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ABSTRACT:  Faults are geological entities with thicknesses several orders of magnitude smaller 
than the grid blocks typically used to discretize reservoir and/or over-under-burden geological 
formations. Introducing faults in a complex reservoir and/or geomechanical mesh therefore poses 
significant meshing difficulties. In this paper, we consider the strong-coupling of solid 
displacement and fluid pressure in a three-dimensional poro-mechanical (reservoir-
geomechanical) model. We introduce faults in the mesh without meshing them explicitly, by using 
the extended finite element method (X-FEM) in which the nodes whose basis function support 
intersects the fault are enriched within the framework of partition of unity. For the geomechanics, 
the fault is treated as an internal displacement discontinuity that allows slipping to occur using a 
Mohr-Coulomb type criterion. For the reservoir, the fault is either an internal fluid flow conduit 
that allows fluid flow in the fault as well as to enter/leave the fault or is a barrier to flow (sealing 
fault). For internal fluid flow conduits, the continuous fluid pressure approximation admits a 
discontinuity in its normal derivative across the fault, whereas for an impermeable fault, the 
pressure approximation is discontinuous across the fault. Equal-order displacement and pressure 
approximations are used. Two- and three-dimensional benchmark computations are presented to 
verify the accuracy of the approach, and simulations are presented that reveal the influence of the 
rate of loading on the activation of faults.  

KEYWORDS: Finite elements, X-FEM, Poro-mechanics, Reservoir, Geomechanics, 
Multiphysics coupling, Faults, Discontinuities 

HIGHLIGHTS: 
 Fault as a displacement discontinuity (stress) and a pressure discontinuity (sealing fault) or

a continuous pressure but discontinuous normal gradient discontinuity (flow conduit)

 X-FEM implementation (in both 2D and 3D)

 Fully coupled poro-mechanical effects (stress and pressure)

 Influence of rate of loading on faults reactivation is demonstrated
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1 INTRODUCTION 

Faults are geological fractures of rock in which there has been relative displacement in the plane 
of fracture. Fault slip reactivation may be triggered by changes in hydraulic pressures and 
deformations of the rock matrix, which occur during injection and/or extraction of resident fluids 
as a result of disposal of waste water or CO2, or as a result of hydrocarbon extraction. The motion 
of faults due to the injection or removal of fluids is known to induce seismicity (National Research 
Council, 2012), and for potentially generating leaks in containment scenarios. The potential for 
fault reactivation associated with industrial activities is an important problem not just from a safety 
viewpoint, but also from a public acceptance perspective. It is becoming increasingly apparent that 
accurate and reliable simulation techniques are needed that can capture the solid displacement, 
pressure, and thermal and saturation effects in reservoir-geomechanical models. In this paper, we 
consider the strong coupling between solid displacement and fluid pressure in a three-dimensional 
reservoir-geomechanical model, and present extended Finite Element simulations that reveal the 
influence of loading rates on the activation of faults.  
 
Mechanical and hydraulic characterization of faults have been the subject of many experimental 
studies (Barton, 2013; Evans et al., 1997; Faulkner et al., 2003; Jaeger and Cook, 1969; Mizoguchi 
et al., 2008; Wibberley and Shimamoto, 2003). The concept of a Mohr-Coulomb shear strength 
description in terms of a cohesion and friction angle is widely accepted, albeit with some caveats 
(Barton, 2013). Hydraulic description in terms of permeability is more controversial. As discussed 
in  Rubin (2015), fault zones most often act as barriers to a cross-fault (impermeable fault) flow, 
and some that are usually active, act as conduits for along-fault flow. Permeability numbers from 
the fault zone that hosted the Kobe earthquake in Japan have been reported to be 10-20 m2 for the 
very fine-grained core of the fault zone; and 10-16 m2 for the surrounding zone of damaged rock. 
A nearly impermeable fault core surrounded by a fractured host rock is a prescription for a fault-
normal permeability that is much less than that of the host rock, and for an along-fault permeability 
that is much higher. As reported by Rubin (2015), of all the rock properties that are commonly 
measured, permeability is among the most wildly varying. Permeability depends on the confining 
pressure, amount of fault slip, etc. Note that the very low permeability of 10-20 m2 applies to regions 
only millimeters across.   
 
Faults are geological entities with thicknesses several orders of magnitude smaller than the grid 
blocks typically used to discretize reservoir and/or over-under-burden geological formations. 
Coates and Schoenberg (1995) used finite-difference to model faults with a displacement 
discontinuity across it.  Since this initial work, finite elements have been adopted for faults 
modeling. However, introducing faults in a complex reservoir and/or geomechanical finite element 
mesh presents significant difficulties due to the need to generate very refined meshes in the vicinity 
of the faults. Several researchers have recently focused on fault modeling in geomaterials (see, e.g. 
Cappa and Rutqvist, 2011; Rinaldi et al., 2014), but most of the studies are limited to two 
dimensions and only approximately account for the coupling between fluid flow and solid 
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deformation that occurs in fluid-saturated porous media (so-called poro-mechanical effects). 
Furthermore, these implementations are restricted to sealing faults, and do not fully address the 
challenge of inserting a fault within a mesh. A recent study (Jha and Juanes, 2014) addresses this 
challenge in both 2D and 3D by modeling faults as surfaces of discontinuity using interface 
elements (fault must conform to element boundaries) and Lagrange multipliers, but it is also 
restricted to sealing faults. Early theoretical work on issues related to embedding strong 
discontinuities in saturated porous materials can be found in Armero and Callari (1999). In the 
present paper, we use the extended finite element method (X-FEM) to introduce faults without the 
need to mesh them explicitly. Numerical results using the X-FEM have been presented in 2D for 
fractured porous media (de Borst et al., 2006; Fumagalli and Scotti, 2014; Lamb et al., 2013; 
Réthoré et al., 2007; Talebian et al., 2013), and for 3D hydraulic fracture simulations (Gupta and 
Duarte, 2014; Secchi and Schrefler, 2012). The implementation of the X-FEM in 3D (Sukumar et 
al., 2000) is significantly more complex than in 2D (Moës et al., 1999).   
 
In the three-dimensional model for the geomechanics, we treat the fault as an internal displacement 
discontinuity that allows slipping to occur using a Mohr-Coulomb type criterion. For the reservoir, 
the fault is either an internal fluid flow conduit that permits fluid flow to occur within the fault as 
well as to enter or leave the fault, or is a barrier to flow. In the X-FEM, the faults are represented 
by enriching the displacement approximation with a discontinuous function via the framework of 
partition-of-unity (Melenk and Babuška, 1996). For sealing/impermeable faults, a pressure 
discontinuity must occur across the fault, and a discontinuous function is used to model the 
pressure discontinuity across the fault. For fault as a fluid flow conduit, the transverse permeability 
is typically several orders of magnitude smaller than the host. Conversely, the longitudinal 
permeability can be larger than the host. For this case, one must use a continuous pressure function 
that permits a discontinuous normal pressure gradient across the fault. For internal fluid flow 
conduits, a C0 continuous function is used for the fluid pressure approximation that admits a 
discontinuity in its normal derivative across the fault (Moës et al., 2003; Sukumar et al., 2001). 
For the standard finite element contribution, equal-order solid displacement and pressure 
approximations are used. As shown and discussed in detail in Prevost (2013), two-way coupling 
of pressure and stress equations is required if poro-mechanical effects are to be accurately 
captured. Also, as shown in Prevost (2013), one-way inexpensive iterative (sequential) integration 
of reservoir-geomechanical equations can work, but requires a very large number of iterations for 
accurate integration of such strongly-coupled equations. This is not surprising since it is well-
known that fixed-point iterations, if they converge at all, require a large number of iterations to 
converge.  
 
This paper is organized as follows. Section 2 outlines the poro-mechanical field equations, and the 
essentials of the weak formulation are described in Section 3. The displacement and pressure 
approximations in the modeling of faults using the X-FEM are presented in Section 4, with details 
on the residual contributions from the stress and pressure equations. Central to the success of the 
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fully coupled implementation is the computation of the Jacobian matrix, which is discussed in 
Section 5. The elemental contributions to the coupling Jacobian matrix are computed through 
numerical finite-differencing of the residuals (Preisig and Prevost, 2011a, 2012 ; Prevost, 1981, 
2013; Prevost, 2014). In Section 6, numerical results in 2D and 3D are presented that affirm the 
versatility and sound accuracy of the method. 
 

2 FIELD EQUATIONS 

Detailed derivations of the poro-mechanical equations can be found in Coussy (2004). For an 
isothermal fully saturated porous solid, stress and pressure are governed by the stress momentum 
equations: 

'0 S
fb p    σ g σ σ δ , (1)

the balance of mass equation: 

( ) 0f
f f f

d d

dt dt

     q , (2)

where 
1

f f f
f

p 


     q k g  is the Darcy flux, and the porosity equation: 

1 fS
dpd

b
dt N dt


  v , (3)

where 01

S

b

N K


 . For a slightly compressible fluid, the balance of mass and the porosity equation 

can be combined to yield the pressure equation: 

1
0f S

f

dp
b

M dt
    q v  , (4)

where 
1 1

fM N K


  .  In (1) - (4), σ is the total Cauchy stress, ' Sσ is effective stress (Terzaghi, 

1923), 1
S

S

K
b

K
   is the Biot coefficient (Biot, 1941, 1955), (1 ) S f        is the total mass 

density, S  and f  are the solid and fluid mass densities, respectively,   is the porosity, 0  is 

the initial porosity, g  is the body force, k is the permeability, f  is fluid viscosity, fq  is the 

Darcy flux, and SK  and fK  are the solid (grains) and fluid bulk moduli, respectively. It is clear 

that the pressure equation is coupled to the stress equation through the divergence of the solid 

velocity S v . The solid effective stress is related to the solid strains (solid deformation gradient). 
Assuming, for simplicity, a linear elastic porous skeleton 

' 2
2 and

3

S
S S S S S S S

V V

G
K G 

 
     
 

σ δ ε u , (5)



Page 5 of 29 
 

where SK  and SG  are the bulk and shear moduli (drained) of the solid skeleton, respectively, and 
Sε  is the symmetric part of the solid displacement gradient. It is important to realize that diffusion 

time is controlled by the diffusion coefficient (see, e.g. Coussy, 2004)  

2

2

2

S S

f S S
f

k
c M

b M

 
  




 
, (6)

where 
4

2
3

S S S SK G    . 

 

3 WEAK FORMULATION 

The weak formulation corresponding to the coupled partial differential equations (1) and (4) is 
obtained by proceeding along standard lines (see, e.g. Hughes, 1987). Both stress and pressure 
equations are multiplied by appropriate test functions for the displacement and the pressure and 
then integrated over the volume of the domain  . Invoking the divergence theorem to push 

volume integrals on the boundary of the domain c and the fault c , leads to the weak forms. 

 

3.1 Stress equation 

Let w  be a vector with components 1
0 ( )ciw H     with [ ] - w w w  representing  the jump 

discontinuity across surface c .  On taking the dot product of (1) by w and integrating over the 

volume  , we obtain 

( ) 0d d
 
     σ w g w   . (7)

Then, on integrating by parts we have 

: ( )d d d
  

        σ w σ w g w   . (8)

Finally, using the divergence theorem in   and symmetry of σ  yields 

(): ( ) [ ]
h c c

d d d d
    

          σ w h w σ n w g w    , (9)

where  h σ n  is the prescribed traction on h  and 0 w  is the symmetric part of the gradient 

of w .  The boundary,  , is defined such that ,  h h      u u  . 

 

3.2 Pressure equation 

We consider two cases, a sealing fault and a fault as a flow conduit.  For the sealing fault, let 
1
0 ( )f cv H      be a scalar with [ ]f f fv v - v   representing the jump discontinuity across the 

surface c .  For the flow conduit, let 1
0 ( )fv H   be a scalar with [ ]fvn  representing the 

normal gradient jump discontinuity across the surface c .  Multiplying (4) by fv  and integrating 

over the volume   yields 



Page 6 of 29 
 

1
0f S

f f

dp
b v d

M dt

 
      

 
 q v  , (10)

where 
1

f f f
f

p 


     q k g  .  Then, integration by parts yields 

1
( ) f S

f f f f f

dp
v d v d b v d

M dt  

 
         

 
  q q v   . (11)

For the sealing fault, using the divergence theorem in   results in 

1
( )[ ]

f
q c cf

f S
f f q f f f f

dp
v d h v d v d b v d

M dt    

 
          

 
   q q n v   . (12)

For the flow conduit, using the divergence theorem in   results in 

1
[ ]

f
q c cf

f S
f f q f f f f

dp
v d h v d v d b v d

M dt    

 
          

 
   q q n v   . (13)

In (12) and (13), 
fq fh  q n  is the prescribed fluid flux on 

fq  and the boundary,  , is 

defined such that , 
f f f fp q p q        . It is important to note that the 

contribution of the fault results in a surface integral in both stress and pressure equations. 
 

4 FAULTS MODELING WITH THE X-FEM 

The discretized finite element equations are obtained by using finite element basis functions that 

are augmented by X-FEM functions to represent the fault c . Let ( )iN x  denote the standard 

finite element shape functions for a single finite element, where i , the set consisting of nodes 

that belong to the element. Let cut denote the set of nodes whose basis function support is cut 

by the fault c  (see Fig. 1). Then the following approximations are used: 

 a discontinuous displacement field (stress equation) (Moës et al., 1999): 

ˆ( ) ( ) ( )
c

cut

i i i i

i i

N N H
 

  u x u x x u
 

, (14)

where ( )
c

H x  is the discontinuous generalized Heaviside function; 

 a continuous pressure field (with fluid as a flow conduit): 

ˆ( ) ( ) ( )
cut

i i i i
f f f

i i

p N p N p
 

   xx x
 

, (15)

where ( ) x  is the distance function with a discontinuous normal derivative across c ; 

 and a discontinuous pressure field (with a sealing fault): 

ˆ( ) ( ) ( )
c

cut

i i i i
f f f

i i

p N p N H p
 

  x x x
 

. (16)

 
For the stress equation each node i  is assigned nsd  (number of spatial dimensions) displacement 

degrees of freedom iu . The set of nodes cut whose basis function support is cut by the fault are 
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assigned additional nsd  degrees of freedom ˆ iu . Similarly for the pressure equation, each node i  

is assigned one pressure degree of freedom i
fp  and the nodes in cut are assigned an additional 

pressure degree of freedom ˆ i
fp . The resulting semi-discrete finite element equations are integrated 

in time by using a first order finite difference time-stepping integrator (typically, backward Euler) 
for both stress and pressure equations. 

 

 
Fig. 1: Enriched nodes (shown as open circles)  

whose basis function support is cut by the fault c . 

 
The contribution to the residuals of the elements that are cut by the fault require element 

partitioning above and below c  for spatial integration. In 2D, we use triangles as implemented 

in Sukumar and Prevost (2003). In 3D, we subdivide the cells by using tetrahedral elements 
(Sukumar et al., 2000). The X-FEM surface integral contributions to the residual equations are 
computed as follows for both the stress and pressure equations. 
 

4.1 Residual contribution to stress arising from the surface integral 

From the weak form in (9), the surface integral contribution on c  is due to ( ) [ ]
c

d


 σ n w  . In 

the 2D case, the residual is: 

ˆ
ˆˆ 2

c

T ta a
u

n

t
d

t

        
r B , (17)

where  ˆ ,
Ta a

t nNB e e and tt  and nt  denote the tangential and normal tractions on the plane of 

the fault, respectively. This is illustrated in Fig. 2 for the two-dimensional (2D) case.  Let 

[ ]   u u u  (18)

denote the displacement jump across the fault where [ ] [ ]n nu  u e  and [ ] [ ]t tu  u e . Then, the 

normal and tangential tractions on the fault are computed as: 
' [ ]S
n n n ft k u p  , (19)

c
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where [ ]t t tt k u , and nk  and tk  are penalty coefficients. Note the fluid pressure contribution to 

the normal total traction results in the effective normal traction 'S
nt . The Mohr-Coulomb 

unilateral constraint requires that if [ ] 0nu  , 
' tanS

t u n ut c t   , (20)

where uc  and u  denote cohesion and internal friction angle assigned to the fault. The Mohr-

Coulomb constraint is enforced by using the return correction procedure shown in Fig. 2b. In the 

three-dimensional case, the fault is a plane. The unit vectors tangent to the surface c , 1
te  and 2

te  

are constructed as in laminar shells (see, e.g. Hughes, 1987) and 1 2
n t t e e e . 

 
Fig. 2: Fault as a displacement discontinuity (a) geometry, and (b) Mohr-Coulomb constraint. 

 
Other more elaborate models can be used such as slip-weakening models where the mobilized 

friction angle can be made function of a critical slip cu as 

| [ ] |
tan (tan tan ) | [ ] |

tan

tan | [ ] |

t
s d t c

c
s

u

d t c

u
u

u

 




    
 

u
u

u

. (21)

 

4.2 Residual contribution to pressure arising from surface integral 

In the sealing fault case, the surface integral contribution is due to ( )[ ]
c

f v d


 q n .  In the flow 

conduit case, the surface integral contribution is due to [ ]
c

f v d


 q n . The residual is 

ˆ̂ˆ
c

T
a a
p fr d



      B q , (22)

where 
ˆ̂ ˆ ˆa a a

 
       B B B  and  

ˆ ˆ ˆ
c c

a a a a aN H N H    B . (23)

c

e n

e t

+ (above)

- (below)

return correction

u


c u

t

'S
t  t  

t  
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In the sealing fault case, ˆ
c c

H H   represents the discontinuous generalized Heaviside function 

with ] 2[
cc c

H H H



     on c .  In the fault as a flow conduit, ˆ

c c
H    represents the 

distance function such that 0
c

   on c , 
c c c

H   n   on c , and [ ] 2
c c

  n   on c . 

 
Fig. 3: Fault as a pressure discontinuity or a flow conduit.  

The fault thickness 210t h  where h  is the nodal spacing. 
 

The fault is assigned both a longitudinal and a transverse permeability, andt nk k respectively. For 

a sealing fault t nk k is a penalty coefficient used to enforce the no flow condition across the fault. 

For the fault as a flow conduit, the fault is also assigned a thickness t.  The fault thickness is 
controlled by the geology, and typically can range from cm to mm, and therefore t ~ 10^-2 h to 
10^-3 h, where h is the nodal spacing used in a typical reservoir mesh.  The finite fault thickness 
reflects the fact that fluid flow enters and/or leaves both sides of the fault channel. Then in the 
local axes of the fault, te  and ne , Darcy’s law is assumed to hold as 

local t ft

n n ff

pq

q p

            

k
, (24)

where tq  and nq  represent the flow in the fault and 

local

0

0
t

n

k

k

 
  
 

k . 

Then the flow in the global axes is obtained by performing the rotation between the local and 
global axes: 

local
Tk R k R  , (25)

where [ , ]T
t nR e e  and f f

f

p


  
k

q . 

5 RESIDUAL FORMULATION FOR DISCRETE FINITE ELEMENT EQUATIONS 

Simultaneous integration of the stress and pressure equations requires that a residual formulation 
be used. The elemental contribution to the Jacobian matrix can then be computed through 

c

e n

e t

h
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numerical finite differencing of the residuals (see, e.g. Preisig and Prevost, 2011b; Preisig and 
Prevost, 2012 ; Prevost, 1981) as further explained and detailed hereafter. We use a first-order 
finite difference time-stepping integrator (typically, backward Euler) for both geomechanical and 
reservoir equations. Time derivatives are indicated by a superimposed dot ( ) . The most important 

elemental residual formulations are summarized hereafter ( ( )e  is the control volume). 
For simplicity in notation we omit the contribution to the residuals from the surface integrals in 
equations (17) and (22). 
 

5.1 Galerkin stress equation residual formulation 

From (9), the residual in the Galerkin stress equation is: 
' ( )

, 1 , 1 1 1e e

Ta ext a S a T e
u n u n n nd b N p d    

            r f B σ , (26)

where the solid displacements are interpolated with the usual shape functions,  

( )

1

nen
e aa

a

N


 u u . (27)

In (26) and (27), nen  is the number of nodes per element (e.g., nen  4 for a quadrilateral element), 

and aB  is the usual strain-displacement matrix (see, e.g. Hughes, 1987). The pressure in the 
element is obtained from the reservoir simulator using appropriate interpolation schemes 
depending on the specific discretization adopted for the pressure equation. 
 

5.2 Galerkin pressure equation residual formulation 

From (12) and (13), the residual in the Galerkin pressure equation is: 

, ( ) ( ) ( )
1 1 1 1 1

1
e e e

Ta a ext a e a e a e
n n n n n

f

r f N p d N p d b N d
M       

           
k

u    , (28)

where we typically use equal order interpolants for both pressure and solid displacements (see, e.g. 
Preisig and Prevost, 2011b), i.e.,  

( )

1

nen
e aa

a

p N p


  . (29)

5.3 Numerical implementation 

Simultaneous integration of the stress and pressure equations is achieved by computing the coupled 
Jacobian matrix, which is computed by numerical finite differencing of the residuals (see, e.g. 
Preisig and Prevost, 2011b, 2012 ; Prevost, 1981). To this end, it is convenient to view the global 
solution vectors and residuals as consisting of contributions from both the geomechanical and 
reservoir simulator as  

( )( ) ( )
( ) ( ) ( )

( )( ) ( )

ii i
ui i i

ii i
prp p

                
          

ru u
x x r





, (30)
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where ( )ix is the solution vector at iteration i and lists both nodal displacements and pressures. 
Then, time-integration is achieved by using the usual generalized trapezoidal predictor-corrector 
integrator scheme, i.e., 

( 1) ( 1)
1 1 1 1 (1 )i i

n n n n n nt t  
         x x x x x x    , (31)

where 1   for backward Euler, 1/ 2   for mid-point, and t  is the time step. Then the solution 

to the nonlinear set of coupled equations is obtained at every iteration as  

 ( )( 1) ( ) ( ) ( ) ( )
1 1 1

ii i i i i
n n n 
     x x x J x r  , (32)

where  ( )i
J  is the Jacobian determinant matrix obtained by numerical finite-differencing of the 

residual, i.e.,  
( ) ( ) ( ) ( )( )

( )
( )

( ) ( )
[ ]

i i i ii
P Q P Qi P

PQ i
Q

r x h r xr
J

x h

 
 


 


, (33)

and P  and Q  are global equation numbers corresponding to unknown displacements and 

pressures. The Jacobian determinant matrix is computed element-by-element (ebe) through 
assembly operations, i.e. the ebe Jacobian assembly is  

( )( ) ( )
1,

ii e
PQ e nel pqJ A J        . (34)

The local equation numbers are q  and ( 1)p i ndf a    with 1,i ned  and 1,a nen . The total 

number of degrees of freedom at each node is 1ndf nsd  . In addition, ned  is the local number 

of degrees of freedom. The global equation numbers are ( , ( , ))P id i ien a e  with ( , )A ien a e  

being the connectivity. For the geomechanical elements, ned nsd  and 1,i nsd , whereas for 

the reservoir elements, 1 and 1ned i nsd   . The procedure is detailed in Table 1. The 

perturbation of the degrees of freedom h  is a small parameter chosen as 

3
1/3

( )
1

, max(( ) , )
| ( , ) |

M
Mi

n

h h h
x idof node






 


, (35)

where M  is machine precision. The above procedure is illustrated in Table 1 for a forward 

evaluation of the Jacobian matrix. It is easily extended to a backward scheme by changing h  to 

h  and/or to a central difference approximation by using 
( ) ( ) ( ) ( )( )

( )
( )

( ) ( )
[ ]

2

i i i ii
P Q P Qi P

PQ i
Q

r x h r x hr
J

x h

  
 


 


. (36)

With this modification, the procedure is then twice as expensive and this is usually not warranted. 
It is important to note that the coupling matrix is never explicitly assembled, rather it is computed 
by the element-by-element contributions to the residual. 
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Table 1: Pseudocode for element-by-element (ebe) Jacobian matrix computation. 

 

( ) ( )
, 1 1

//using forward finite-differencing as an example

1

for 1, // nel = number of elements

ompute element contribution to residual, ( ),  1, , 1,

for 1,

( , )      //

i i
p n n

ndf nsd

e nel

C r x p nen ndf i nsd

a nen

node ien a e

 



 


  




J 0




( ) ( )
1 1

( ) ( )
1 1 1

( ) ( )
1 1

( ) ( )
1 1

 ien = global node number

for 1,

( , ) ( , )

                

                

( 1)

if (

i i
n n

i i
n n n

e a a i
n n

a

e a a i
n n

a

idof ndf

x idof node x idof node h

t

N

p N p

q idof ndf a

e solid


 

  

 

 



 

  





  






x x x

u u

 
 

( ) , ' ( ) ( )
, 1 , 1 1 1 , 1

( ) ( )
, 1 1

) then

( )

( 1)        // 1,

else if ( ) then

1

e e

e e

Ti b ext T b S e b e
p n i n i n n i n

Ti b,ext b e b
p n n+1 n n

f

element

r f d b N p d

p i ndf b b nen

e pressure element

r f N p d N p
M 

     

   

     
   



      

 

 

e B σ u
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

  

   
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1 1

( ) ( ) ( ) ( )
, 1 1 , 1 1( )
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 1 ( 1)

end if

( ) ( )

//  recall  1, ,  ( -1)

end do

end do

//  assembly

end do

e

e b e
n

i i i i
p n n p n ne

pq

e
e pq

d b N d

p nsd ndf b

e

r h r
J
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A J
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 u
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J J
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At the core of the combined simultaneous solution procedure is the assembly and solution of a set 
of non-symmetric (linear) equations. However, one can entirely avoid forming the full Jacobian 
matrix equation by using a partitioned iterative conjugate gradient procedure (Hestnes and Stiefel, 
1952) to solve for the Schur complement as detailed in Prevost (1997). Although correct, aside 
from the usual errors associated with spatial and temporal discretizations, the simultaneous fully 
coupled solution of the geomechanical and reservoir equations still places high demand on 
computational resources. 
 

6 NUMERICAL RESULTS 

Numerical simulations in 2D and 3D are presented, which demonstrate the accuracy and versatility 
of the proposed X-FEM faults models. 
 

6.1 Fluid-flow in a 2D domain 

The problem geometry, and boundary conditions used are shown in Fig. 4. The dimensions of the 

two-dimensional domain are 20 mX YL L  . The material parameters are shown in Table 2. In 

this example, the rock permeability used is 14 2
rock 3.33 10 mk   , and an inflow fluid flux 

5 310 m /sfq   is prescribed on the top boundary. No flow is assumed to take place on both lateral 

boundaries, and a free-flow boundary is used at the bottom where the fluid pressure 0fp  . The 

fault is inclined at 45o   and is assigned a thickness 0.1mt  . Note that the thickness assigned 

to the fault in this example is arbitrarily large in order to be able to mesh the fault when using a 
standard finite element solution procedure. The problem is first solved by using a standard finite 
element procedure and by meshing both the domain and the fault as shown in Fig. 5 on an 
unstructured mesh. The mesh consists of 19,724 nodes and 39,366 triangular elements (30,140 for 
the domain and 9,226 for the fault). The fault permeability in the global axes is computed by 

performing the rotation of the fault local permeability localk with transverse and longitudinal 

permeability nk  and tk  respectively,  to the reference axes of the domain, viz. local
Tk R k R   

(see (25)). 
 
The resulting pressure contours are shown in Fig. 5c for a fault with transverse and longitudinal 

permeability 2 3
rock rock10 , 10n tk k k k   , respectively. The maximum fluid pressure is computed 

as 5.95 MPa. 
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Fig. 4: Geometry and boundary conditions for fluid flow in a 2D domain. 

 
 
 
 
 
 
Table 2: Materials properties. 
Permeability (host rock, isotropic) 

rockk   14 2 15 23.33  m 1.10 11  m07    

Fluid viscosity (water) 
f   310  Pa   

Porosity  0.30   
Young’s modulus SE   30 GPa   

Poisson’s ratio S   0.0   

Fluid bulk modulus 
fK   2.17 GPa   

Fault friction angle 
u   34 40     

Fault cohesion 
uc   0.0   

 
  

no flow

f
= 0

q 
fin flow:

c

45
o

no flow
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(a) 

 

 
(b) 

 
(c) 

 
Fig. 5: Finite element solution for the fluid-flow problem.  (a) Refined mesh, (b) Zoom view of 

the mesh at the fault-bottom where the fault thickness, t   0.1 m is shown, and (c) Pressure 

contour. The fault permeability is: 2
rock10nk k  and  3

rock10tk k .  The maximum computed 

fluid pressure, ,maxfp , is 5.95 MPa.  

 
The same problem is solved with the X-FEM pressure option (fault as a conduit) using a structured 
quadrilateral mesh. The results are shown in Fig. 6 for a mesh size 2 mh  . Note that even with 
such a coarse mesh, the fluid pressures results are accurate when compared with Fig. 5c. Also, the 
computed maximum fluid pressure 5.52 MPa compares well with the one computed by meshing 

thickness t
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the fault (5.95 MPa). The flow in the cross section of the fault in the FEM solution is found to be 
highly non-uniform, which the X-FEM procedure cannot reproduce since it lumps it into a single 
flow in and out of the fault channel. So the extended FE solution is not able to capture the details 
of the flow in the fault, and can only provide an average solution. This example demonstrates the 
significant simplifications with reasonable accuracy of the extended FE fault model for the fluid 
flow. Clearly, the fault permeability used in the example is only representative. However the 
extended FE procedure can easily accommodate other values as dictated by Geologist experts.  
 
In order to assess the accuracy and stability of the X-FEM, a systematic mesh sensitivity study 
was performed as summarized in Fig. 7 which shows the X-FEM computed maximum fluid 
pressure (in MPa) as a function of the nodal spacing h on a log-scale (in m), and demonstrates that 
even with coarse meshes the solution can be captured with sound accuracy, and demonstrate the 
stability of the procedure. Note that the fault thickness used is 0.1m, and therefore the nodal 
spacing must be greater (or equal) than 0.1m. In Fig. 7, the X-FEM CPU times are also reported 
by normalizing them with respect to the FEM times. The 2D FEM mesh has 19,203 dofs and takes 
5 sec to compute.  The mesh and solution parameters for the extended FE analyses are: h = 0.1 m 
(40,906 dofs), 0.2 m (10,456 dofs), 0.4 m (2734 dofs), 1.0 m (496 dofs), 2.0 m (154 dofs), and 4.0 
m (30 dofs). Note that 0.1 mh  is not really meaningful since the fault thickness must be smaller 
than the mesh size (see Section 4.2), and has more equations than the FEM mesh (and thus takes 
longer to compute). However, it is clear that the X-FEM provides marked savings over the FEM 
(Fig. 5a and 5b). 

 
Fig. 6: Fluid flow problem solved using the X-FEM. Mesh (left) and pressure contour (right). 

Mesh size 20 /11 2.0 mh   . The fault permeability is 2
rock10nk k  and 3

rock10tk k .  The 

fault thickness, t , is 0.1 m and the maximum pressure, ,maxfp , is 5.52 MPa. 
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Fig. 7: Mesh sensitivity results and normalized CPU times (X-FEM/FEM) 

6.2 Fluid flow in a 3D domain 

In this example, a three-dimensional cube 40 m  40 m  40 m   is cut by two faults at angles
0 0

1 235 and 55    , respectively. The material parameters are shown in Table 2. In this 

example the rock permeability used is 14 2
rock 3.33 10  mk   , and a uniform inflow fluid flux 

6 310  m /sfq 
 
is prescribed on the top boundary. No flow is assumed to take place on all lateral 

boundaries, and a free-flow boundary is used at the bottom where the fluid pressure 0fp  . The 

domain and boundary conditions are shown schematically in Fig. 8. The fault acting as a flow 

conduit is assigned a thickness 210 0.02mt h    . Fault 1 is assumed to be a flow conduit, and 

its transverse and longitudinal permeabilities are chosen as 3
rock10nk k  and 3

rock10tk k , 

respectively.  Fault 2 is assumed to be a sealing fault and is assigned a permeability 
4

rock10n tk k k  . The unstructured mesh is shown in Fig. 9a and contains 3,223 nodes and 16,281 

tetrahedral elements. The computed fluid pressures are shown in Fig. 9b (maximum fluid pressure 
= 1.51 MPa), and the resulting Darcy fluid velocities are shown in Fig. 9c. Note that most of the 
flow is taking place along the fault plane of fault 1 due to its high longitudinal permeability (and 
low transverse permeability). 
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Fig. 8: Geometry and boundary conditions for fluid flow in a 3D domain. 

 
The example presented in this Section illustrates the capability of modeling two faults in three 
dimensions. Modeling many (tens or even hundreds) faults is relatively straightforward since the 
faults are never meshed, as they are just placed within the reservoir mesh by simply identifying 
their plane(s). This is illustrated by the example shown in Fig. 10 in which four faults are now 
present. Faults 1-3 are flow conduit as in Fig. 9, and fault 4 is assumed to be a sealing fault. The 
X-FEM mesh is shown in Fig. 10a. The computed fluid pressures are shown in Fig. 10b and the 
resulting Darcy fluid velocities are shown in Fig. 10c. As noted in the previous example, most of 
the flow occurs along the fault planes of the faults labeled as 1, 2 and 3 that are modeled as flow 
conduits.  

 

6.3 Stress in a 2D and 3D domain 

In this example, a three-dimensional cube 40 m  40 m  40 m   is cut by a fault at an angle
035  . A uniform total vertical surface traction is applied on the top surface. The geomechanical 

material parameters are given in Table 2. The unstructured mesh is shown in Fig. 11a and contains 
3,223 nodes and 16,281 tetrahedral elements. The resulting displacement vectors for a fault friction 
angle 040u   (no slip) are shown in Fig 11b. The resulting displacement vectors for a fault 

friction angle 034u   (slip) are shown in Fig 11c. The same problem is solved as a 2D problem 

(plane strain). The structured mesh is shown in Fig. 12a, and the resulting displacement vectors 
for a fault friction angle 040u   (no slip) and for a fault friction angle 034u   (slip) are shown 

in Fig. 12b and Fig. 12c, respectively. Note that we used a Poisson’s ratio 0S   (Table 2) to 
ensure consistency between the 2D and 3D results, without having to resort to boundary conditions 
on the lateral faces of the 3D mesh. This example demonstrates the accuracy of the stress fault 
model. Note that no numerical stability issues on the contact tractions on the fault surface such as 
alluded to in Annavarapu et al. (2015) are encountered in our procedure. This may be due to the 
fact that we use a penalty formulation (see Section 4.1), and do not attempt to analytically derive 
the tangent operators arising from the Coulomb stick/slip logic on the interface.  No matrix is 

c
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q 
fin flow:

no flowno flow
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o
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defined explicitly because we use a numerical finite differencing of the residuals to compute 
numerically those coupled matrices as discussed in Section 5.3. Our procedure is entirely general 
and bypasses analytically defined matrices, which in general are difficult (or impossible to define) 
especially in our case and have the advantage of being consistent with time stepping, mesh size 
and nonlinear algorithmic details.  
 
 

 
(a) 

 

   
(b)  

 
(c)  

Fig. 9: Extended FE solution for the fluid flow in a 3D domain. (a) Unstructured mesh (two 
faults are present); (b) Fluid pressure distribution; maximum fluid pressure is 1.51 MPa; (c) 

Darcy velocities; maximum velocity is 4105.2  m/s . 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 10: Extended FE solution for the fluid flow in a 3D domain. (a) Unstructured mesh (four 
faults are present); (b) Fluid pressure distribution; maximum fluid pressure is 1.45 MPa;  

(c) Darcy velocities; maximum velocity is 84 10  m/s . 
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(a)

 
(b) 

 

 
(c) 

 

Fig. 11: Extended FE solution for 3D stress fault model. (a) Unstructured mesh, with fault 

intersecting at an angle 035  ; (b) Displacement vectors show no slip along the fault for 
friction angle 040u  ; (c) Displacement vectors show slip along the fault for friction angle 

034u  . 
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(a) 

 

(b) 
 

(c) 

 
Fig. 12: Extended FE solution for 2D stress fault model. (a) Structured mesh, with fault 

intersecting at an angle 035  ; (b) Displacement vectors show no slip along the fault for 
friction angle 040u  ; (c) Displacement vectors show slip along the fault for friction angle 

034u  . 

 
 
 
 
 
 



Page 23 of 29 
 

6.4 Fully-coupled reservoir-geomechanics 

The problem geometry and boundary conditions are shown in Fig. 13. The dimensions of the two-

dimensional domain are 10 mX YL L  . The material parameters are shown in Table 2. In this 

example, the rock permeability is: 15 2
rock 1.71 10  mk   , and a sealing fault is used with 

permeability 5
rock10n tk k k  . The fault is inclined at an angle 035  , and the fault friction angle 

is assumed to be 040u  . A time-dependent uniform total surface traction with initial value 

0 5  MPah  is applied on the top boundary and a fixed fluid pressure 0 1 MPafp  is applied on 

the top boundary. No flow is assumed to take place on both lateral and bottom boundaries. The 
time scale of this problem is controlled by the diffusion parameter fc  (see (6)) and for this case 

2 210  m /sfc  . Depending on the loading rate, the response is expected to exhibit very different 

features. Two time scales are investigated: rapid (i.e., undrained) and slow (i.e., drained) loading, 
respectively, as shown in Fig. 14. 
 

 
 

Fig. 13: Geometry and boundary conditions for the  
fully-coupled reservoir geomechanics problem. 

 

no flow
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Fig. 14: Applied total surface traction time history (fast vs slow loading). For the fast loading 

case (undrained), 1 210 ft H c  , and for the slow loading case (drained), 2 210 ft H c  . 

 
Numerical results are shown in Figs 15 and 16 for both slow and rapid rates of loading. Note that 
as a result of the fast loading application, significant excess pore-water pressures are built on the 
fault (Fig. 15b) and reactivate the fault (Fig. 16b). On the other hand, no significant pore-water 
pressures can build on the fault during the slow loading (Fig. 15a) and the fault remains stable 
(Fig. 16a). This example demonstrates the influence of rate of loading on activation of faults. It is 
also interesting to note that for a rock permeability of the order 15 2 310  m 10  Darcy 1 milliDarcy  

, which may be applicable to sandstones ( 2 210  m /sfc  ), the fast loading rate time scale is of the 

order of 0.3 hours, whereas the slow loading rate is of the order of 300 hours. For shales with 
permeability of the order 21 2 910  m 10  Darcy 1 nanoDarcy    ( 8 210  m /secfc  ) the fast loading 

rate time scale is of the order of 400 months. It may be concluded that the fast loading rate (i.e., 
undrained) is therefore the norm for engineered processes in the subsurface. This example reveals 
the influence of the rate of loading on the activation of faults.  
 

7 CONCLUSIONS 

In this paper, we introduced faults in a finite element mesh without requiring them to conform to 
the mesh, by using the extended finite element method (X-FEM), in which faults are represented 
by enriching the displacement and/or pressure approximations through the framework of partition-
of-unity (Melenk and Babuška, 1996). The proposed approach is a marked departure from the 
FEM for the modeling of faults. Significant meshing difficulties arise when faults (multiple) are 
modeled using the FEM, where the mesh has to conform to the geometry of the fault(s) and hence 
a structured mesh cannot be used.  Unstructured mesh generation (triangles in 2D and tetrahedra 
in 3D) is needed for the FEM (see Figures 5a and 5b).   On using the X-FEM, a structured mesh 
suffices and the faults can arbitrarily cut the elements in the mesh. This advantage of the X-FEM 
has been leveraged for many applications in fracture mechanics, and in this paper we have shown 
that it is equally advantageous for modeling faults. 
  

2h
surface traction

time t
0h

0
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(a) 

 
(b) 

Fig. 15: Extended FE solution for the reservoir-geomechanics problem with excess fluid pressure. 

(a)  Drained case, 32.4 10  MPafp    ; (b) Undrained case, 1.13 MPafp  . 

 
In the X-FEM, the nodes whose basis function support intersects the fault are enriched. For the 
geomechanics, the fault is treated as an internal displacement discontinuity that allows slipping to 
occur using a Mohr-Coulomb type criterion. For the reservoir, the fault is either an internal fluid 
flow conduit that allows fluid flow in the fault, as well as to enter/leave the fault or a barrier to 
flow (sealing fault). In the X-FEM, the faults are represented by enriching the displacement 
approximation with a discontinuous (generalized Heaviside) function. For internal fluid flow 
conduits, the approximation for the fluid pressure uses continuous functions that admit a 
discontinuity in their normal derivative across the fault. For sealing/impermeable faults a 
discontinuous (generalized Heaviside) function is used to model pressure discontinuities across 
the fault. The procedure has been implemented in both 2D and 3D for both structured and 
unstructured meshes. Examples that demonstrate the versatility and accuracy of the procedure(s) 
were presented, and the influence of rate of loading on the activation of faults was also assessed. 
Modeling many (tens or even hundreds) faults is relatively straightforward since the faults are 
never meshed and hence they can be placed within the reservoir mesh by simply identifying their 
plane(s). However, we point out that there does exist a limitation in our present implementation, 
namely, we currently cannot accommodate nonplanar faults in 3D, which presents significant 
additional challenges.  This is the subject of ongoing research and we hope to overcome this 
limitation in a future communication.  
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(a) 

 
(b) 

Fig. 16: Slip as a function of the loading rate. (a) No slip (magnification factor = 300) for the 

drained case with 2 210 / ft H c  , and (b) Slip (magnification factor = 300) for the undrained 

case with 1 210 / ft H c  . 
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