
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING

Int. J. Numer. Meth. Engng 2016; 00:1–41

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme

Modeling crack discontinuities without element-partitioning in the

extended finite element method

Eric B. Chin1, Jean B. Lasserre2 and N. Sukumar1,∗

1 Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA

2 LAAS-CNRS and Institute of Mathematics, University of Toulouse, France

SUMMARY

In this paper, we model crack discontinuities in two-dimensional linear elastic continua using the

extended finite element method without the need to partition an enriched element into a collection

of triangles or quadrilaterals. For crack modeling in the X-FEM, the standard finite element

approximation is enriched with a discontinuous function and the near-tip crack functions. Each

element that is fully cut by the crack is decomposed into two simple (convex or nonconvex) polygons,

whereas the element that contains the crack tip is treated as a nonconvex polygon. On using Euler’s

homogeneous function theorem and Stokes’s theorem to numerically integrate homogeneous functions

on convex and nonconvex polygons, the exact contributions to the stiffness matrix from discontinuous

enriched basis functions are computed. For contributions to the stiffness matrix from weakly singular

integrals (due to enrichment with asymptotic crack-tip functions), we only require a one-dimensional

quadrature rule along the edges of a polygon. Hence, neither element-partitioning on either side of the

crack discontinuity nor use of any cubature rule within an enriched element are needed. Structured

finite element meshes consisting of rectangular elements, as well as unstructured triangular meshes,

are used. We demonstrate the flexibility of the approach and its excellent accuracy in stress intensity

factor computations for two-dimensional crack problems. Copyright c© 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The extended finite element method (X-FEM), which was introduced by Moës et al. [1],

allows the modeling of cracks without their explicit inclusion in the finite element mesh.

Instead, the crack is represented by enriching the displacement approximation with two sets

of functions — a generalized Heaviside function to model the displacement discontinuity along

the crack, and four near-tip functions that capture the asymptotic behavior of the displacement

field near the crack tip. These enrichments are included in the displacement approximation

through the framework of partition-of-unity put forth by Melenk and Babuška [2]. Even though

the X-FEM greatly simplifies crack modeling, there still remain open issues, challenges, and

improvements that need to be made as discussed in Sukumar et al. [3]. In this paper, we target

the issue of accurate numerical integration in two-dimensional elastic fracture analyses with

the extended finite element method, and present a new approach for the numerical integration

of discontinuous and weakly singular functions that does not require element-partitioning in

the X-FEM.

Various approaches have been proposed to integrate discontinuous functions in the X-FEM.

A straightforward and widely used approach is to partition the subdomain on either side

of the discontinuity into triangles for numerical integration [1]. However, element-partitioning

complicates code development, can be time-consuming, and can result in a suboptimal number

of cubature points. To avoid element-partitioning, many schemes have been devised. Ventura [4]

established that an affine discontinuity can be replaced by an equivalent polynomial expression

for linear triangles and bilinear quadrilaterals. A similar approach is formulated by Holdych

et al. [5], wherein polynomial-precision cubature rules are developed for triangular elements

with an affine discontinuity. Recently, Ventura and Benvenuti [6] extended the prior work of

Ventura [4] to elements of any order and dimensionality by replacing the affine discontinuity

with a regularized version of a discontinuous function. For piecewise affine discontinuities,

other methods of integration have been introduced that do not require element-partitioning.

Natarajan et al. [7] applied a Schwarz-Christoffel mapping over the continuous subdomains

of an element; however, this mapping introduces errors in the numerical integration. Mousavi

and Sukumar [8] used a node elimination algorithm to develop an optimized cubature rule for

discontinuous polynomials on polygons, which requires solving a system of nonlinear equations.

In their approach, monomial basis functions are integrated using a method developed by

Lasserre [9] for integrating homogeneous functions over convex polygons. Sudhakar and
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MODELING CRACKS WITHOUT ELEMENT-PARTITIONING IN THE X-FEM 3

Wall [10] applied moment fitting equations with predefined cubature points to construct a

cubature rule that is valid for convex and nonconvex domains. While their algorithm is more

efficient than element-partitioning, the number of cubature points in each subdomain is not

optimal. Despite these recent advances, element-partitioning remains the method-of-choice for

integrating discontinuous functions in the X-FEM.

Accurate and efficient numerical integration of discontinuous and weakly singular near-

tip functions is also an outstanding issue in the X-FEM. In order to recover optimal rates

of convergence, these functions must be accurately integrated. Polynomial approximations

of these functions are poor; therefore, integrating with Gauss cubature requires an inordinate

number of cubature points. To address this shortcoming, several integral (singularity-canceling)

transformations have been proposed to improve integration accuracy of near-tip functions.

These methods transform the domain of integration from a triangle to a rectangle to eliminate

the singularity from the integrand, and they require the element containing the singularity to

be partitioned into conforming triangles. Béchet et al. [11] introduced a series of mappings

that improve integration accuracy of weakly singular functions that appear in the X-FEM.

Laborde et al. [12] applied the Duffy transformation [13] to weakly singular near-tip functions

and noted improvements in cubature accuracy for functions with a r−1 singularity. Mousavi

and Sukumar [8] used a generalization of the Duffy transformation [14] that was particularly

effective for singularities of type r−1/2 and r−1. For singularity-canceling methods, Cano and

Moreno [15] devise a general methodology to construct a map (obtained as the solution of an

ordinary differential equation) that provides efficient cubature on deformed triangles and on

singularities of the type r−α, where 0 < α < 2.

In this paper, we apply a method of numerical integration of homogeneous functions recently

developed by the authors [16], which draws on previous work by Lasserre [9, 17], to integrate

both discontinuous and weakly singular functions in the X-FEM. For brevity, we refer to

this approach as the homogeneous numerical integration (HNI) method. Finite elements

with constant Jacobian in the isoparametric map (so that the nodal shape functions and

their derivatives are polynomials on the physical element) are suitable for the HNI method.

This is not a limitation per se since the X-FEM permits complex crack geometries to be

captured on simple, structured meshes. The rest of this paper is organized as follows. In

Section 2, we present the main theoretical underpinnings of the new scheme to integrate

homogeneous functions over polygons. The strong and weak formulations for two-dimensional
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fracture are presented in Section 3.1, and the discrete equations in the X-FEM are developed

in Section 3.2 with particular emphasis on the structure of the submatrices contained in the

element stiffness matrix. The essentials of the domain form of the contour interaction integral

to extract the stress intensity factors (SIFs) are presented in Section 3.3, and the nature

of the homogeneous functions that appear in the element stiffness matrix are discussed in

Section 3.4. Implementation of the HNI scheme for numerical integration of discontinuous

and weakly singular functions is treated in Section 4, where we show that it outperforms the

generalized Duffy transformation and tensor-product Gauss cubature rules. In Section 5, stress

intensity factor computations using the X-FEM for an edge-crack, inclined center-crack, and

a doubly-kinked crack are presented. Both geometric and topological enrichment strategies are

considered and comparisons are made to analytical solutions and to reference results obtained

using AbaqusTM 6.13-1 [18]. Finally, in Section 6, we close with some final remarks and the

outlook of using HNI in the X-FEM and related Galerkin methods.

2. INTEGRATION OF HOMOGENEOUS FUNCTIONS

Our objective is to compute ∫
P

f(x) dx,

where f(x) is a homogeneous function of degree q and P is a two-dimensional convex or non-

convex closed polygon. To this end, we begin by introducing Euler’s homogeneous function

theorem and the generalized Stokes’s theorem.

By definition, a positively homogeneous function of degree q satisfies

f(λx) = λqf(x) (1)

for all x and where λ > 0. Euler’s homogeneous function theorem [19] states that if f(x) is

homogeneous, then it also satisfies

qf(x) = ∇f(x) · x ∀x ∈


IRd if q ≥ 0

IRd \ {0} if q < 0

. (2)

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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MODELING CRACKS WITHOUT ELEMENT-PARTITIONING IN THE X-FEM 5

For a scalar-field f and a vector field X, we can write the generalized Stokes’s theorem

(Gauss’s divergence theorem) as [20]

∫
M

(
∇ ·X(x)

)
f(x) dx+

∫
M

∇f(x) ·X(x) dx =

∫
∂M

(
X(x) · n

)
f(x) dσ, (3)

where M is a two-dimensional domain that is bounded by ∂M . In (3), n is the unit outward

normal to ∂M and dσ is the differential length of the parameterized curve σ on ∂M . Choosing

X(x) := x (position vector) and applying Euler’s homogeneous function theorem (2), (3)

simplifies to [17] ∫
M

f(x) dx =
1

2 + q

∫
∂M

(x · n)f(x) dσ. (4)

For our purposes, we consider a closed, simple (convex or nonconvex) polygon P ⊂ IR2 that

is enclosed by ∂P (Figure 1). The boundary ∂P is defined by m one-dimensional line segments,

Fi, where Fi ⊂ Hi, with Hi being the line ai · x = bi for some ai and bi (i = 1, 2, . . . ,m). The

sign of bi is determined such that ai/‖ai‖ is the outward normal to the polygon.

P

F1 F2

F3

F4

F5

F6

Figure 1. Simple polygon with edges Fi.

With this definition, further simplification are applied to (4). Since we wish to integrate

over the polygon, M and ∂M are replaced by P and ∂P , respectively. Additionally, since

F1 ∪ . . . ∪ Fm = ∂P , integration over ∂P is the same as the sum of the integrals over the

line segments. Recognizing that the normal to Fi is n = ai/‖ai‖, x · n simplifies to bi/‖ai‖,

leaving [16] ∫
P

f(x) dx =
1

2 + q

m∑
i=1

bi
‖ai‖

∫
Fi

f(x) dσ. (5)

Note that (5) was restricted to only convex polygons in Reference [9]. The above expression

reduces integration over a polygon to integration over its bounding line segments.
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If f is a homogeneous polynomial, then on applying (5) recursively, an exact expression for

the integral is realized that involves computing f and its partial derivatives at the vertices of

the polygon [9]. Alternatively, since Gauss quadrature yields exact integration for polynomials

in the interval, here we choose to use Gauss quadrature to compute the line integral in (5).

On applying Gauss quadrature, (5) becomes

∫
P

f(x) dx =
1

2 + q

m∑
i=1

bi
‖ai‖

nqi∑
j=1

wijf(xij).

Further, let the index k map to a unique value of i, j and define w̃k ≡ bi
‖ai‖wij . Then, the

nested summation is eliminated and we can write

∫
P

f(x) dx =
1

2 + q

nq∑
k=1

w̃kf(xk), (6)

where nq is the total number of quadrature points.

Finally, consider the integration of g(x), defined as a collection of n homogeneous

polynomials:

g(x) =

n∑
i=1

f [qi](x),

where the superscript [qi] indicates that f [qi] is a homogeneous polynomial of degree qi.

Applying (6) to g(x) yields

∫
P

g(x) dx =

nq∑
k=1

w̃k

n∑
i=1

1

2 + qi
f [qi](xk). (7)

Note that the sum over the quadrature points appears outside the innermost summation

in (7). This allows for a single set of quadrature points for the entire integral provided that

the quadrature rule is valid for all f [qi](x) (i = 1, 2, . . . , n). Equation (7) is an exact cubature

rule for a sum of homogeneous polynomials, but in general it is not exact if f [qi](x) is some

other homogeneous function.

With Gauss quadrature applied to the bounding line segments, (6) and (7) provide

polynomial-precision numerical integration over arbitrary polygons. In Reference [16], further

extensions and generalizations of HNI are detailed; however, (6) and (7) suffice for the

remaining developments in this paper.
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3. EXTENDED FINITE ELEMENT METHOD

3.1. Strong form and weak form for a crack in linear elastic media

Consider the elastostatic boundary-value problem for a body with a crack that occupies a

two-dimensional domain. In the absence of body forces, the strong form is:

∇ · σ = 0 in Ω,

u = ū on Γu,

σ · n = t̄ on Γt, and

σ · n = 0 on Γc,

(8)

where Ω ⊂ IR2 is the problem domain, Γ = Γu ∪ Γt ∪ Γc is the boundary of Ω with displacement

boundary conditions prescribed on Γu and traction boundary conditions prescribed on Γt (see

Figure 2). The traction-free crack domain is Γc. In (8), σ denotes the Cauchy stress tensor

and n is the unit outward normal on the boundary.

Ω
Γc

Γu

t

Γt

Figure 2. Elastostatic boundary-value problem for an embedded crack.

The HNI method is compatible with any crack Γc that can be represented as a union of

homogeneous functions (such as algebraic curves). However, for the setting of this paper, we

assume that Γc is the union of nc − 1 line segments. The i-th line segment is composed of two
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8 E. B. CHIN, J. B. LASSERRE, N. SUKUMAR

vertices: ci = (xi, yi) and ci+1 = (xi+1, yi+1). The vertices are contained in the matrix

C =



c1

c2

...

cnc


, (9)

where the crack tips are given by c1 and/or cnc
.

The weak form of (8) is: find u ∈ U such that

a(u, δu) = `(δu) ∀δu ∈ U0,

a(u, δu) :=

∫
Ω

σ : δε dx, `(δu) :=

∫
Γt

t̄ · δu dS,
(10)

where U and U0 are the displacement trial and test spaces, respectively, δ is the first variation

operator, and ε is the small strain tensor. The Cauchy stress tensor σ is related to ε through a

linear elastic constitutive law: σ = C : ε, where C is the fourth-order material moduli tensor.

3.2. Displacement approximation and discrete equations

The two-dimensional displacement approximation for crack modeling in the X-FEM is [1]:

uhe (x) =
∑
i∈I

Ni(x)ui +
∑
j∈J⊆I

Nj(x)H(x)aj +

2∑
t=1

∑
k∈Kt⊆I

Nk(x)

4∑
α=1

Fαt(x)bkαt, (11a)

where Ni(x) are the standard finite element shape functions,

H(x) =


1 if d(x) ≥ 0

−1 if d(x) < 0

(11b)

is a discontinuous (generalized Heaviside) function, where d(x) is the signed distance to a

crack, and

Fαt(x) :=
√
r

{
sin

θ

2
, cos

θ

2
, sin

θ

2
sin θ, cos

θ

2
sin θ

}
(11c)
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MODELING CRACKS WITHOUT ELEMENT-PARTITIONING IN THE X-FEM 9

are near-tip functions with r and θ defined for each crack tip t. In addition, ui, aj , and bkαt are

degrees of freedom associated with standard finite element, Heaviside-enriched and near-tip

enriched basis functions, respectively. The set I contains all nodes in element e, and the sets J

and Kt (t = 1, 2) include Heaviside-enriched and crack-tip-enriched nodes, respectively.

On using trial and test approximations of the form (11a) and following a standard Galerkin

procedure, the discrete equations for the X-FEM are obtained: Kd = f , where the stiffness

matrix K and the force vector f are computing using element-level assembly procedures.

We use the indices u, a, and b to denote degrees of freedom associated with standard

finite element basis functions, Heaviside-enriched basis function, and near-tip-enriched basis

functions, respectively. The element stiffness matrix for the X-FEM assumes the form:

Ke =

∫
Ωe


BT
uDBu BT

uDBa BT
uDBb

BT
aDBu BT

aDBa BT
aDBb

BT
b DBu BT

b DBa BT
b DBb

 dA =

∫
Ωe


Kuu Kua Kub

Kau Kaa Kab

Kbu Kba Kbb

 dA, (12)

whereD is the two-dimensional linear elastic constitutive matrix and the submatrixKuu is the

standard finite element stiffness matrix. The entries in the symmetric submatrix Kua contain

discontinuous functions, whereas the entries in the symmetric submatrices Kub, Kab and Kbb

consist of both weakly singular and discontinuous functions. The matrix Bi in (12) is:

Bi =

[
B1
i B2

i . . . B
card(L)
i

]
.

For i = u, L = I and

B`
u =


N`,x(x) 0

0 N`,y(x)

N`,y(x) N`,x(x)

 .

For i = a, we have L = J and B`
a = H(x)B`

u. For i = b, we have L = Kt and

B`
b =

[
B`1
b B`2

b B`3
b B`4

b

]
.
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10 E. B. CHIN, J. B. LASSERRE, N. SUKUMAR

(a) (b)

Figure 3. Heaviside and near-tip enriched nodes. (a) Topological enrichment; and (b) Geometrical
enrichment. The crack in shown as a thick line. Hollow squares indicate Heaviside-enriched nodes and
filled squares indicate near-tip-enriched nodes. Elements that are cut by the crack are shaded grey. A
grey, dotted circle is the geometrically enriched region: all nodes within this circle are enriched with

the near-tip functions.

where

B`α
b =


(
Fαt(x)N`(x)

)
,x

0

0
(
Fαt(x)N`(x)

)
,y(

Fαt(x)N`(x)
)
,y

(
Fαt(x)N`(x)

)
,x

 .

The presence of enriched degrees-of-freedom within an element depends on the location

of the element with respect to the cracks in the domain. Two strategies are adopted for

near-tip enrichment: topological and geometric [11, 12]. In topological enrichment, only nodal

finite element basis functions whose supports contain the crack-tip are enriched, whereas in

geometric enrichment, all nodes that lie within a user-specified distance from the crack tip

are enriched. Elements that are cut by a crack and whose nodes have not been assigned for

near-tip enrichment are selected as Heaviside-enriched nodes. Figure 3 shows the selection of

nodes for Heaviside and crack-tip enrichment.

3.3. Post-processing

Determining a material’s susceptibility to fracture and fatigue crack growth requires extracting

crack-tip characterizing parameters such as the J-integral and the mixed-mode stress intensity

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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MODELING CRACKS WITHOUT ELEMENT-PARTITIONING IN THE X-FEM 11

factors. Computation of SIFs is facilitated through superimposing the field quantities of a

known SIF solution (auxiliary field) on the field quantities of the (extended) finite element

solution [21]. We denote the auxiliary field by superscript (2) and the extended finite element

solution by superscript (1). On using the relation between the strain energy release rate and

the stress intensity factors for the superimposed fields, the following equality is derived [21]:

I(1,2) =
2

E′

[
K

(1)
I K

(2)
I +K

(1)
II K

(2)
II

]
, (13)

where I(1,2) is the interaction integral or M -integral, for the crack tip of interest. In (13),

E′ = E and E′ = E/(1− ν2) for plane stress and plane strain conditions, respectively. In

domain form, the interaction integral is [22]:

I(1,2) =

∫
A

[
σ

(1)
ij u

(2)
i,1 + σ

(2)
ij u

(1)
i,1 −W

(1,2)δ1j

]
w,j dA, (14)

where W (1,2) = σ
(1)
ij ε

(2)
ij = σ

(2)
ij ε

(1)
ij is the interaction strain energy and w ∈ C0(A) is a weight

function that is unity at the crack tip, vanishes on the boundary ofA, and is otherwise arbitrary.

In the computations, all elements that lie within a user-specified radius from the crack tip are

used to define the domain A. To simplify implementation and reduce computations, w(x)

is chosen as a plateau function and is constructed through finite element interpolation by

prescribing its nodal values: zero on nodes that lie on ∂A and unity at all other nodes. In an

extended finite element implementation, the interaction integral is computed on elements that

lie within A, and these contributions are summed to determine the integral in (14).

On choosing the auxiliary field corresponding to KI = 1 and KII = 0 (respectively, KI = 0

and KII = 1) allows KI (respectively, KII) to be extracted from an extended finite element

solution in a straightforward manner. Let us refer to the resulting M -integral from this

auxiliary field as I(1,I) (respectively, I(1,II)). Performing this substitution in (13) yields

KI =
E′

2
I(1,I), KII =

E′

2
I(1,II).

The mode I and mode II plane strain auxiliary fields are listed in Table I. Note that all

functions are weakly singular and some that depend on sin(θ/2) are also discontinuous along

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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12 E. B. CHIN, J. B. LASSERRE, N. SUKUMAR

Table I. Mode I and mode II plane strain auxiliary displacement and stress fields.

Field Mode I Mode II

ux
KI

µ

√
r

2π
cos

θ

2

[
1− 2ν + sin2 θ

2

]
KII

µ

√
r

2π
sin

θ

2

[
2− 2ν + cos2 θ

2

]

uy
KI

µ

√
r

2π
sin

θ

2

[
2− 2ν − cos2 θ

2

]
KII

µ

√
r

2π
cos

θ

2

[
−1 + 2ν + sin2 θ

2

]

σxx
KI√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
− KII√

2πr
sin

θ

2

(
2 + cos

θ

2
cos

3θ

2

)

σyy
KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
KII√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2

σxy
KI√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2

KII√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)

θ = ±π; therefore, the integrand in (14) has some terms that are both weakly singular and

discontinuous.

3.4. Homogeneous functions in the X-FEM

We use the HNI method to compute the entries in the element stiffness matrix and for the

M -integral calculations. To apply this method, the integrands must be homogeneous. In the

element stiffness matrix given in (12), D is a constant matrix and therefore it has degree

of homogeneity q = 0. The near-tip functions Fαt(x) and the generalized Heaviside function

H(x) are homogeneous functions of degree q = 1/2 and q = 0, respectively. In addition,

the partial derivatives of Fαt(x) are homogeneous functions of degree q = −1/2. Note that

integration must be performed in the local crack tip coordinate system so that the functions

remain homogeneous. The only remaining components of the integrand are the shape functions

and their derivatives. These components must be either homogeneous or written as a linear

combination of homogeneous functions. For the M -integral given in (14), the auxiliary field

quantities (stress and displacement gradient) are homogeneous functions of degree q = −1/2.

Similar to the element stiffness matrix, the homogeneity of σ(1) and ε(1) are dependent on

the homogeneity of the finite element shape functions. The weight function w is defined using

the shape functions, so it too is dependent on their homogeneity. In this paper, we use shape

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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MODELING CRACKS WITHOUT ELEMENT-PARTITIONING IN THE X-FEM 13

functions for the linear triangle and the bilinear rectangle. Homogeneous forms of these shape

functions are presented in Appendix A.

4. INTEGRATION OF DISCONTINUOUS AND WEAKLY SINGULAR FUNCTIONS

Unlike many other methods that separately treat discontinuous and weakly singular integrands

in the X-FEM, the implementation of the HNI method is essentially the same for integrating

both types of functions. Overall, the procedure can be described in three steps:

1. decompose each element that is cut by a crack into conforming polygons;

2. develop an appropriate cubature rule on each polygon; and

3. apply (7) to perform numerical integration.

An overview of each step follows and an illustrative example of the process is presented in

Section 4.4. If a crack intersects an element, the element is decomposed into polygonal regions.

Two cases arise depending on the location of the crack relative to the element.

1. The crack completely cuts the element. Here, the element is decomposed into two

polygons over which integration is performed. This case is illustrated in Figure 4.

2. The crack terminates inside an element. In this case, the crack is duplicated (opposite

orientations) and the cracked-element is a nonconvex polygon (see Figure 5). The

nonconvex polygon in Figure 5b has 7 edges.

In both the above cases, integration is required over simple polygons (convex or nonconvex),

rendering the use of the HNI scheme to be a natural fit.

The cubature points and weights required for integration are dependent on the type of

function being integrated. For a polynomial integrand (entries in Kua) up to degree q,

an n-point Gauss quadrature rule on each boundary edge with n ≥ (q + 1)/2 suffices for

exact integration. The exactness of the cubature rule is verified in Section 4.1. However,

for nonpolynomial integrands that appear in Kub, Kab, Kbb, and also in the M -integral,

accurate integration requires additional considerations. For this case, we introduce an adaptive

cubature scheme in Section 4.2. The adaptive HNI scheme is compared to the generalized Duffy

transformation in Section 4.3.

Finally, we apply (7) over each element subdomain to compute the integral. For weakly

singular functions, integration is performed in local crack tip coordinates such that the

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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Figure 4. (a) Heaviside-enriched element that is cut by a crack. (b) The HNI method is applied to the

two resulting polygons, Ω+
e and Ω−e .
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Figure 5. (a) Element containing the crack tip has all nodes enriched with near-tip functions. (b) To
apply the HNI method to this element, the cracked-element is viewed as a nonconvex polygon. The

edges of the polygon are labeled as Fi.

integrand remains homogeneous. Since the mapping between crack tip and global coordinates

is not homogeneous (see Appendix A), the homogeneous integrands change with the coordinate

system. For polynomial integrands multiplied by the Heaviside function, integration can be

done in global coordinates or in a local coordinate system.

4.1. Integration of a discontinuous function using the HNI method

We verify the accuracy of the HNI approach for integrating discontinuous functions. Consider

the unit square domain Ω = [0, 1]2, which is fully cut by a (piecewise) affine discontinuity Γc.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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Let u(x) : Ω→ IR be a scalar-valued function that is bilinear and discontinuous across Γc:

u(x) = (1 + x+ y + xy)H(x), (15)

where H(x) is the generalized Heaviside function. We discretize Ω using rectangular finite

elements and write the extended finite element approximation for u(x) within an element as:

uhe (x) =
∑
i∈I

Ni(x)ui +
∑
j∈J⊂I

H(x)Nj(x)aj .

The approximation uhe (x) is the restriction of the global approximation, uh(x), to element e.

If Uh is the extended finite element space, then we observe that u ∈ Uh, and hence the best

approximation in Uh should exactly reproduce u(x). Therefore, aj = u(xj) and uj = 0 for

j ∈ J.

The best approximation to u(x) is obtained by determining the L2 projection of u(x) on Uh.

The coefficients d := {u,a} are obtained as the solution of the linear system: Md = f , where

the mass matrix M and force vector f are formed by element-level assembly procedures. The

element mass matrix and the element force are:

(Me)ij =

∫
Ωe

Ñi(x)Ñj(x) dA, (fe)i =

∫
Ωe

Ñi(x)u(x) dA,

where Ñi(x) = Ni(x) for standard degrees-of-freedom and Ñi(x) = H(x)Ni(x) for Heaviside-

enriched degrees-of-freedom. The evaluation of Me and fe requires integrating discontinuous

polynomials; this exercise can be viewed as a patch test for discontinuous approximations.

For the test, we use a 3× 3 patch of elements. Two discontinuities are considered: an affine

crack and a kinked-crack that are shown in Figures 6a and 6b, respectively. For discontinuous

integrands, the HNI method is used with a three-point quadrature rule on each of the bounding

line segments of the element subdomains. For integrating smooth polynomials within the

element, 2× 2 tensor-product Gauss rule is used. The function u(x) for the kinked discontinuity

is shown in Figure 6c, and the error |u− uh| is presented in Figure 6d. The approximation uh(x)

matches u(x) to a precision of O(10−13) or better for both the affine and kinked discontinuities.

As Figure 6d illustrates, the error in the approximation increases in enriched elements that are

farther away from the origin. This is a consequence of integrating in global coordinate system

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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Figure 6. L2 projection of a discontinuous bilinear function on an extended finite element
approximation (3× 3 finite element mesh). (a) Affine crack; and (b) Kinked crack. For the kinked

discontinuity in (b), u(x) is plotted in (c) and the error |u(x)− uh(x)| is shown in (d).

rather than a local element coordinate system. Using the HNI method in global coordinates

results in contributions that are close in magnitude but opposite in sign, which leads to loss of

a few significant digits. This can be remedied by performing the integration in a local element

coordinate system. The Heaviside degrees-of-freedom aj match u(xj) (13 or more digits of

precision) and uj (j ∈ J) is zero to 13 digits. Based on these findings, we affirm that the HNI

approach provides accurate and efficient numerical integration for discontinuous polynomials.

4.2. Adaptive HNI scheme

Homogeneous numerical integration converts a domain integral over a polygon to an integral

over the bounding line segments of a polygon. If the singular point is within the domain of

integration, then this leaves only the computation of the integral of a smooth function over

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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Algorithm 1 Adaptive HNI scheme.

Require: f̄(x), n1, n2, coord, conn,m, tol
x1 and w1 ← n1-point Gauss rule . xα = (nα × 1) array of Gauss points
x2 and w2 ← n2-point Gauss rule . wα = (nα × 1) array of Gauss weights
xf ← [ ], wf ← [ ] . subscript f denotes final
for i = 1 to m do

βi ← bi/‖ai‖ for the current edge of the polygon
`i ← length of the current edge of the polygon
if |βi| > tol then
ξint ← [−1, 1] . (nint × 2) array of integration intervals
nint ← 1 . number of integration intervals
cint ← 1 . current integration interval
while cint ≤ nint do

wint ← ξint(cint, 2)− ξint(cint, 1) . width of current interval
for j = 1 to 2 do
xlocj ← xj mapped to current interval on current edge of the polygon
wlocj ← (wint × `i/4)× wj . local Gauss weights
Ij ← 0
for k = 1 to nj do

Ij ← Ij + f̄(xlocj(k, :))× wlocj(k)
end for

end for
if |(I1 − I2)/I2| < (tol × wint/2) then
xf ← [xf ; xloc1]
wf ← [wf ; βi × wloc1]
cint ← cint + 1

else
Bisect ξint(cint, :)
nint ← nint + 1

end if
end while

end if
end for
return xf , wf

the boundary of the polygon. Further, if the singular point lies on the boundary and coincides

with one of the bounding line segments, then no contribution arises from this line integral.

This is established by noting that for weakly singular homogeneous functions, singularities

appear at the origin. For lines that pass through the origin, we have b/‖a‖ = 0, and therefore

the line segment has no contribution to the integral. These two observations reveal why the

HNI approach is effective for weakly singular functions. However, bounding line segments may

still lie very close to the singular point, resulting in a nearly singular integrand.

Polynomial approximation of a nearly singular integrand is poor, and hence many

quadrature points are needed to meet a desired accuracy. To optimize the distribution of

quadrature points required on each line segment, we adopt an adaptive quadrature scheme.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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This scheme provides an optimized, custom cubature rule for each element and it allows for

integrals to be calculated to a user-specified precision through an a posteriori estimation of

the error.

In the simplified pseudocode for the adaptive scheme presented in Algorithm 1, Matlab

notation is adopted (brackets, colon, and semi-colon) to define matrices and vectors and to

access rows or columns of a matrix. Indexing for matrices begins at 1. The algorithm requires

1. f̄(x) : linear combination of homogeneous functions that is to be integrated.

2. [n1, n2] : the number of quadrature points for the Gauss rules (n2 > n1).

3. coord: coordinates of the vertices of the polygon.

4. conn: connectivity of the vertices that form the polygon.

5. m : number of edges of the polygon.

6. tol : convergence tolerance.

In the adaptive scheme, the integral of f̄(x) within a subinterval of the domain of integration is

estimated using n1- and n2-point Gauss rules. Their absolute difference provides an estimate of

the error, which is used to assess convergence within the subinterval. The algorithm is designed

to loop over each bounding line segment defined by conn. On each line segment, an n1-point

Gauss rule is tested to see if sufficiently accurate integration is realized. If not, the line segment

is bisected and an n1-point rule is tested on the two resulting subintervals of the line segment.

The bisection process continues until an n1-point Gauss rule provides sufficient accuracy over

each subinterval of the line segment.

Empirically, for the weakly singular integrals that appear in the X-FEM, n1 = 5, n2 = 8,

f̄(x) = (1/r +
√

1/r), and tol = 10−8 strikes a sound balance between accuracy of the rule and

the total number of quadrature points that are needed. With these parameters, the adaptive

cubature rule has an average relative error of O(10−8) for integrating the entries in Ke. As

Figure 7 reveals, the accuracy varies with spatial location and rotation of the element with

respect to the crack tip. Figure 7 also shows that the accuracy is improved at a linear rate by

decreasing tol. Additionally, note that f̄(x) is not a homogeneous function. This is permitted

in Algorithm 1 since f̄(x) is only used to assess if and when the cubature rule converges.

Finally, contrary to expectations, we find that introducing trigonometric functions into f̄(x)

does not lead to improvements in the convergence rate of the integration scheme.

The distribution of cubature points on the bounding line segments of an element as a

function of the location of the crack is illustrated in Figure 8. As expected, when the crack tip

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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Figure 7. Frobenius norm of relative error in Ke as a function of tol using the adaptive quadrature
scheme. (a) Crack configurations that cut the unit square. The crack-tip is located at (x̄, ȳ). Four
different crack-tip locations are tested, which appear in (b), (c), (d) and (e). At each crack-tip, the
procedure is repeated for 16 cracks inclined at different angles, which are shown in (a). Results for
each inclined crack are plotted with dashed lines in (b)–(e) and the solid line gives the log-average of

all cracks.
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is close to the edge of the element, more quadrature points are needed on nearby line segments.

This is also true for the results presented in Figure 7. The variation of the error as function

of tol is similar in Figures 7d and 7e; however, many more cubature points are needed for a

particular value of tol in Figure 7d vis-à-vis that in Figure 7e.

4.3. Comparison of the adaptive HNI scheme to the generalized Duffy transformation

We compare the accuracy of the generalized Duffy transformation [8], a singularity-canceling

method effective with the X-FEM, to the adaptive HNI scheme for computing the weakly

singular integrals that appear in Ke. In particular, we examine the case where the crack tip

approaches the edge of an element and compare the two methods of integration in terms of both

solution accuracy and number of quadrature points. In addition to considering the element Ω1,

which contains the crack tip, the adjacent element Ω2 is also included in our analyses. Since

generalized Duffy cannot be used in elements adjacent to the crack tip, we use higher-order

Gauss quadrature in Ω2.

The configuration of elements used in the study is depicted in Figure 9. Geometric

enrichment is used so that all nodes in both elements contain near-tip enrichment. In Figure 9,

the distance from the crack tip to the common edge between the two elements is denoted by

∆x. Four different values of ∆x are tested: ∆x = 0.25, 0.1, 0.01, and 0.001. To quantify the

accuracy of each integration method, we compute the Frobenius norm of the relative error in

Ke. The norm of the relative error in Ke versus the number of quadrature points for these

four values of ∆x is shown in Figure 10. Convergence is plotted for elements Ω1 and Ω2 using

HNI and either generalized Duffy or Gauss cubature for integration. For the HNI scheme,

tol = 10−8 is used. Numerical integration using the generalized Duffy map is performed with

the parameter β = 2 to accurately integrate weakly singular functions of the form r−1 and

r−1/2 in the X-FEM [8].

For the four crack locations shown in Figure 10, the adaptive HNI scheme almost always

provides more accurate integration using fewer cubature points. The advantage of HNI grows

in relation to the other methods as the crack shifts closer to the edge common to Ω1 and Ω2.

In the most challenging case (∆x = 0.001), HNI produces an error of less than O(10−10) with

fewer than 500 cubature points in both Ω1 and Ω2. The relative error could not be reduced

below O(10−4) with generalized Duffy in Ω1 or using Gauss cubature in Ω2, even with a

ten-fold increase in the number of cubature points.
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Figure 8. Distribution of cubature points for three different crack-tip locations in a unit square.
Cubature points are marked by circles and the crack is a thick line. Convergence tolerance tol = 10−8.
In (a), the crack tip is located at (1/2, 2/5) and 75 cubature points are needed for convergence. In
(b), the crack-tip is located at (1/2, 0) and only 40 cubature points are needed. In (c), the crack-
tip is located at (1/2, 1/20) resulting in a nearly singular integrand on the line segment occupying
0 < x < 1, y = 0. The shape of the integrand is also plotted in (c). A total of 125 cubature points are

needed.
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Figure 9. Test to compare the HNI approach to integration using generalized Duffy in Ω1 and higher-
order Gauss cubature in Ω2. The crack (thick line) and crack tip (filled circle) reside in Ω1.

Another point worth mentioning is that the parameter tol, which is a user-specified

tolerance in the adaptive HNI scheme, provides a measure of reliability and accuracy in

computing weakly singular integrals. No such control on the error is available for schemes

based on generalized Duffy and Gauss cubature. Although forming the adaptive quadrature

rule increases computational costs, the overall time spent in computing integrals in the adaptive

HNI method is significantly less than generalized Duffy in our implementation of these schemes.

This does not include the time to partition the enriched elements, which is required with

generalized Duffy but not with homogeneous numerical integration.

4.4. Implementation of the HNI method

We describe the key steps to implement HNI for integrating discontinuous and weakly singular

functions in the X-FEM. As an example, a rectangular element with both Heaviside and near-

tip enriched nodes is considered (Figure 11). For elements with only Heaviside or only near-tip

enriched nodes, the implementation of HNI is a simplified version of this case. For the linear

triangle, the implementation is very similar to that of the bilinear rectangle.

To form the element stiffness matrix (12) using the X-FEM, we need to integrate functions

that are:

1. continuous†: Kuu and Kaa,

2. discontinuous: Kua = KT
au, and

†From (11b), since H2 = 1, Kaa is continuous.
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3. weakly singular: Kub = KT
bu, Kab = KT

ba, and Kbb.

The HNI method is well-suited for these functions. First, the orientation of the crack is used to

decompose the element into two rectangular subdomains (see Figure 11). For weakly singular
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Figure 10. Relative error of the element stiffness matrix versus the number of cubature points for
the HNI method and the generalized Duffy transformation/higher-order Gauss cubature. Four crack
tip locations are considered: (a) center of Ω1 (∆x = 0.25); (b) close (∆x = 0.1) to the edge that is
common to Ω1 and Ω2; (c) ∆x = 0.01; and (d) ∆x = 0.001. Ω1, Ω2, and ∆x are defined in Figure 9.
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Figure 11. Element that is fully cut by a crack (left). Decomposition of the element into two polygons,
which are used in the HNI method (right).

integrands that are homogeneous, we integrate in local crack tip coordinates. Even though

continuous and discontinuous functions can be integrated in global coordinates, we choose to

integrate these functions in local crack tip coordinates to simplify the implementation. For

an element that does not have a crack tip associated with it (for example, an element with

only Heaviside enrichment), integration can be performed in global coordinates or in a local

element coordinate system.

A cubature rule for each of the subdomains is formed using the adaptive quadrature scheme

introduced in Section 4.2. This cubature rule is designed to integrate the weakly singular

functions in the element stiffness matrix, but it contains sufficient number of cubature points to

accurately integrate the continuous and discontinuous functions as well. Though the cubature

rule is not optimal for polynomials, a single cubature rule that is valid for all stiffness matrix

entries reduces code-complexity and has minimal effect on computer-runtime. For an element

stiffness matrix with discontinuous integrands but without weakly singular integrands, a two-

point cubature rule on each bounding line segment suffices. For an element with only finite

element degrees of freedom, 2× 2 tensor-product Gauss cubature is used.

Once a cubature rule is on-hand, we use it in (7) to integrate element stiffness matrix

entries. Since (7) requires the integrand to be separated into its homogeneous components, we

must first homogenize each integrand. First, for the discontinuous integrand Kua = BT
uDBa,

the constitutive relation D is constant and is therefore homogeneous with q = 0, or for
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brevity D[0]‡. For the rectangular element, the shape function derivatives are affine functions

(Table VII). As a result, the Bu and Ba matrices can be written as a linear combination of

homogeneous matrices, or Bi = B
[0]
i +B

[1]
i for i = u, a. Overall, the integrand can be written

as

Kua =
(
B[0]
u +B[1]

u

)T
D[0]

(
B[0]
a +B[1]

a

)
,

which allows Kua to be decomposed into homogeneous components:

Kua = K [0]
ua +K [1]

ua +K [2]
ua.

On applying (7) to the homogeneous entries in Kua, with H(x) = 1 in Ω+
e and H(x) = −1 in

Ω−e , we have

∫
Ωe

Kua dA =

nq+∑
k=1

w̃k

(
K

[0]
ua(xk)

2
+
K

[1]
ua(xk)

3
+
K

[2]
ua(xk)

4

)
−

nq−∑
k=1

w̃k

(
K

[0]
ua(xk)

2
+
K

[1]
ua(xk)

3
+
K

[2]
ua(xk)

4

)
,

where nq+ is the number of cubature points in Ω+
e and nq− is the number of cubature points

in Ω−e .

The entries in Kuu and Kaa are continuous over the element, and can therefore be

integrated using a tensor-product Gauss rule. However, since HNI is already used to compute

discontinuous integrands in this element, Kuu and Kaa can also be integrated with minimal

additional computations. As with Kua, a homogeneous decomposition of Kuu and Kaa results

in three homogeneous matrices of degree q = 0, 1, and 2. Integration can be performed using (7)

with the same cubature rule used for discontinuous and singular functions.

‡In this section, we denote the degree of homogeneity of a function with the superscript [q].
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For the weakly singular functions, we can perform a similar homogeneous decomposition of

the element stiffness matrix integrands, leaving

Kub = K
[−1/2]
ub +K

[1/2]
ub +K

[3/2]
ub +K

[5/2]
ub ,

Kab = K
[−1/2]
ab +K

[1/2]
ab +K

[3/2]
ab +K

[5/2]
ab ,

Kbb = K
[−1]
bb +K

[0]
bb +K

[1]
bb +K

[2]
bb +K

[3]
bb .

These functions can be integrated similarly to Kua using (7). Since the cubature rule is shared

among the three types of integrands, integration of all functions in the element stiffness matrix

can be performed using a single loop over the cubature points.

In addition to computing stiffness matrix entries with HNI, we also apply the method to

compute the M -integral. The expression for the M -integral is given in (14). For the element

that is cut by a crack (Figure 11), the strain components are: ε = Buu+Baa+Bbb. With

homogeneous B matrices for the bilinear rectangle, the homogenized strain is:

ε = ε[−1/2] + ε[0] + ε[1/2] + ε[1] + ε[3/2].

Since stress components also have the same degree of homogeneity as strain components, we

have

σ = σ[−1/2] + σ[0] + σ[1/2] + σ[1] + σ[3/2].

The auxiliary fields given in Table I are homogeneous of degree q = −1/2 and the weight

function can be homogenized to produce w,j = w
[0]
,j + w

[1]
,j . These components of the M -

integral are combined to homogenize its integrand, resulting in homogeneous terms of degree

q = −1, −1/2, 0, 1/2, 1, 3/2, and 2. For elements without near-tip enrichment, the number of

homogeneous terms reduces to three, with degrees of q = −1/2, 1/2, and 3/2. The integrals of

these functions are computed using (7) with an adaptive cubature rule. Note the field quantities

in the M -integral are with respect to the local crack tip coordinate system. Since the rotation

matrix used to transform field quantities is homogeneous of degree q = 0, rotation does not

affect the homogeneity of the integrands.
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5. NUMERICAL EXAMPLES

In this section, we present three problems in elastic fracture to demonstrate the capabilities

of the HNI scheme in the X-FEM to accurately integrate discontinuous and weakly singular

functions. The three problems are: a plate with an edge-crack, a plate with an embedded

inclined crack, and a plate with a piecewise affine embedded crack. Plane strain conditions are

assumed with isotropic linear elastic material constants of E = 105 and ν = 0.3. The X-FEM

capabilities with HNI are developed within a code written in MATLABTM Version R2015b.

Where appropriate, results are compared to explicit flaw analyses done in AbaqusTM 6.13-1 [18]

with refined, focused crack tip meshes.

5.1. Edge-cracked plate

Consider a square plate with an edge-crack. The plate occupies the domain Ω = [0, 5]2. The

crack is a line segment that starts at (0, 2.5) and terminates at the center of the plate. The

crack is represented as a line segment and its vertices are stored in the matrix

C =

 0 2.5

2.5 2.5

 . (16)

On the boundary of the plate, pure mode I displacement fields are applied as essential

boundary conditions and therefore the mode I displacement fields are the exact solution.

We test convergence of the extended finite element solution to the exact solution on triangular

and rectangular meshes with both topological and geometric enrichment. A similar convergence

study is conducted in Mousavi and Sukumar [8].

Typical triangular and rectangular meshes with topological enrichment are presented in

Figure 12. With rectangular elements, the crack faces coincide with element boundaries, so

element-partitioning is not needed. As a result, the HNI approach is not invoked for elements

with Heaviside-enriched nodes. Near-tip enriched elements, on the other hand, do require use

of benefit from accurate integration provided by the HNI method. Note that the crack tip lies

on the boundary of four elements, causing full near-tip enrichment in all four elements. For

unstructured triangular meshes, HNI is used on both Heaviside enriched and near-tip enriched

elements. A double node is placed at (0, 2.5), so that essential boundary conditions can be

easily applied at this location.
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Figure 12. The edge-cracked domain meshed with (a) rectangular and (b) triangular elements. In (a)
and (b), the crack is shown as a thick line, Heaviside-enriched nodes are marked with hollow squares,

and near-tip-enriched nodes are marked with filled squares.

We define the relative energy seminorm of the error as:

Erel :=

[
a(u− uh,u− uh)

a(u,u)

]1/2

=

[∫
Ω

(
ε− εh

)T
D
(
ε− εh

)
dx∫

Ω
εTDε dx

]1/2

,

where a(·, ·) is the bilinear form defined in (10), and ε and εh are the exact strains and the

strains from the extended finite element solution, respectively. The relative energy seminorm of

the error is plotted versus h (mesh size) in Figure 13. Five different mesh densities, ranging from

h = 0.5 to h = 0.03125 are chosen. Using HNI with a relatively low tolerance in the adaptive

cubature rule (tol = 10−4) provides the expected rates of convergence of 1/2 for topological

enrichment and 1 for geometric enrichment on both triangular and square elements.

To demonstrate the flexibility of the HNI method, as an alternative to the near-tip functions

in (11c), we consider vectorial enrichment functions [23]. This enrichment strategy reduces the

number of degrees of freedom that are needed to capture the asymptotic behavior of the

displacement field near the crack tip and also improves the condition number of the stiffness

matrix [24]. The X-FEM displacement field with vectorial enrichment for an edge crack is:

uhe (x) =
∑
i∈I

Ni(x)ui +
∑
j∈J⊆I

Nj(x)H(x)aj +
∑
k∈K⊆I

Nk(x)

2∑
α=1

kα(x)bkα, (17a)
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Figure 13. Convergence in the energy seminorm for the edge-crack problem using (a) rectangular and
(b) triangular meshes. Rates of convergence of 1/2 (suboptimal) for topological enrichment and 1

(optimal) for geometric enrichment are obtained.

where

KI

µ
√

2π
k1 = uIxi+ uIyj,

KII

µ
√

2π
k2 = uIIx i+ uIIy j. (17b)

In (17), uI ≡ (uIx, u
I
y) and uII ≡ (uIIx , u

II
y ) are the pure mode I and pure mode II plane strain

displacement fields, respectively (see Table I).

First, we verify for the edge-cracked problem that vectorial enrichments are able to

reproduce an imposed pure mode I (KI = 1) displacement field. To this end, all nodes are

enriched with vectorial enrichment (K = I and J = ∅) and to exactly impose the essential

boundary conditions, the coefficients associated with nodes on the boundary are set as: ui = 0,

bi1 = 1/(µ
√

2π), bi2 = 0. A regular 4× 4 mesh is used in this study (Figure 14a). The crack

tip is perturbed so that it does not coincide with a nodal location. This dramatically increases

the number of cubature points that is required in the adaptive HNI rule. The crack is defined

through the matrix

C =

 0 2.5

2.49 2.5

 . (18)
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(a) (b)

Figure 14. Patch test for pure mode I displacement field. (a) Regular 4× 4 mesh. Domain is [0, 5]2

and the crack tip is located at (2.49, 2.5). All nodes are enriched with vectorial enrichment functions;

and (b) Distribution of cubature points for tol = 10−5.

The value of tol in the adaptive HNI method is varied to determine its effect on the relative

error. The results are listed in Table II. We observe that tol is strongly correlated to the relative

error, which is in agreement with the study in Section 4.2. Accurate numerical integration is

needed to ensure that the patch test is passed.

Now, we use near-tip and vectorial enrichment functions to perform a convergence study for

the edge-cracked plate problem. Seven different meshes with varying levels of refinement are

selected. On all meshes, we apply geometric enrichment with a radius of 0.7. Vertices of the

crack are given in (16). A sample mesh is illustrated in Figure 15a. In Figure 15b, results for

the X-FEM with vectorial and near-tip enrichments are compared. Both enrichment methods

provide near-optimal rates of convergence. Near-tip enrichment delivers better accuracy at

the expense of a worse condition number. For the mesh shown in Figure 15a, vectorial

Table II. Relative energy seminorm of the error as a function of the tolerance in the adaptive scheme.

tol No. of cubature points Erel

10−2 240 6.0× 10−03

10−5 420 5.4× 10−07

10−10 1140 1.6× 10−09

10−13 1720 2.5× 10−12
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Figure 15. Vectorial enrichment versus near-tip enrichment for the edge-crack problem. In (a), nodes
that are enriched with near-tip/vectorial enrichment are shown as filled squares. (b) Convergence in

the energy seminorm versus the square root of the number of degrees of freedom.

enrichment results in a condition number ofO(104) for the stiffness matrix, whereas for near-tip

enrichment, the condition number of the stiffness matrix is O(107).

5.2. Center-cracked plate

We consider the problem of a center-cracked panel subjected to a biaxial load, which was solved

in Mousavi and Sukumar [8]. The problem setup is illustrated in Figure 16a. To approximate

the infinite plate problem, a/w = 0.1 is chosen, where 2a is the crack width and 2w is the

plate width and height. In the numerical computations, we choose a = 0.25 and use a 50× 50

finite element mesh. Nine extended finite element analyses using topological enrichment are

conducted for a crack that is inclined at angles β = 0, π/16, . . . , 7π/16, π/2. The exact stress

intensity factors for a crack in an infinite plate are [25]

KI =
√
πa
(
σ2 sin2 β + σ1 cos2 β

)
,

KII =
√
πa (σ2 − σ1) sinβ cosβ.

(19)

Analytical results from (19) and those obtained using the X-FEM are listed in Table III, and

are also compared in Figure 16b. For all angles tested, SIFs from the X-FEM are less than 1

percent in error for both KI and KII .
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Figure 16. Inclined crack problem in a finite plate. (a) Specimen and crack dimensions, and loading.
The applied tractions are: σ1 = 1 and σ2 = 2. (b) Comparison of SIFs from the X-FEM to the

analytical results. For the X-FEM, a/w = 0.1, where 2w is the plate width.

To assess the error in modeling the infinite domain problem using a finite plate, we conduct

an explicit flaw analysis on a highly-refined mesh in Abaqus for the center-crack problem

(β = 0). The finite element mesh consists of eight-node quadrilateral elements, with collapsed

quarter-point elements at the crack tip [26]. From the Abaqus analysis, a converged result of

KI = 1.7971 is obtained. In comparison, the X-FEM produces KI = 1.7836 and the analytical

result is KI = 1.7725. The SIF from the X-FEM is about midway between the analytical and

Abaqus result, and therefore if the Abaqus solution is used as the reference result in Table III,

then the computed relative errors are not likely to change appreciably. With mesh refinement,

stress intensity factors for β = 0 from the X-FEM converge to the Abaqus solution.

5.3. Embedded piecewise affine crack in a plate

A piecewise affine crack within a square plate that occupies the domain Ω = [0, 5]2 is

considered. The crack has two kinks, and is composed of three line segments. The crack is
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Table III. Mixed-mode stress intensity factors for the inclined crack problem.

β KI (X-FEM) KI (analytic) KII (X-FEM) KII (analytic)

0 1.7836 1.7725 0.0000 0.0000

π/16 1.7444 1.7387 0.1700 0.1696

π/8 1.6484 1.6427 0.3136 0.3133

3π/16 1.5055 1.4989 0.4128 0.4094

π/4 1.3332 1.3293 0.4455 0.4431

5π/16 1.1642 1.1598 0.4111 0.4094

3π/8 1.0197 1.0160 0.3152 0.3133

7π/16 0.9229 0.9200 0.1692 0.1696

π/2 0.8915 0.8862 0.0000 0.0000

represented by its vertices that are stored in the matrix

C =



1.21 1.28

1.73 2.14

2.90 2.71

3.56 3.59



and is illustrated in Figure 17a. Unit tractions are imposed in the y-direction on edges y = 0

and y = 5. The crack tips are labeled as A and B in Figure 17a. This example demonstrates the

use of HNI for modeling kinked discontinuities, and hence renders it suitable for quasi-static

crack growth simulations. Two separate analyses are conducted to compute the mixed-mode

stress intensity factors. First, a refined explicit flaw analysis in Abaqus is used to determine

converged values of KI and KII for this problem. Then, the same kinked crack is analyzed

using X-FEM on refined rectangular meshes. The converged mixed-mode SIFs from Abaqus

at crack-tip A are: KI = 1.1983 and KII = 1.8296. At crack-tip B, they are: KI = 1.4434 and

KII = 1.7362. To generate these results, focused meshes at the crack tips are used; one of the

meshes in the vicinity of crack tip B is shown in Figure 17b.

The problem is solved using the X-FEM with both topological and geometric enrichment.

For geometric enrichment, the enrichment radius is set to 0.7. Five meshes are chosen whose

element sizes vary from h = 0.5 to h = 0.03125. Using the Abaqus solution as the reference,

the error in the mixed-mode SIFs are plotted in Figure 18. Data points with relative error of

less than 10−4 are not shown in Figure 18. At both crack-tip A and B, we observe convergence
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B

A

(a) (b)

Figure 17. Doubly-kinked crack in a finite plate. (a) Deformed shape obtained from X-FEM; and (b)
Abaqus solution in the vicinity of crack-tip B. Deformation scale factor is 10000.

rates of at least 2 (optimal) for geometric enrichment and convergence rates of at least 1 for

topological enrichment in both KI and KII . Figure 18 reveals that with geometric enrichment,

a mesh with h = 0.25 (1312 degrees of freedom) delivers SIFs that are accurate to within one

percent. In contrast, the Abaqus mesh shown in Figure 17b has 7842 degrees of freedom.

However, it is possible to tailor a mesh within Abaqus for this problem that delivers the same

accuracy with fewer degrees of freedom. Such optimized meshes for each crack geometry take

considerable effort and time to generate, whereas a simple, structured mesh suffices for the

X-FEM.

6. CONCLUDING REMARKS

In this paper, we applied a method for the numerical integration of homogeneous functions [16]

(coined herein as HNI) to the problem of integrating discontinuous polynomials and weakly

singular functions in the extended finite element method (X-FEM). On using HNI, polynomials

are exactly integrated, and weakly singular functions are integrated to a user-specified precision

using an adaptive scheme. We described the implementation of the HNI scheme to compute

the element stiffness matrix and the M -integral to extract stress intensity factors. Compared

to current methods for numerical integration in the X-FEM, HNI provides fast, accurate and

robust integration and is the first approach that does not require element-partitioning. For

elements with enriched degrees-of-freedom, the new method requires such elements in the
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Figure 18. Convergence of SIFs for the doubly-kinked crack problem. (a) KI at tip A; (b) KII at tip
A; (c) KI at tip B; and (d) KII at tip B. Geometric and topological enrichment methods are used.

The Abaqus solution for the SIFs is used as the reference.

finite element mesh to have constant Jacobian in the isoparametric map. This requirement

is met by unstructured Delaunay triangles and structured rectangular elements. The non-

enriched elements in the mesh can consist of unstructured triangular or quadrilateral elements.

We performed a detailed study on the accuracy of the stiffness matrix entries, and considered

geometric and topological enrichment strategies for crack problems. We solved three benchmark

crack problems, and demonstrated that the integration scheme delivered optimal rates of
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convergence (geometric enrichment) and excellent accuracy in SIF computations for both

straight and kinked cracks.

The main advantages of using HNI for discontinuous and weakly singular integrands are

eliminating the need for element-partitioning in the X-FEM (other than at crack locations)

and providing very accurate and efficient integration of weakly singular functions when

compared to existing methods. Since partitioning complicates coding, requires additional data

structures, and can also incur overhead on the time required to conduct numerical integration,

removing this need directly reduces computational demands on analysis. When compared to

the generalized Duffy transformation, a singularity-canceling method for integrating weakly

singular functions, the HNI method delivers accuracy that is several orders of magnitude

better with far fewer cubature points. The HNI scheme also provides a means to fine-tune the

cubature rule based on a user-specified level of accuracy in the integration — a feature that

is not possible with singularity-canceling methods and Gauss cubature. Taken together, HNI

provides fast, accurate numerical integration that enhances the robustness of the X-FEM.

The focus in this paper was on a new approach for the numerical integration of enriched

basis functions for two-dimensional crack problems using the extended finite element method.

The application of the HNI method naturally extends to three-dimensional cracks that are

defined as the union of piecewise planar facets. In 3D, integration of discontinuous functions

in Heaviside-enriched elements can be reduced to line integrals (one-dimensional Gauss

quadrature rule suffices) along the edges of the facets or reduced even further to just vertex

evaluations using methods described in Chin et al. [16], thereby in both cases eliminating

the need for element-partitioning. HNI also simplifies integration within near-tip enriched 3D

elements, though partitioning would still be required on the 2D planar facets. In this paper,

we investigated the use of HNI for crack problems with the X-FEM, though as noted in Chin

et al. [16], the HNI approach has broader appeal. In addition to crack problems, it is well-

suited for many other applications of the X-FEM as well as other emerging computational

methods that require numerical integration of discontinuous and/or weakly singular functions

over convex and nonconvex regions. As a next step, we intend to apply the HNI scheme to

model weak discontinuities (affine and curved material interfaces) with the extended finite

element method.
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A. HOMOGENEOUS SHAPE FUNCTIONS AND THEIR DERIVATIVES

In this appendix, we consider two finite elements that are compatible with the HNI method:

the linear triangle and the bilinear rectangle. Shape functions for these elements are polynomial

and known in closed-form in global coordinates, allowing them to be written as a collections of

homogeneous functions. In this section, homogenized versions of the element shape functions

and their derivatives are presented for use with the HNI approach. The notation f [q] is used

to denote that the function f is homogeneous of degree q.

Computing quantities in local crack-tip coordinates requires a mapping between the global

coordinate system and the local coordinate system. This mapping is given by

x̂ = x̂(x) = R(x− c1), (20)

where x̂ ≡ (x̂, ŷ) is the local crack-tip coordinate, c1 (or cnc
) ≡ (xc, yc) is the location of the

crack tip, and R := R(φ) is the rotation matrix for an angle φ that represents the angle of

inclination of the crack. The inverse map is:

x = x(x̂) = RT x̂+ c1 = x̂r + c1, x̂r := RT x̂. (21)

Note that (20) and (21) are not homogeneous, leading to different homogenized functions for

the shape function derivatives in crack-tip coordinates versus global coordinates.

A.1. Linear triangle

A linear triangular finite element is shown in Figure 19a. The nodal coordinates for this element

are: (x1, y1), (x2, y2), and (x3, y3) for nodes 1, 2, and 3, respectively. The shape functions are:

N1(x) = [(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y] /Ae,

N2(x) = [(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y] /Ae,

N3(x) = [(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y] /Ae,

where Ni(x) is the shape function for node i and Ae is the area of the triangle.
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Figure 19. (a) Linear triangular finite element; and (b) Bilinear rectangular finite element.

Table IV. Shape functions homogenized in local crack-tip coordinates for the triangular finite element.

i q N
[q]
i (x̂)

1

0
(x2y3 − x3y2) + (y2 − y3)xc + (x3 − x2)yc

Ae

1
(y2 − y3)x̂r + (x3 − x2)ŷr

Ae

2

0
(x3y1 − x1y3) + (y3 − y1)xc + (x1 − x3)yc

Ae

1
(y3 − y1)x̂r + (x1 − x3)ŷr

Ae

3

0
(x1y2 − x2y1) + (y1 − y2)xc + (x2 − x1)yc

Ae

1
(y1 − y2)x̂r + (x2 − x1)ŷr

Ae

Homogeneous shape functions in local crack-tip coordinates are given in Table IV. Since

shape function derivatives are constant for the linear triangle element, they are independent

of the coordinate system and do not need to be homogenized. The shape function derivatives

are listed in Table V.

A.2. Bilinear rectangle

The bilinear rectangular finite element is shown in Figure 19b. The nodal coordinates are:

(xa, ya), (xb, ya), (xb, yb), and (xa, yb) for nodes 1, 2, 3, and 4, respectively. The finite element
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Table V. Shape function derivatives for the triangular finite element.

i N
[0]
i,x(x) ≡ N [0]

i,x(x̂) N
[0]
i,y(x) ≡ N [0]

i,y(x̂)

1
y2 − y3

Ae

x3 − x2

Ae

2
y3 − y1

Ae

x1 − x3

Ae

3
y1 − y2

Ae

x2 − x1

Ae

Table VI. Shape functions homogenized in local crack-tip coordinates for the rectangular finite element.

i N
[0]
i (x̂) N

[1]
i (x̂) N

[2]
i (x̂)

1 +
x′by
′
b

Ae
− (y′bx̂r+x

′
bŷr)

Ae
+
x̂rŷr
Ae

2 −x
′
ay
′
b

Ae
+

(y′bx̂r+x
′
aŷr)

Ae
− x̂rŷr
Ae

3 +
x′ay
′
a

Ae
− (y′ax̂r+x

′
aŷr)

Ae
+
x̂rŷr
Ae

4 −x
′
by
′
a

Ae
+

(y′ax̂r+x
′
bŷr)

Ae
− x̂rŷr
Ae

shape functions are:

N1(x) = (xb − x)(yb − y)/Ae,

N3(x) = (x− xa)(y − ya)/Ae,

N2(x) = (x− xa)(yb − y)/Ae,

N4(x) = (xb − x)(y − ya)/Ae,

where Ae = (xb − xa)(yb − ya) is the area of the rectangle.

Homogeneous shape functions in local crack-tip coordinates are given in Table VI. Table VII

provides shape function derivatives homogenized with respect to local crack-tip coordinates,

and Table VIII lists the same derivatives homogenized with respect to global coordinates. In

these tables, we make use of the following definitions: x′a := xa − c1 and x′b := xb − c1.
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Table VII. Shape function derivatives homogenized with respect to local crack-tip coordinates for the
rectangular finite element.

i N
[0]
i,x(x̂) N

[1]
i,x(x̂) N

[0]
i,y(x̂) N

[1]
i,y(x̂)

1 − y
′
b

Ae
+
ŷr
Ae

− x
′
b

Ae
+
x̂r
Ae

2 +
y′b
Ae

− ŷr
Ae

+
x′a
Ae

− x̂r
Ae

3 − y
′
a

Ae
+
ŷr
Ae

− x
′
a

Ae
+
x̂r
Ae

4 +
y′a
Ae

− ŷr
Ae

+
x′b
Ae

− x̂r
Ae

Table VIII. Shape function derivatives homogenized with respect to global coordinates for the
rectangular finite element.

i N
[0]
i,x(x) N

[1]
i,x(x) N

[0]
i,y(x) N

[1]
i,y(x)

1 − yb
Ae

+
y

Ae
− xb
Ae

+
x

Ae

2 +
yb
Ae

− y

Ae
+
xa
Ae

− x

Ae

3 − ya
Ae

+
y

Ae
− xa
Ae

+
x

Ae

4 +
ya
Ae

− y

Ae
+
xb
Ae

− x

Ae
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24. N. Chevaugeon, N. Moës, and H. Minnebo. Improved crack tip enrichment functions and integration

for crack modeling using the extended finite element method. International Journal for Multiscale

Computational Engineering, 11(6):597–631, 2013.

25. M. H. Aliabadi, D. P. Rooke, and D. J. Cartwright. Mixed-mode Bueckner weight functions using boundary

element analysis. International Journal of Fracture, 34(2):131–147, 1987.

26. R. S. Barsoum. On the use of isoparametric finite elements in linear fracture mechanics. International

Journal of Fracture, 10(1):25–37, 1976.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)

Prepared using nmeauth.cls DOI: 10.1002/nme


	1 Introduction
	2 Integration of homogeneous functions
	3 Extended finite element method
	3.1 Strong form and weak form for a crack in linear elastic media
	3.2 Displacement approximation and discrete equations
	3.3 Post-processing
	3.4 Homogeneous functions in the X-FEM

	4 Integration of discontinuous and weakly singular functions
	4.1 Integration of a discontinuous function using the HNI method
	4.2 Adaptive HNI scheme
	4.3 Comparison of the adaptive HNI scheme to the generalized Duffy transformation
	4.4 Implementation of the HNI method

	5 Numerical examples
	5.1 Edge-cracked plate
	5.2 Center-cracked plate
	5.3 Embedded piecewise affine crack in a plate

	6 Concluding remarks
	A Homogeneous shape functions and their derivatives
	A.1 Linear triangle
	A.2 Bilinear rectangle


