and (d) entire evolution.
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In order to test the algorithm and the accuracy of the proposed technique, we also conducted
crack growth simulations using an unstructured tetrahedral mesh. The tetrahedral mesh we used is
shown in Fig. 10a, which consists of 19203 elements; the element size on the boundary is 0.5 and
that in the vicinity of the crack front is 0.03 (Fig. 10b). The crack growth simulation results are
shown in Fig. 10c and d. On comparing the above to the results obtained using the hexahedral
mesh (Fig. 9b and d), we note that both simulation results are in good agreement. Hence, the
results using, both, structured and unstructured meshes are consistent with each other for the
evolution of the crack front.

Fig. 10. Fatigue crack growth simulation of two embedded penny-shaped cracks using an unstructured mesh: (a)

boundary mesh and cracks; (b) surface elements in the vicinity of the cracks; (c) before and after merger (step numbers

are indicated); and (d) crack evolution (59 steps).
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7.3.2. Two elliptical cracks

In this example, two elliptical cracks of semi-major and semi-minor axes of a ¼ 0:08 and
b ¼ 0:04, respectively, are considered. The distance between the cracks along the semi-major axis
is d ¼ 0:04. Unit tractions are specified on the surfaces x3 ¼ �1. The nodal enrichments for the
case of a single elliptical crack is shown in Fig. 5 (a ¼ 0:1; b ¼ 0:05). The same mesh is used in this
example; however, two cracks lie on the x3 ¼ 0 plane, with only 5–6 finite elements spanning the
major axis of each elliptical crack. The simulation results for the evolution of the cracks under
fatigue crack growth is shown in Fig. 11. The computations are carried out for 80 steps. The
evolution of the crack front is plotted in Fig. 11a–d. The merger of the two crack and the sub-
sequent growth of a single crack front is readily handled using the X-FEM/FMM technique. In
spite of some of the computational difficulties just before the merger (see Section 5.3), the results

Fig. 11. Fatigue crack growth simulation of two embedded elliptical cracks. The step number is indicated in the plots.

(a) Initial cracks; (b) before and after merging; (c) intermediate configurations; and (d) entire evolution.
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in Fig. 9 for the growth of two penny cracks as well as the simulations presented in Fig. 11 for
elliptical cracks, do indicate that the expected trends are qualitatively captured.

7.3.3. Three penny-shaped cracks
In this example, we consider three penny-shaped cracks of radii a ¼ 0:05 (step 1 in Fig. 12).

Unit tractions are specified on the surfaces x3 ¼ �1. The crack growth simulations are carried out
for 20 steps, using a maximum increment that was 30% of the characteristic dimension of the
crack (Damax ¼ 0:0015). The simulation results are shown in Fig. 12, with the zero level set
contours indicated at some of the intermediate steps during the evolution. One can observe that
the crack front assumes a near circular shape after 20 steps. The zero level set contours shown in
Fig. 12 are less smooth than the simulations presented for the previous two problems. The
waviness in the crack front profile is due to the choice of a larger crack growth increment than the
earlier examples. A larger Damax was used so that the merger of the cracks could occur with a well-
defined and single crack front with no disconnected regions of the crack (u1 < 0) in the interior;
such implementational issues were addressed in Section 5.3.

8. Conclusions

A numerical technique for modeling fatigue crack propagation of multiple coplanar cracks was
presented. In the proposed method, the X-FEM [40] was coupled to the FMM [32,33]. In the X-
FEM, a discontinuous function and the two-dimensional near-tip displacement fields are added to
the finite element approximation to account for the crack using the notion of partition of unity.
This enables the domain to be modeled by finite elements with no explicit meshing of the crack

Fig. 12. Fatigue crack growth simulation of three penny-shaped cracks. The step number is indicated in the plot.
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surfaces. Hence, fatigue crack propagation can be simulated without any user-intervention or the
need to remesh as the crack advances.
The level set method is a numerical technique for tracking moving interfaces [28]. The related

FMM [32] is a computationally attractive alternative for strictly monotonically advancing fronts.
In both methods, the evolving interface is represented as a level contour of a function of one
higher dimension (i.e., uðxÞ ¼ C). In the FMM, the motion of the interface is embedded in the
solution of a static Hamilton–Jacobi equation in terms of uðxÞ.
In a previous study [39], the methodology, algorithm, and implementation for three-dimen-

sional crack propagation of single cracks was introduced. In this paper, the algorithms are ex-
tended for multiple coplanar cracks. The entire crack geometry, including one or more cracks, was
represented by a single signed distance (level set) function u1. To compute the enrichment
function for distinct cracks, the distance function u1 was split into multiple separate distance
functions, one for each connected crack front. Merging of distinct cracks was handled naturally
by the FMM with no collision detection or mesh reconstruction required. We used the Paris crack
growth law to advance the crack front.
Numerical simulations of fatigue crack propagation for multiple coplanar penny-shaped and

elliptical cracks were presented. The initial characteristic crack-dimensions were much smaller
than the specimen dimension so as to minimize finite-specimen effects. In all simulations, the
merging of cracks was easily resolved and the subsequent growth of a single crack front was
observed. Crack growth of multiple cracks towards a penny shape was seen, which is in qualitative
agreement with the theory for embedded cracks in infinite media. The numerical technique and
simulation results presented in this study point to the possibility of carrying out automated crack
growth simulations of multiple cracks in structural components without the need to remesh
or maintain the geometric description of the evolving crack. This is a promising alternative to
existing finite element techniques for three-dimensional crack growth modeling.
The extension of the method presented here to out-of-plane crack growth is also a subject of

further study. A first attempt at such a code has been undertaken by Mo€ees et al. [17,23]; however,
the crack front tracking in this paper was done using the slower level set method rather than the
FMM. Thus, implementing a FMM version for out-of-plane growth coupling the results of this
paper with the work in [35] will be the subject of future research.

Acknowledgements

Parts of this work were completed during the summer of 2001, when N.S. was visiting the
Princeton Materials Institute; the hospitality extended to him by David Srolovitz at Princeton
University is appreciated.
This work was supported in part by the NSF/DARPA VIP program under awards DMS-

9615877 and NSF DMS-9872036.

References

[1] D. Adalsteinsson, J.A. Sethian, The fast construction of extension velocities in level set methods, Journal of

Computational Physics 148 (1) (1999) 2–22.

D.L. Chopp, N. Sukumar / International Journal of Engineering Science 41 (2003) 845–869 867



[2] T.J. Baker, Triangulations, mesh generation and point placement strategies, in: D.A. Caughey, M.M. Hafez (Eds.),

Frontiers of Computational Fluid Dynamics, John Wiley & Sons, New York, NY, 1994, pp. 101–115.

[3] T.J. Baker, Mesh movement and metamorphosis, Engineering with Computers 18 (3) (2002) 188–198.

[4] T.J. Baker, J.C. Vassberg, Tetrahedral mesh generation and optimization, in: Proceedings of the 6th International

Conference on Numerical Grid Generation, 1998, pp. 337–349.

[5] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, International Journal for

Numerical Methods in Engineering 45 (5) (1999) 601–620.

[6] M. Bonnet, G. Maier, G. Polizzotto, Symmetric Galerkin boundary element method, Applied Mechanics Review

51 (1998) 669–704.

[7] B.J. Carter, P.A. Wawrzynek, A.R. Ingraffea, Automated 3-d crack growth simulation, International Journal for

Numerical Methods in Engineering 47 (2000) 229–253.

[8] D.L. Chopp, Some improvements of the fast marching method, SIAM Journal on Scientific Computing 23 (1)

(2001) 230–244.

[9] D.N. Dai, D.A. Hills, D. Nowell, Modelling of growth of 3-dimensional cracks by a continuous distribution of

dislocation loops, Computational Mechanics 19 (1997) 538–544.

[10] C. Daux, N. Mo€ees, J. Dolbow, N. Sukumar, T. Belytschko, Arbitrary cracks and holes with the extended finite

element method, International Journal for Numerical Methods in Engineering 48 (12) (2000) 1741–1760.

[11] G. Dhondt, Automatic 3-D mode I crack propagation calculations with finite elements, International Journal for

Numerical Methods in Engineering 41 (4) (1998) 739–757.

[12] C.A. Duarte, I. Babu�sska, J.T. Oden, Generalized finite element methods for three dimensional structural mechanics
problems, Computers and Structures 77 (2000) 215–232.

[13] C.A. Duarte, O.N. Hamzeh, T.J. Liszka, W.W. Tworzydlo, The element partition method for the simulation of

three-dimensional dynamic crack propagation, Computer Methods in Applied Mechanics and Engineering 190

(15–17) (2001) 2227–2262.

[14] M. Fleming, Y.A. Chu, B. Moran, T. Belytschko, Enriched element-free Galerkin methods for crack tip fields,

International Journal for Numerical Methods in Engineering 40 (1997) 1483–1504.

[15] W.H. Gerstle, A.R. Ingraffea, R. Perucchio, Three-dimensional fatigue crack propagation analysis using the

boundary element method, International Journal of Fatigue 10 (3) (1988) 187–192.

[16] M. Gosz, J. Dolbow, B. Moran, Domain integral formulation for stress intensity factor computation along

curved three-dimensional interface cracks, International Journal of Solids and Structures 35 (1998) 1763–

1783.

[17] A. Gravouil, N. Mo€ees, T. Belytschko, Non-planar 3D crack growth by the extended finite element and the level

sets––Part II: Level set update, International Journal for Numerical Methods in Engineering 53 (11) (2002) 2569–

2586.

[18] D.A. Hills, P.A. Kelly, D.N. Dai, A.M. Korsunsky, Solution of Crack Problems: The Distributed Dislocation

Technique, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.

[19] H. Ji, D. Chopp, J.E. Dolbow, A hybrid extended finite element/level set method for modeling phase

transformations, International Journal for Numerical Methods in Engineering 54 (8) (2002) 1209–1233.

[20] J.M. Melenk, I. Babu�sska, The partition of unity finite element method: Basic theory and applications, Computer

Methods in Applied Mechanics and Engineering 139 (1996) 289–314.

[21] Y. Mi, M.H. Aliabadi, Three-dimensional crack growth simulations using BEM, Computers and Structures 52 (5)

(1994) 871–878.

[22] N. Mo€ees, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, International

Journal for Numerical Methods in Engineering 46 (1) (1999) 131–150.

[23] N. Mo€ees, A. Gravouil, T. Belytschko, Non-planar 3D crack growth by the extended finite element and level sets.

Part I: Mechanical model, International Journal for Numerical Methods in Engineering 53 (11) (2002) 2549–2568.

[24] B. Moran, C.F. Shih, Crack tip and associated domain integrals from momentum and energy balance, Engineering

Fracture Mechanics 27 (6) (1987) 615–641.

[25] G.P. Nikishkov, S.N. Atluri, Calculation of fracture mechanics parameters for an arbitrary three-dimensional

crack by the �equivalent domain integral method�, International Journal for Numerical Methods in Engineering 24

(1987) 1801–1821.

868 D.L. Chopp, N. Sukumar / International Journal of Engineering Science 41 (2003) 845–869



[26] T. Nishioka, S.N. Atluri, Analytical solution for embedded cracks, and finite element alternating method for

elliptical surface cracks, subjected to arbitrary loading, Engineering Fracture Mechanics 17 (1983) 247–268.

[27] J.T. Oden, C.A. Duarte, O.C. Zienkiewicz, A new cloud-based hp finite element method, Computer Methods in

Applied Mechanics and Engineering 153 (1–2) (1998) 117–126.

[28] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi

formulations, Journal of Computational Physics 79 (1) (1988) 12–49.

[29] P.C. Paris, M.P. Gomez, W.E. Anderson, A rationale analytic theory of fatigue, The Trend in Engineering 13 (1)

(1961) 9–14.

[30] J.-F. Remacle, C. Geuzaine, Gmsh finite element grid generator, 1998. Available from <http://scorec.rpi.

edu/~remacle/Gmsh_Eng.html>.

[31] W.T. Riddell, A.R. Ingraffea, P.A. Wawrzynek, Experimental observations and numerical predictions of three-

dimensional fatigue crack propagation, Engineering Fracture Mechanics 58 (4) (1997) 293–310.

[32] J.A. Sethian, A marching level set method for monotonically advancing fronts, Proceedings of the National

Academy of Sciences 93 (4) (1996) 1591–1595.

[33] J.A. Sethian, Fast marching methods, SIAM Review 41 (2) (1999) 199–235.

[34] J.A. Sethian, Level Set Methods & Fast Marching Methods: Evolving Interfaces in Computational Geometry,

Fluid Mechanics, Computer Vision, and Materials Science, Cambridge University Press, Cambridge, UK, 1999.

[35] M. Stolarska, D.L. Chopp, N. Mo€ees, T. Belytschko, Modeling crack growth by level sets and the extended finite

element method, International Journal for Numerical Methods in Engineering 51 (8) (2001) 943–960.

[36] T. Strouboulis, I. Babu�sska, K. Copps, The design and analysis of the generalized finite element method, Computer
Methods in Applied Mechanics and Engineering 181 (1–3) (2000) 43–69.

[37] T. Strouboulis, K. Copps, I. Babu�sska, The generalized finite element method, Computer Methods in Applied

Mechanics and Engineering 190 (32–33) (2001) 4081–4193.

[38] N. Sukumar, D.L. Chopp, N. Mo€ees, T. Belytschko, Modeling holes and inclusions by level sets in the extended

finite element method, Computer Methods in Applied Mechanics and Engineering 190 (46–47) (2001) 6183–6200.

[39] N. Sukumar, D.L. Chopp, B. Moran, Extended finite element method and fast marching method for three

dimensional fatigue crack propagation, Engineering Fracture Mechanics 70 (1) (2003) 29–48.

[40] N. Sukumar, N. Mo€ees, B. Moran, T. Belytschko, Extended finite element method for three-dimensional crack

modeling, International Journal for Numerical Methods in Engineering 48 (11) (2000) 1549–1570.

[41] K. Vijayakumar, S.N. Atluri, An embedded elliptical flaw in an infinite solid, subject to arbitrary crack-face

tractions, Journal of Applied Mechanics 48 (1981) 88–96.

[42] G. Xu, M. Ortiz, A variational boundary integral equation method for the analysis of 3d cracks of arbitrary

geometry modelled as continuous distribution of dislocation loops, International Journal for Numerical Methods

in Engineering 31 (1993) 3675–3701.

D.L. Chopp, N. Sukumar / International Journal of Engineering Science 41 (2003) 845–869 869

http://scorec.rpi.edu/~remacle/Gmsh_Eng.html
http://scorec.rpi.edu/~remacle/Gmsh_Eng.html

	Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method
	Introduction
	Review of numerical methods for fatigue crack propagation
	Extended finite element method
	Fast marching method
	Three-dimensional crack modeling
	Enrichment functions
	Selection of enriched nodes
	Enrichment for multiple cracks
	Crack growth algorithm

	Governing equations
	Strong form
	Weak form and discrete equations

	Numerical examples
	Discretization in the fast marching method
	Comparison with using mesh-generation algorithms
	Fatigue growth of coplanar cracks
	Two penny-shaped cracks
	Two elliptical cracks
	Three penny-shaped cracks


	Conclusions
	Acknowledgements
	References


