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Abstract

In this paper, we model holes and material interfaces (weak discontinuities) in two-
dimensional linear elastic continua using the extended finite element method on
higher-order (spectral) finite element meshes. Arbitrary parametric curves such as
rational Bézier curves and cubic Hermite curves are adopted in conjunction with
the level set method to represent curved interfaces. Efficient computation of weak
form integrals with polynomial integrands is realized via the homogeneous numeri-
cal integration scheme—a method that uses Euler’s homogeneous function theorem
and Stokes’s theorem to reduce integration to the boundary of the domain. Numerical
integration on cut elements requires the evaluation of a one-dimensional integral over
a parametric curve, and hence the need to partition curved elements is eliminated.
To improve stiffness matrix conditioning, ghost penalty stabilization and the Jacobi
preconditioner are used. For material interface problems, we develop an enrichment
function that captures weak discontinuities on spectral meshes. Taken together, we
show through numerical experiments that these advances deliver optimal algebraic
rates of convergence with ℎ-refinement (p = 1, 2,… , 5) and exponential rates of
convergence with p-refinement (p = 1, 2,… , 7) for elastostatic problems with holes
and material inclusions on Cartesian p-th order spectral finite element meshes.
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1 INTRODUCTION

In the finite element (FE) method, meshes must conform to the geometric features of a domain of interest. These geometric

features may include voids (holes) in the domain or a material interface (weak discontinuity) that separates two dissimilar elastic

materials. Aligning these geometric features with the mesh requires advanced mesh generation tools, and further, higher-order
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finite elements must accurately represent curved features to recover optimal rates of convergence in the finite element method.

The extended finite element method (X-FEM)1,2 is a promising approach for decoupling geometry from the finite element mesh.

Originally conceived as a method to model cracks in a domain without explicitly meshing the cracks,1 Sukumar et al.3 combined

local enrichment in the extended finite element method with the level set method4 to simplify implicit modeling of closed

interfaces (holes and bimaterials) in solid mechanics problems. Legay et al.5 applied the X-FEM to higher-order (spectral) finite

element meshes to solve hole and material interface problems, revealing new challenges with respect to interface representation,

choice of enrichment, and numerical integration. In this paper, we introduce significant improvements to all three of these

long-standing issues.

For a material interface that admits a weak (strain) discontinuity normal to the interface, the X-FEM utilizes the partition-of-

unity (PU) framework6 to enrich the displacement approximation in the vicinity of the interface. Between enriched domains and

unenriched domains is a transition zone that contains partially-enriched (blending) elements. In these blending elements, the

product of the enrichment function and the finite element basis functions causes higher-order terms in the approximation to be

present that cannot be compensated, thereby reducing the rate of convergence of the method.7 Issues in blending elements with

p-th order finite elements arise when the extended FE approximation is not able to reproduce a piecewise-continuous p-th degree

polynomial on both sides of the interface. Initially, modeling material interfaces using the distance function (abs-enrichment) as

the enrichment led to presence of blending elements and suboptimal convergence rates.3 Many remedies in the blending region

have been proposed, such as an enhanced strain formulation7 and the corrected X-FEM.8 Also, reducing the polynomial degree

of the partition-of-unity functions has been shown to improve the rate of convergence of the approximation for elements with

polynomial degree greater than one.5,9 However, a simpler approach is to entirely eliminate the presence of blending elements

by designing an enrichment function for material interface problems that vanishes in blending elements. This was achieved by

Moës et al.10 who demonstrated optimal convergence rates on low-order (bilinear) finite element meshes using a modified abs-

enrichment (coined as a ridge or hat enrichment), and more recently by Soghrati et al.,11,12 wherein a conforming submesh of

the cut elements is used to generate the enrichment function.

Another challenge in modeling holes and material interfaces using the X-FEM is the recovery of optimal rates of conver-

gence on higher-order finite element meshes. Finite elements with increasing polynomial degree on a fixed mesh (p-refinement)

deliver exponential rates of convergence, thereby providing a more accurate solution per degree of freedom than realized via

mesh refinement (ℎ-refinement). One complicating factor in the implementation of p-refinement is developing a method to

reconstruct the location of the interface. Interface reconstruction must be sufficiently accurate to provide optimal rates of con-

vergence, and furthermore, must be robust enough to handle arbitrary interfaces. A popular approach to accomplish this task

has been to subdivide elements that are traversed by the interface with higher-order elements whose boundaries are aligned with

the interface.5,9,12 This separates the element domain into subregions on either side of the interface, where the finite element
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approximation is continuous. However, for complicated interface geometries, this approach can be difficult, requiring special

considerations for cases with sharp features (e.g., corners) on the interface, regions of high curvature on the interface, or the

interface entering and exiting an element multiple times. Another issue with p-th order finite elements, specific to the material

interface problem, is the construction of a suitable enrichment function so that the approximate solution yields the optimal p+1

rate of convergence in the L2 norm. Cheng and Fries9 showed that the distance function paired with corrected X-FEM recov-

ers near optimal rates of convergence, but this requires additional degrees of freedom (DOFs) compared to a standard extended

finite element approach. Close to the optimal rate of 2 inH1 seminorm for p = 2 has been demonstrated by Dréau et al.,13 where

local refinement of the enrichment function from Moës et al.10 is used to improve the representation of curved interfaces; how-

ever, this method needs the generation of a submesh of the cut elements. In this paper, we adapt the modified abs-enrichment

introduced in Moës et al.10 to capture weak discontinuities on higher-order spectral finite element meshes.

Computational methods that consider embedded interfaces with Dirichlet or Neumann constraints on them have also been

a very active area of research. Typically, these constraints are enforced using either stable Lagrange multipliers, a penalty

approach, or Nitsche’s method. Another feature of these methods is the use of higher-order elements in the approximation, either

through spectral finite elements14 or spline-based methods. There are many approaches that fall within this category—cut finite

elements,15,16,17 finite cell method,18,19,20 immersed boundary method,21,22 fictitious domain method,23,24 embedded interface

method,25,26,27 and also the X-FEM.28,29 For simplicity, in the remainder of this paper, these methods will be collectively referred

to as embedded interface methods. Other methods for handling voids and material interface problems are conformal decomposi-

tion methods,30,31,32,33,34 which use element subdivisions to construct fitted elements to a background mesh, and discontinuous

Galerkin approaches.35,36

In embedded interface methods, a significant challenge that remains in the modeling of holes or material inclusions is accurate

numerical integration.37 The need is particularly acute when p-th order spectral finite element methods are used in conjunction

with curved interfaces, such as those described by algebraic curves (e.g., a circle or ellipse) as well as parametric curves. An

example of a curved integration region is illustrated in Fig. 1. The errors due to geometric representation and numerical cubature

must be less than the approximation error to realize optimal rates of convergence with mesh refinement—p+1 in L2 norm, p in

H1 seminorm, and 2p in strain energy for p-th order spectral finite elements.38 The need for accurate numerical integration has

long been recognized, and many contributions have emerged that address this issue. These papers have implemented methods

that can be categorized as follows.

1. Customized cubature rules based on moment fitting.39,40

2. Integration on highly refined, linear reconstructions of the interface.41,13,28

3. Use of mapped, higher-order finite elements.5,9,42,29,43,44
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FIGURE 1 Integration over curved (convex and nonconvex) domains.

4. A recursive scheme to integrate on hyperrectangles wherein the interface is represented using a height function.45

5. Interface reconstruction with tree-based (quadtree and octree) methods and level set functions.18

Even though these contributions have allowed accurate integration over curved discontinuities, they all have certain drawbacks.

For instance, tree-based methods and level set reconstruction methods involve complex data structures, are involved to imple-

ment, and accuracy and efficiency of such methods for general interfaces has not been established. Mapped finite elements

allow higher-order reconstruction of the interface, but require element-partitioning and can only be used on elements that can

be mapped to a reference element. Further, this mapping results in a loss of consistency, which limits the polynomials that can

be reproduced on the mapped element.46,47,48,49

This paper introduces three improvements to the X-FEM for modeling holes and inclusions with curved interfaces.

1. Construction of level set function through implicitization of rational Bézier curves and level set zero isocontour

reconstruction using adaptively generated cubic Hermite curves.

2. Extending the homogeneous numerical integration (HNI) method introduced in Chin et al.50,51 to accurately and efficiently

integrate discontinuous polynomials over domains with curved boundaries.

3. On appealing to the form of the enrichment function proposed byMoës et al.,10 we devise an enrichment function for affine

and curved material interface problems that provides optimal convergence rates for bimaterial boundary-value problems

on p-th order (p ≥ 1) finite element meshes.

In our implementation of the X-FEM, in addition to the above improvements, we also leverage tools from linear algebra and

stabilization techniques that have been widely adopted in embedded interface methods to improve matrix conditioning of system

matrices. In particular, we use the ghost penalty term introduced by Burman52 to improve numerical stability issues caused by

voids and a Jacobi preconditioner to improve the condition number of the stiffness matrix for both voids and material interfaces.



E. B. CHIN AND N. SUKUMAR 5

Taken together, all these advances provide the means to solve two-dimensional extended finite element problems with holes

and material inclusions using rectangular elements of arbitrary order with optimal convergence rates. However, even taken

separately, each of these advances stands on its own and can be applied to other existing methodologies. For example, the need

for accurate numerical integration over arbitrary curved geometry arises not only in embedded interface methods, but also in the

virtual element method53 and may have applications in higher-order contact mechanics problems as well.54 On cut elements,

the use of the HNI method eliminates the need for element-partitioning to compute the weak form integrals. The HNI method

is applicable to elements with constant Jacobian, since the basis functions are then (a sum of homogeneous) polynomials in the

physical coordinates. This limitation notwithstanding, it permits additional flexibility in defining regions of integration, allowing

more general interface geometries to be utilized with the X-FEM. Also, the proposed enrichment function can find use outside

the realm of solid mechanics, since it can be used to model arbitrary weak discontinuities. Finally, the use of rational Bézier

curves to directly form an exact level set function presents a new perspective on isogeometric methods,55 since geometry defined

using rational Bézier curves is captured exactly, albeit without using NURBS for the approximation of field quantities.

The remainder of this paper is organized as follows. In Section 2, we present the essentials on the level set method and

explain how curved interfaces are reconstructed in a variety of scenarios. Then, in Section 3, we introduce the HNI method

and extend it for accurate integration over domains that are bounded by parameterized curves. In Section 4, we present the

weak form and extended finite element displacement approximation to solve the elastostatic boundary-value problem for holes

and material inclusions. In addition, we describe the construction of an improved enrichment function for material interface

problems. Conditioning of systemmatrices is an issue that needs to be addressed in the X-FEM, and in this section, we introduce

the ghost penalty term and the Jacobi preconditioner to combat this issue. Following this, implementation details of the HNI

scheme within the extended finite element method are discussed in Section 5, where we also provide a few verification tests to

assess the accuracy of the integration scheme. In Section 6, we present numerical results on benchmark elastostatic problems

such as a plate with a hole (circular, elliptical) as well as a plate with complicated holes defined by glyphs, and a two-phase

composite with a circular-shaped inclusion. These examples demonstrate the accuracy and capabilities of the method, and also

showcases instanceswhere themethodology ismost effective. Finally, we closewith a summary of ourmain findings in Section 7.

2 LEVEL SET METHOD

Isocontours of a (d + 1)-dimensional function '(x) can be used to track the location of geometric interfaces within a d-

dimensional domain. This idea forms the basis of the level set method. Generally, in the level set method, the level curve'(x) = 0

is selected as the interface location. Further, '(x) < 0 and '(x) > 0 are used to locate regions of interest within the domain.
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FIGURE 2 Detecting the intersection of an element with the level set zero isocontour based on nodal values of '(x). (a) Some
nodes are inside the interface (filled circles) and some nodes are outside the interface (open circles), so the intersection is detected
and (b) all nodes are outside the interface, so the intersection is (erroneously) not detected.

Herein, we use '(x) < 0 to denote the region that lies inside the closed interface and '(x) > 0 to denote the region that lies out-

side the closed interface. Osher and Sethian4 used this approach to simplify the representation of temporally evolving interfaces

whose evolution is described by a hyperbolic equation related to '(x). Sukumar et al.3 recognized the power of this approach

when coupled with the X-FEM for modeling holes and material interfaces. The coupling of the level set method with the X-FEM

is a very attractive approach for solving problems with voids and multi-materials, and it is the procedure we use in this paper.

The level set method allows node and element locations to be easily inferred in the X-FEM. On computing '(x) at a node

in the finite element mesh, we can determine the location of the node relative to the interface. Further, nodal values of '(x)

can be used to infer elements that are cut by the level set zero isocontour. In cut elements, the element domain has a region

inside the interface and a region outside the interface. These regions must exist if some of the nodes of an element are inside the

interface and the remaining nodes are outside the interface. This case is illustrated in Fig. 2a. However, this method of detecting

cut elements is not foolproof, as revealed in Fig. 2b. In Fig. 2b, all nodes are outside the interface, and the intersection of the

element with the zero level set goes undetected. Detection can be improved by evaluating the level set function at additional

points in the element, as is done in Fries and Omerović.43 Evaluating the level set function at additional points in the element

increases the likelihood of detection of cut elements and reduces the error caused by missed detection of cut elements.

While a level set function simplifies knowing the location of a point with respect to a geometric region, determining the

exact location of the curve requires additional information or a method of approximation. The level set method only provides
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the location of the interface implicitly, through the roots of the equation '(x) = 0. To accurately compute integrals using the

HNI method, the location of the interface must be known to high-precision (see Section 3). This need is particularly acute

when higher-order polynomials are used to approximate field quantities, since optimal convergence of the X-FEM relies on the

geometric error being less than the approximation error.

Depending on the source of the level set geometry, there are different methods to explicitly construct the curve '(x) = 0

and/or a corresponding level set function, '(x). In this paper, we consider the following four different origins of the level set

geometry:

1. An open or closed convex polygon is used to generate the level set function.

2. An explicitly known conic section is used to construct the level set function.

3. The level set function is generated from a known function whose gradient can also be computed (coined a gradient-

augmented level set function by Nave et al.56).

4. The level set function is not known explicitly, and can only be computed when given a specific location in the domain.

The first case is well-known, and the level set function and zero isocontour for a polygon can be found in Sukumar et al.3

Sections 2.1–2.3 detail cases 2 to 4.

2.1 Level sets functions for conic sections

For any given conic, interface reconstruction can be accomplished using its representation as a rational quadratic Bézier curve.

Further, this rational quadratic Bézier is easily converted into an implicit equation by considering its barycentric representation,

as described in Farin.57 For a given coordinate x and Bézier control points p0, p1, and p2, we solve the linear system of equations,

�0p0 + �1p1 + �2p2 = x,

�0 + �1 + �2 = 1,

for parameters �0, �1, and �2. The value of the level set function is then given by

'(x) = �21 − 4
�0�2w2

1

w0w2
,

wherew0,w1, andw2 are weights associated with each of the control points. For conic sections in standard form,w0 = w2 = 1

and

'(x) = �21 − 4�0�2w
2
1. (1)
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FIGURE 3 Level set functions for a circular interface. The level set intersects the mesh when '(x) = 0, defining the circle.
Regions where '(x) < 0 define the area inside the circle. (a) The level set function, '(x) =

√

x2 + y2 − 0.5, coincides with the
distance function. (b) The level set function, '(x) = 4x2+4y2−1, is generated from implicitization of a quadratic Bézier curve.

This provides an exact level set representation of the conic, which is used to determine elements that are cut by the level set zero

isocontour. The curve '(x) = 0, which is needed to compute integrals using the HNI method, is obtained directly from segments

of the Bézier representation of the curve. This method is used to model the elliptical hole in Section 6.3 and to generate the

glyphs that appear in Section 6.4. For cubic or higher-degree Bézier curves, elimination techniques58 can be used to convert

from explicit to implicit form, a process called implicitization. Methods of implicitization generally grow in complexity as

the polynomial degree increases in the Bézier curve, though simplifications are possible through, for example, methods using

moving curves.59,60

A level set function, '(x), coincides with the signed distance function if

'(x) = min
xΓ∈Γ

±||x − xΓ||, (2)

where || ⋅ || denotes the L2 norm of its argument and Γ is the domain of the level set zero isocontour. Following the convention

introduced earlier in this section, the sign is negative (resp. positive) when inside (resp. outside) Γ. For the material interface

problem, a level set function that is also the distance function results in a piecewise linear enrichment function in the direction

that is normal to the material interface (see Section 4.3.2). While implicitization is an effective technique for transforming a

rational quadratic Bézier to a level set representation, the resulting level set function is not a distance function. For a circle, the

signed distance function is

'(x) = ||x − xc|| − a, (3)

where xc is the center of the circle and a is its radius. This level set function is presented in Fig. 3a and is used in the circular

inclusion example in Section 6.6. For comparison, the level set function for the circle generated through implicitization of the
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rational Bézier representation using (1) is shown in Fig. 3b. Generation of a signed distance function from a parameterized curve

can be accomplished using a procedure such as the one described in Benowitz and Waisman.61

2.2 Interface reconstruction with gradient-augmented level sets

When the level set function and its gradient are computable, the level curve '(x) = 0 is not known in closed-form and must be

approximated. To reconstruct the level set zero isocontour, cubic Hermite functions are used. For t ∈ [0, 1], a cubic Hermite

function has the form

c(t) = (2t3 − 3t2 + 1)p0 + (t3 − 2t2 + t)m0t0 + (−2t3 + 3t2)p1 + (t3 − t2)m1t1, (4)

where p0 = c(0), p1 = c(1), m0t0 = c′(0), m1t1 = c′(1). The construction of the cubic Hermite function simplifies C1

interpolation of data, since parameters directly correspond to function values and derivative values at the endpoints of the

curve. The cubic Hermite function can be used to interpolate a sequence of d-dimensional coordinates,
(

x1,x2,… ,xn
)

. This

is accomplished by solving a tridiagonal linear system of equations and results in a C2 cubic spline interpolant.62 The cubic

spline interpolant is the best interpolation of the sequence in the sense that it (approximately) minimizes curvature over all

possible curves that pass through the given coordinates. Assuming the underlying function being interpolated has four continuous

derivatives, the L∞ error of the interpolation is(ℎ̄4),63 where ℎ̄ = maxi=1,…,n−1 ||xi+1−xi||. These properties render the cubic

Hermite function to be a very popular choice for interpolating pointwise data.

In the context of the level set method, cubic Hermite functions can be used to reconstruct the zero isocontour of a level set

function. If '(x) and its gradient are computable, the endpoints (p0 and p1) and tangent directions (t0 and t1) of the curve

can be determined. For most typical cases, the initial endpoints of p0 and p1 will intersect the boundary of an element in the

mesh. Newton’s method is used to identify the intersection of the element boundary with the level curve '(x) = 0. When

finite elements are arranged on a rectangular grid, finding the endpoints of the curve is reduced to a one-dimensional problem,

simplifying implementation of Newton’s method. For example, when an element edge lies on the line y = yc , Newton iterations

are computed via

xi+1 = xi −
f (xi, yc)
f,x(xi, yc)

,

and continue until |f (x)| ≤ � or a maximum number of iterations has been reached. Since the zero level set can intersect an edge

of an element more than once, multiple initial guesses of x (or y) are used to determine the location of the interface. If a point on

the interface is not identified by Newton’s method, first a bisection method is used to provide an improved initial guess. Once p0

and p1 are established, the tangent directions (t0 and t1) are perpendicular to the gradient of '(x). The magnitude of the tangent

vectors, m0 and m1, must still be determined. Ideally, m0 and m1 are set such that the cubic Hermite function approximates the
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zero isocontour as closely as possible. If the Hermite reconstruction is exact, we recover

'2
(

c(t)
)

= 0 ∀t ∈ [0, 1],

or in a weak (integral) sense,
1

∫
0

'2
(

c(t)
)

dt = 0. (5)

Note that this is not a line integral since the speed of the parameter t is not accounted for; however, since any value of the integral

in (5) other than zero is immaterial, the integral does not need to be a path integral. To select optimal values for m0 and m1, we

choose

m∗ = argmin
m∈ℝ2

F (m), (6)

where F (m) = ∫ 1
0 '

2(c(t,m)
)

dt is the objective function and m =
{

m0, m1
}

is now an unknown in the expression for c given

in (4). A similar method to approximate the implicit curve '(x) = 0 is used by Dokken64 and Jüttler and Chalmovianský.65

Jüttler and Chalmovianský65 adopt rational Bézier curves to represent the implicit curve approximation. Rational Bézier curves

are able to reproduce more shapes, as they can exactly represent genus zero algebraic curves. However, since they are non-

polynomial, they introduce error in the quadrature rule. This numerical optimization problem can be solved using techniques

such as Newton’s method. However, we sometimes observed the minimum of F (m) to lie within a long, nearly flat valley (see

Fig. 4), similar to the Rosenbrock function.66 This causes difficulty in attaining the optimal values of m using many standard

methods of nonlinear optimization. We found the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm or Newton’s method

with a reduced step size to yield acceptable results, though other methods may exist that provide additional improvements. The

initial guess form0 andm1 is chosen to be magnitude of the gradient at p0 and p1, respectively. The BFGS algorithm is especially

appealing since it does not require computing the second derivatives of the level set function, which may not be available.

Once m∗ is obtained, if F (m∗) > 0, then error exists between the parameterized curve and the level set zero isocontour. We

estimate the total error over the path by computing

e(m∗) =

√

√

√

√

√

√

√

√

√

√

1

∫
0

⎛

⎜

⎜

⎝

'
(

c(t,m∗)
)

|

|

|

|

|

|

∇'
(

c(t,m∗)
)

|

|

|

|

|

|

⎞

⎟

⎟

⎠

2
|

|

|

|

|

|

|

|

)c(t,m∗)
)t

|

|

|

|

|

|

|

|

dt. (7)

If e(m∗) > �, where � is a user-defined error tolerance, then the error between the parameterized curve and the level set zero

isocontour exceeds the acceptable bound defined by �. This error can be reduced by splitting the cubic Hermite function into two

separate cubic Hermite functions, c1(t,m) and c2(t,m). The parameterized curve is split at its midpoint (t = 0.5), then Newton’s

method is used to find a nearby point on the level set zero curve. This point becomes p1 in c1(t,m) and p0 in c2(t,m). Optimal

m is then computed on c1(t,m) and c2(t,m), and e(m∗) is compared to � for both curves. Additional parameterized curves are
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FIGURE 4 Values of the objective function defined in (6) for '(x) =
(

x − 1
2

)2
− y − 1

2
. The minimum is the circle located at

m0 = 2.497 and m1 = 4.454.

created until e(m∗) ≤ � for all segments of the curve. With curve refinement based on error of the approximation from the

implicit curve
(

defined by e(m∗)
)

, the number of Hermite functions needed to reconstruct the curve is optimized. In other words,

curve refinement only occurs where the Hermite function approximation of the zero isocontour is not sufficiently accurate. The

effect of � on integration error is examined in Section 5.1.1 and Section 5.1.2. Assuming '(x) ∈ C1, the resulting optimized

parametric representation isG1 continuous since tangent directions match across each approximating function, though the curve

speed, ||c′(t)||, may differ.

2.3 Interface reconstruction with a level set (no gradient)

When only the level set function is computable over a domain discretized by finite elements, the FE interpolant can be lever-

aged to generate an approximation of level set isocontours. This approximation is accurate to the order of the finite element

approximation. To generate the interface, the level set function itself is first approximated as

'ℎ(x) =
∑

i∈Ie

Ni(x)'i, (8)

where Ie is the index set of nodes belonging to Ωe (x ∈ Ωe),Ni(x) is the spectral finite element shape function (see Section 4.2)

associated with node i, and 'i ∶= '(xi) is the nodal value of '(x). This provides a piecewise polynomial approximation of the

level set function, and further, a piecewise polynomial approximation of the curve '(x) = 0 (i.e., 'ℎ(x) = 0). We point out that

this choice of approximating the level set function is necessary for the material interface problem, since the enrichment function
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in the X-FEM is formulated in terms of 'ℎ(x) (see Section 4.3.2). In this paper, the level set function is used to directly set the

nodal coefficients; however, if a level set function that coincides with the distance function is desired, a technique such as the

one outlined in Saye67 can be used to set nodal values of the level set function. The zero isocontour of 'ℎ(x) is reconstructed

using optimized cubic Hermite functions, as described in Section 2.2. Sufficient parametric Hermite curves are placed such that

e(m∗) ≤ � for all curves.

3 HOMOGENEOUS NUMERICAL INTEGRATION (HNI) METHOD

Lasserre68 used Stokes’s theorem and Euler’s homogeneous function theorem to simplify integration over a d-dimensional

polytope to integration over the (d − 1)-dimensional faces of the polytope. The HNI method of Chin et al.50 extends Lasserre’s

approach to nonconvex regions, and is also efficient for weakly singular functions that arise in the X-FEM.51 In this paper, we

further extend the HNImethod to regions bounded by parametric curves. This extension is discussed in Section 3.2 and examples

illustrating its efficiency in integrating homogeneous functions are presented in Section 3.3.

Let f (x) be a positively homogeneous function of degree q that is continuously differentiable:

f (�x) = �qf (x) (� > 0), (9)

which satisfies Euler’s homogeneous function theorem:

qf (x) = ∇f (x) ⋅ x ∀x ∈

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ℝd if q > 0

ℝd∖{0} if q < 0

. (10)

Besides the monomial xayb that is homogeneous with degree q = a + b, functions in polar coordinates are also homogeneous:

f (r) =
√

x2 + y2 ∶= r is homogeneous with degree q = 1.

Our objective is to integrate a homogeneous function, f (x), over a domain V ⊂ ℝd (d = 2, 3), i.e.,

I = ∫
V

f (x) dx.

For a vector field X, Stokes’s (divergence) theorem can be stated as:

∫
V

(∇ ⋅X)f (x) dx + ∫
V

∇f (x) ⋅X dx = ∫
)V

(X ⋅ n)f (x) d�, (11)
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where )V is the boundary of V and d� is the Lebesgue measure on )V . For a homogeneous function f and choosing X as the

position vector x, (11) yields

d ∫
V

f (x) dx + ∫
V

∇f (x) ⋅ x dx =
m
∑

i=1
∫
Fi

(x ⋅ ni)f (x) d�, (12)

where )V ∶= F1 ∪ F2 ∪… ∪ Fm. Invoking Euler’s theorem given in (10), (12) simplifies to

∫
V

f (x) dx = 1
d + q

m
∑

i=1
∫
Fi

(x ⋅ ni)f (x) d�. (13)

Equation (13) relates integration of a positively homogeneous function f (x) over a domain inℝd to integration over the domain’s

(d − 1)-dimensional boundary.

For the developments in this paper, (13) is sufficient; however, it is worth noting that for a polytope, (13) can be further

reduced and exact integration is realized when f is a homogeneous polynomial.50 In the remainder of this section, we describe

simplifications to (13) that are used in subsequent sections, and we present a few illustrative examples to show the effectiveness

of the integration scheme. From this point forward, we assume V ⊂ ℝ2 and further that )V = )VA ∪ )VC , where )VA is a line

segment in one dimension and )VC is a parametric curve.

3.1 Affine interface

An affine surface can be described as a linear equation, a ⋅ x = b. The normal of this surface is the normalized gradient of this

equation, i.e., n = a∕||a||. Substituting into (13), we obtain

∫
Fi

(x ⋅ ni)f (x) d� =
bi

||ai|| ∫
Fi⊂)VA

f (x) d�. (14)

Therefore, for V bounded by affine interfaces, integration of positively homogeneous functions reduces to integration of f (x)

on the one-dimensional boundary. Note that this integration can be performed easily and accurately with Gauss quadrature.

3.2 Parametric interface

We consider parametric curves of the form c(t), where t ∈ [0, 1] is a parameter such that c(0) and c(1) give the endpoints

of Fi ⊂ )VC . The form c(t) is general enough to encompass many types of curves, including Bézier curves (both regular and

rational), cubic Hermite curves, and B-spline curves. Substituting into (13), we obtain

∫
Fi

(x ⋅ ni)f (x) d� =

1

∫
0

(

ci(t) ⋅ ni
)

f
(

ci(t)
)

||c′i (t)|| dt, (15)
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where c′i (t) is the derivative with respect to the parameter t, i.e., the hodograph of the curve. The normal of c(t) is a normalized

vector perpendicular to its hodograph. Substituting this into (15) leads to

∫
Fi

(x ⋅ ni)f (x) d� =

1

∫
0

(

ci(t) ⋅
(

c′i (t) × e3
))

f
(

ci(t)
)

dt, (16)

where e3 is the unit vector in the third dimension. This equation reduces integration of positively homogeneous functions over

V bounded by parameterized curves to one-dimensional integrals over the parameter t. This integration can be computed using

Gauss quadrature, and further, if c(t) and f (x) are polynomial, integration is exact with an appropriate quadrature rule.

3.3 Integration examples

Several examples of the HNI scheme are demonstrated in Chin et al.50,51 Herein, we focus on examples relevant to the

developments that follow this section.

3.3.1 Region bounded by a cubic Hermite curve

Consider a biunit square, Ω = [−1, 1]2, which is cut by a cubic Hermite curve. Since Hermite functions can be represented as

Bézier curves, this example also serves to verify our approach for integrating regions bounded by Bézier curves. We consider

the integration of two functions overΩ: f (x) = 1 and f (x) = x2y4+x5y, which are homogeneous polynomials of degree q = 0

and q = 6, respectively. The equation for a cubic Hermite curve is given in (4). For this example, we choose the coefficients to be

p0 = {0.5, −1}
T , p1 = {−0.5, 1}

T , t0 = {0, 1}
T , t1 =

{

− 1
√

2
, 1
√

2

}T

, m0 = 3, m1 = 3
√

2.

We integrate the region to the left of the Hermite curve (see Fig. 5 for an illustration). Since the region of integration contains

both affine edges and parametric edges, both (14) and (16) are required to compute the integral. For f (x) = 1, the integrand is

constant over affine edges and is degree 5 over the parametric edge (c(t) is degree 3 and c′(t) is degree 2, which renders their

product to be degree 5). Therefore, one Gauss point is needed on the affine edges and three Gauss points are needed on the spline

curve. The location of the cubature points are shown in Fig. 5a, and the cubature scheme results in machine precision accuracy.

For f (x) = x2y4+x5y, more cubature points are needed—4 Gauss points on affine edges and 12 Gauss points on the parametric

curve. With this integration scheme (see Fig. 5b for an illustration), machine precision accuracy is obtained.

3.3.2 Region bounded by a conic section

We integrate over the intersection of a biunit square, Ω = [−1, 1]2 and a conic section. Conic sections are non-polynomial, but

can be represented by rational Bézier curves, so this example serves as a test for integrating rational functions. As in the previous

example, we integrate f (x) = 1 (degree q = 0) and f (x) = x2y4 + x5y (degree q = 6). The conic section is defined by the
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(a) (b)

FIGURE 5 Location of cubature points (circles) for machine precision accuracy over a region bounded by a cubic Hermite
curve. (a) f (x) = 1 and (b) f (x) = x2y4 + x5y.

rational quadratic Bézier curve

c(t) =
B0,2(t)w0p0 + B1,2(t)w1p1 + B2,2(t)w2p2

B0,2(t)w0 + B1,2(t)w1 + B2,2(t)w2

for t ∈ [0, 1]. The control points of the curve are p0, p1, and p2; w0, w1, and w2 are weights that control the shape of the conic;

and B0,2(t) = (1 − t)2, B1,2 = 2t(1 − t), and B2,2 = t2 are the Bernstein polynomials of degree two. For this example, we choose

control points and weights

p0 = {−1, 0.5}
T , p1 = {0, 0}

T , p2 = {−0.25,−1}
T ,

w0 = 1, w1 = 0.5, w2 = 1.

This produces an elliptical segment that cuts the biunit square. The region of integration is illustrated in Fig. 6a. Since the

integrand is not polynomial over the conic interface, one-dimensional Gauss quadrature does not produce an exact result. To

investigate cubature convergence, we study the error in integration over the region with varying numbers of cubature points on

the conic section. On affine edges, the number of cubature points is held constant at the minimum needed for exact integration.

In Fig. 6b, we show the relationship between the number of cubature points on the curved section and the relative error in

computing the integral. Machine precision accuracy (defined as integration error less than 1×10−15) requires 14 cubature points

on the conic section for f (x) = 1 and 19 cubature points on the conic section for f (x) = x2y4 + x5y. Exponential rates of

convergence are observed for both functions.



16 E. B. CHIN AND N. SUKUMAR

(a)

5 10 15 20
Quadrature points on conic edge

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

In
te

gr
at

io
n 

er
ro

r

 f (x) = 1

 f (x) = x2 y4 + x5 y

(b)

FIGURE 6 (a) Integration region bounded by affine edges and a conic section, and (b) Integration error over the domain as a
function of cubature points on the conic section for two functions, f (x) = 1 and f (x) = x2y4 + x5y.

4 EXTENDED FINITE ELEMENT METHOD

4.1 Elastostatic boundary-value problem

Consider an inhomogeneous linear elastic body that occupies the domain Ω ⊂ ℝ2, with boundary Γ = )Ω. The body is

composed of two elastically homogeneous materials, and the domain of each material is Ω1 and Ω2, such that Ω = Ω1 ∪ Ω2.

The boundary that defines the material interface between Ω1 and Ω2 is denoted by Γmat. The two materials are assumed to be

perfectly bonded at the interface. We point out that only two materials are chosen to simplify the exposition. The body also

contains an arbitrary number of voids. The voids occupy the region Ωhole and the boundary of all of the voids is Γhole. The

boundary Γ = Γt ∪ Γu ∪ Γhole, where these three subsets are disjoint. The boundary subsets Γt and Γu are where tractions and

displacements are imposed, respectively. A schematic of the boundary-value problem is shown in Fig. 7.

For the elastostatic boundary-value problem, the governing equations are:

∇ ⋅ � + b = 0 in Ω, (17a)

� = ℂi ∶ " in Ωi, (17b)

" = ∇su in Ω, (17c)

where u is the displacement field,∇s is the symmetric gradient operator, " is the small-strain tensor, � is the Cauchy stress tensor,

b is the body force per unit volume, and ℂi is the material moduli tensor for a homogeneous, linear elastic isotropic material in
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FIGURE 7 Elastostatic boundary-value problem for domain with two distinct linear elastic materials and a hole.

the domain Ωi (i = 1, 2). The essential boundary conditions, traction boundary conditions, and interface conditions are:

u = ū on Γu , (18a)

n ⋅ � = t̄ on Γt , (18b)

n ⋅ � = 0 on Γhole , (18c)

[[u]] = 0 on Γmat , (18d)

[[n ⋅ �]] = 0 on Γmat . (18e)

In (18), n is the unit vector that is normal to the indicated boundary and [[⋅]] is the jump operator that represents the jump in its

argument across the interface.

For the constitutive equation (17b) and the interface conditions in (18d) and (18e) to be satisfied when ℂ1 ≠ ℂ2, the displace-

ment field must be continuous but the normal strain, namely n ⋅ " ⋅ n, must be discontinuous (weak discontinuity) across Γmat.

This condition is met if the displacement field ui (i = 1, 2) has a discontinuous normal derivative on Γmat. The presence of a

weak discontinuity is met in the standard finite element method via meshing the domain and its internal and external bound-

aries so that Γmat is the union of element edges in the FE mesh. In the X-FEM, (18d) and (18e) are satisfied on a mesh that does

not conform to the material interface by augmenting the standard finite element displacement approximation with an enriched

contribution (via the partition-of-unity framework) that is continuous but its normal derivative on Γmat is discontinuous.3 The

details on the construction of the enrichment function are provided in Section 4.3.2.
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Let Ui (i = 1, 2) denote the affine subspace of functions in the Sobolev space H1(Ω) whose trace on Γu is equal to ūi and

whose normal derivative on Γmat is discontinuous. In addition, let U0 denote the linear subspace of functions in the Sobolev

space H1(Ω) that vanish on Γu and whose normal derivative on Γmat is discontinuous. The weak form of (17) and (18) is: find

u ∈ U1 × U2 such that

a(u, �u) + j(u, �u) = l(�u) ∀�u ∈ U0 × U0, (19a)

where

a(u, �u) ∶= ∫
Ω

� ∶ �" dx, l(�u) ∶= ∫
Ω

b ⋅ �u dx + ∫
Γt

t ⋅ �u dS. (19b)

In (19), the term j(u, �u) is a ghost penalty52 stiffness to improve matrix-conditioning. This term is defined in Section 4.6.

4.2 Spectral finite element discretization

In the X-FEM, since geometric features such as holes and material interfaces are not represented by the mesh, a simple finite

element mesh suffices. For applications in solid continua, quadrilateral finite elements are preferred to triangular finite elements,

and Cartesian meshes provide numerous benefits and simplifications as well. From the perspective of the X-FEM, additional

advantages include easier implementation for higher-order elements, compatibility with the HNI scheme, which requires basis

functions that are a linear combination of homogeneous polynomials, and greatly simplified computation of the ghost penalty

stiffness term introduced in Section 4.6. Accordingly, we restrict ourselves to Cartesian finite element meshes in the subsequent

developments.

Consider a tessellation  of the domain Ω ∪ Ωhole into a Cartesian mesh ofM elements. The domain of the e-th element of

the mesh is Ωe. On each p-th order finite element, we define an index nodal set Ie with |Ie| = (p+1)2. The nodal coordinates are

determined by the coordinates of p+1 tensor-product Gauss-Lobatto nodes shifted to the domainΩe. IfΩe = [xa, xb]× [ya, yb],

and given the location of one-dimensional Gauss-Lobatto nodes {�j}
p+1
j=1 , {�k}

p+1
k=1, where �j ∈ [−1, 1] and �k ∈ [−1, 1], then the

nodal coordinates are:

xj =
xb + xa
2

+ �j
xb − xa
2

, yk =
yb + ya
2

+ �k
yb − ya
2

.

The placement of nodes at the Gauss-Lobatto locations for spectral elements of order p = 2 to p = 5 is illustrated in Fig. 8. On

moving regularly-spaced nodes to the Gauss-Lobatto locations within each element, oscillation in the interpolation of smooth

data (Runge phenomenon) is suppressed.14 A nodal interpolant is formed using tensor-product Lagrange polynomials, which

allow polynomials of order p to be reproduced over  . These polynomial interpolants are termed finite element shape functions

and are typically computed in a canonical element over the domain Ξ = [−1, 1]2. Letting x ∶= (x, y) ∈ Ωe and � ∶= (�, �) ∈ Ξ,
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(a) (b) (c) (d)

FIGURE 8 Gauss-Lobatto nodes for p-th order spectral elements. (a) p = 2, (b) p = 3, (c) p = 4, and (d) p = 5.

the affine transformation from � → x is:

x(�) =
xb + xa
2

+ �
xb − xa
2

, y(�) =
yb + ya
2

+ �
yb − ya
2

,

with its inverse map also being affine. In Ξ, the shape function associated with the node at (�j , �k) has the form

Njk(�) =
(

� − �1
�j − �1

)

…
( � − �j−1
�j − �j−1

)( � − �j+1
�j − �j+1

)

…
( � − �p+1
�j − �p+1

)

(

� − �1
�k − �1

)

…
(

� − �k−1
�k − �k−1

)(

� − �k+1
�k − �k+1

)

…
( � − �p+1
�k − �p+1

)

. (20)

These considerations allow for very high-order approximation spaces, and the resulting finite element methods are generally

referred to as spectral element methods.

4.3 Enrichment for holes and material interfaces

The extended finite element method is an instance of the partition-of-unity finite element method,6 which provides a means

to include known solution characteristics in the approximation space. This is accomplished by augmenting the standard finite

element space with the product of partition-of-unity functions and enrichment functions. In this paper, we choose finite element

basis functions as the PU functions, though other choices with desirable properties are also available.

Even though the X-FEM can be used to model a domain that contains both holes and material interfaces, to simplify the

exposition, we treat each problem separately. In Section 4.3.1 and Section 4.3.2, we detail the specific enrichment functions used

to model holes and material interfaces, respectively.

4.3.1 Modeling of holes

The location of Γhole is defined implicitly through the curve '(x) = 0, where '(x) is a level set function that is greater than zero

when x ∈ Ω, less than zero when x ∈ Ωhole, and equal to zero when x is on Γhole. Level set functions for various scenarios are

given in Section 2.



20 E. B. CHIN AND N. SUKUMAR

V ( x, y ) = 0
hole

V ( x, y ) = 1

hole

(a) (b)

FIGURE 9Modeling a void with the X-FEM. (a) Enrichment function for a circular void, and (b) enriched DOFs (circles) and
removed DOFs (crosses) in the vicinity of a void for bilinear finite elements.

To capture the effect of holes on the finite element approximation, we construct an enrichment function based on the level set

description of the void geometry as follows:69,3

V (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if '(x) ≥ 0

0 if '(x) < 0
∀x ∈ Ω ∪ Ωhole. (21)

The enrichment function V (x) for the level set function that is illustrated in Fig. 3 is plotted in Fig. 9a. The choice of either '(x)

or 'ℎ(x) in (21) is valid. Choosing '(x) allows the geometry of the hole to be exactly represented, but will yield the same rate

of convergence as selecting 'ℎ(x).

For an element in which Ωe ∩Ωhole ≠ ∅, the extended finite element approximation of the displacement field u(x) ∶ Ω̄→ ℝ2

is:69

uℎe (x) =
∑

i∈Ie

Ni(x)V (x)ui, (22)

where ui are the nodal displacement degrees of freedom. Based on the location of Γhole with respect toΩe, two cases are possible:

1. Ωe ∩ Γhole = ∅: the entirety of Ωe is located in Ωhole.

2. Ωe ∩ Γhole ≠ ∅: a portion of Ωe is located in Ω while the remainder is located in Ωhole.
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mat

FIGURE 10 Two-phase composite material. Enriched nodes are marked with an open circle.

For case 1, u(x) is zero in the entire element. For case 2, u(x) is discontinuous across Γhole. Note that if case 1 occurs, there may

exist nodes that have no finite element basis function support. An illustration of this scenario is shown in Fig. 9b. The DOFs at

these nodes (the ones that contain crosses in Fig. 9b) are removed during the solution procedure.

4.3.2 Modeling material interfaces

Similar to the case of modeling holes with the X-FEM, we can leverage the level set method to simplify locating and recon-

structing Γmat. For material inclusions, the level set function, 'ℎ(x), is greater than zero when x ∈ Ω1, is less than zero when

x ∈ Ω2, and is equal to zero when x is on Γmat. In an element that intersects the material interface, i.e., Ωe ∩ Γmat ≠ ∅, the

extended finite element approximation takes the form:3

uℎe (x) =
∑

i∈Ie

Ni(x)ui

⏟⏞⏞⏞⏟⏞⏞⏞⏟
standard FE

+
∑

j∈Je⊆Ie

Nj(x) (x)aj

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
enriched contribution

, (23)

where  (x) is the enrichment function and Je is the index set of nodes belonging to Ωe whose basis function support intersects

Γmat. A schematic of a two-phase composite (circular interface) that is modeled using a quadratic finite element mesh is depicted

in Fig. 10. In Fig. 10, all the enriched nodes are shown as open circles.
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To model material interfaces using the X-FEM, the normal strain must admit a jump that satisfies the Hadamard compatibility

condition at the interface between two dissimilar isotropic materials. Sukumar et al.3 exploited the level set function to devise

an enrichment function  (x) = |'ℎ(x)| (henceforth termed the abs-enrichment) that is discontinuous normal to 'ℎ(x) = 0;

however, this choice of the enrichment function cannot reproduce affine fields on both sides of a rectilinear interface due to the

presence of nonzero enrichment in (blending) elements adjacent to the material interface.Moës et al.10 introduced amodification

of the absolute value function (hereafter referred to as the modified abs-enrichment):

 (x) =
∑

i∈Ie

Ni(x)|'i| −
|

|

|

'ℎ(x)||
|

, (24)

where we recall 'i ∶= '(xi). In the modified abs-enrichment, the second term is the negative of the enrichment from Sukumar

et al.3 The first term is a smooth field, which guarantees all nodal values of the enrichment function are zero—even nodal values

inside an element. Their sum produces a function that is weakly discontinuous across the interface and is a smooth polynomial

function elsewhere. This function is nonzero only on elements that intersect Γmat and yields optimal convergence rates for

bimaterial interface problems with bilinear finite elements (p = 1). However, for higher-order finite elements, the approximation

space cannot reproduce p-th order polynomials on both sides of the interface (as proved in Section 4.3.3) and optimal rates are

not retained using this enrichment.9

In one dimension, two desirable features of the material interface enrichment function are:

1. linear, ridge-like variation near the material interface, which is displayed by |'(x)|, and

2. zero-value outside enriched elements to avoid the effects of blending elements.

If the enrichment function is not affine, the space of polynomial functions that can be reproduced is affected (see Section 4.3.3

for details). The modified abs-enrichment in one dimension for linear and quadratic elements is presented in Fig. 12. The abs-

enrichment only possesses the first feature, whereas the modified abs-enrichment has both features for p = 1 but retains only

the second feature for p ≥ 2.

We seek to reproduce both these features with an enrichment function that is also valid in two- and three-dimensional domains.

Note that the modified abs-enrichment reproduces both these features for linear elements in two dimensions and three dimen-

sions. To reproduce this behavior in higher-order elements, we propose an enrichment function similar in form to the modified

abs-enrichment, but different in one crucial respect. Instead of being zero-valued at all nodal values (as is the case with the mod-

ified abs-enrichment), we only require nodal values to be zero at nodes on the boundary of the enriched region. In the modified

abs-enrichment, zero-value of the enrichment function at nodes is enforced through the first term of (24). We propose a modifi-

cation to this term, by enforcing zero-value only on the nodes located on the boundary of the enriched region. On a higher-order
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quadrilateral element, the remaining nodal values are set to the required value to reproduce a bilinear field, based on nodal values

at the four corners of the element. A more formal statement of the proposed enrichment function follows.

Over the element tessellation  , let Ienr be the set consisting of nodes that are enriched, i.e., the nodal basis function support

of these nodes intersects Γmat (nodes marked by circles in Fig. 10). We define Izero as the subset of Ienr with enriched nodes that

belong to elements that do not intersect Γmat (see Fig. 11). The material interface enrichment function is set to zero at these

nodes. For a point x ∈ Ωe, we define the function

gℎ(x) =
∑

i∈Ie

Ni(x)gi, (25)

where gi are nodal values. For the modified-abs enrichment, gi = |

|

'i||; however, in the proposed enrichment function, gi are set

by a two-step process.

1. For nodes i ∈ Izero, set gi = |'i|, and for all other nodes set gi = 0.

2. Then, for nodes not at the vertices of the element and in Ienr∖Izero, set gi =
4
∑

j=1
N (p=1)
j (xi)gj , where N

(p=1)
j (x) are the

bilinear finite element shape functions and gj are the element vertex values of g that are set in step 1.

Using (25), we define our material interface enrichment function as

 (x) = gℎ(x) − |'ℎ(x)| ∀x ∈ Ωe. (26)

In (26), the second term introduces the ridge with discontinuous derivative at Γmat, whereas the first term shifts the second term

to be zero-valued on the appropriate boundaries and approximates a smoothly interpolated bilinear function elsewhere. In one

dimension, our enrichment function is presented in Fig. 12. The proposed enrichment function retains a linear ridge shape for

p > 1 and vanishes on the boundary of the enriched element. Even though Fig. 12 illustrates that the proposed enrichment for

p = 2 matches the modified abs-enrichment for p = 1 in one dimension, in two (and higher) dimensions, the two enrichment

functions are distinct. In Fig. 13, the proposed enrichment function for a circular inclusion over quadratic elements is plotted.

We set the unknown DOFs of g based on bilinear interpolation of the nodal values at the vertices; however, other choices are

also possible. For example, one could choose coefficients for g by minimizing the second derivatives of g(x) normal to Γmat,

which may improve the approximation, especially in higher-order elements (p ≥ 3). Finally, we note the shape of the enrichment

function is strongly influenced by the nature of '(x). The enrichment function should approximate a ridge function to recover

p-th order polynomial approximation on both sides of the material interface (see the analysis in Section 4.3.3). However, a ridge

function is reproduced in (26) only if the level set function is a multiple of the distance function.We investigate the consequences

of choosing a level set function that is not the distance function in the section that follows and via an example in Section 6.6.
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FIGURE 11 Nodes in Izero (marked by open squares) on a 10 × 10 quadratic finite element mesh.

4.3.3 Approximation properties for material interface problems

One dimension: In one dimension, the proposed enrichment function reduces to a ridge function (see Fig. 12i). For an enriched

approximation space, we assert that two arbitrary p-th degree polynomials that meet with C0 continuity at the material interface

can be exactly reproduced. However, even in one dimension, it is not readily apparent that this holds, and hence we now present

a proof of this assertion.

Proof. In an enriched element Ωe = [x1, xp+1] with nodes Ie = {1,… , p + 1}, we define the polynomial

u(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u−(x) , x1 ≤ x ≤ �

u+(x) , � < x ≤ xp+1

, (27a)

where

u−(x) =
p
∑

k=1
bk (x − �)

k + d, u+(x) =
p
∑

k=1
ck (x − �)

k + d. (27b)

In (27), bk and ck (k = 1,… , p) are 2p (known) coefficients, � ∈ Ωe is the location of the interface, and d = u−(�) = u+(�).

Note that u−(x) and u+(x) are two p-th degree polynomials that are equal at x = �, but otherwise arbitrary. The coefficients bk,
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Modified abs-enrichment and proposed enrichment, p = 1

−

xx1 x2

Γmat
x = α

|ϕh(xxx)|

(a)

+

xx1 x2

Γmat
x = α

gh(xxx)

(b)

=

xx1 x2

Γmat
x = α

ψ(xxx) = gh(xxx)−|ϕh(xxx)|

(c)

Modified abs-enrichment, p = 2

−

xx1 x2 x3

Γmat
x = α

(d)

+

xx1 x2 x3

Γmat
x = α

(e)

=

xx1 x2 x3

Γmat
x = α

(f)

Proposed enrichment, p = 2

−

xx1 x2 x3

Γmat
x = α

(g)

+
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Γmat
x = α

(h)

=

xx1 x2 x3

Γmat
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(i)

FIGURE 12 (a)–(c) Both the modified abs-enrichment and the proposed enrichment over a one-dimensional linear element.
(d)–(f) Modified abs-enrichment and (g)-(i) the proposed enrichment over a one-dimensional quadratic element. The enrichment
functions are computed as the sum of −|'ℎ(x)| in (a), (d), and (g) with gℎ(x) in (b), (e), and (h). Their sum is shown in (c)
for a linear element, in (f) for the modified-abs enrichment on a quadratic element, and in (i) for the proposed enrichment on a
quadratic element.

ck, and d provide 2p + 1 parameters to uniquely define u−(x) and u+(x). The polynomials in (27) can also be expressed as

u−(x) =
p
∑

k=0
b̃k (x − �)

k +
x − x1
� − x1

p−1
∑

k=0
c̃k (x − �)

k , u+(x) =
p
∑

k=0
b̃k (x − �)

k +
xp+1 − x
xp+1 − �

p−1
∑

k=0
c̃k (x − �)

k , (28)

where b̃k (k = 0,… , p) and c̃k (k = 0,… , p−1) are 2p+ 1 coefficients shared between u−(x) and u+(x). The coefficients b̃k and

c̃k are related to bk, ck, and d as follows:

c̃k =
(bk+1 − ck+1)(� − x1)(xp+1 − �)

xp+1 − x1
,

b̃0 = d − c̃0, b̃k =
ck(xp+1 − �) + bk(� − x1)

xp+1 − x1
− c̃k (k = 1,… , p − 1), b̃p =

cp(xp+1 − �) + bp(� − x1)
xp+1 − x1

.
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0 0.05 0.1 0.15

(a) |'ℎ (x)| (b) g(x) (c)  (x) = g(x) − |'ℎ (x)|

FIGURE 13 Construction of the enrichment function,  (x), for the material interface problem on a quadratic finite element
mesh (p = 2). The plots are on the element domain Ωe = (−0.4,−0.2)2, with '(x) = ||x|| − 0.4.

In (28), the first summation of u−(x) and u+(x) represents a p-th degree polynomial, whereas the second summation is a (p−1)-th

degree polynomial multiplied by a ridge function,

 ̃(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

 −(x) , x1 ≤ x ≤ �

 +(x) , � < x ≤ xp+1

0 otherwise

, (29a)

where

 −(x) =
x − x1
� − x1

,  +(x) =
xp+1 − x
xp+1 − �

. (29b)

The ridge function is unity at x = � and decreases linearly to zero at x = x1 and x = xp+1. Using (29), (28) can be written as

u−(x) = fp(x) +  −(x)gp−1(x), u+(x) = fp(x) +  +(x)gp−1(x), (30)
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where fp(x) and gp−1(x) are polynomials of degree p and p − 1, respectively.

The enriched finite element approximation in Ωe is:

uℎe (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

uℎ−(x) , x1 ≤ x ≤ �

uℎ+(x) , � < x ≤ xp+1

, (31a)

where

uℎ−(x) =
p+1
∑

i=1
Ni(x)ui +  0 −(x)

p+1
∑

i=1
Ni(x)ai, uℎ+(x) =

p+1
∑

i=1
Ni(x)ui +  0 +(x)

p+1
∑

i=1
Ni(x)ai. (31b)

In (31), the constant  0 is the amplitude of the enrichment function at x = �, and ui and ai are nodal coefficients. Since  (x)

is an affine function, the second summation in uℎ−(x) and u
ℎ
+(x) is in general a polynomial of degree p + 1. To eliminate the

coefficient that multiplies xp, we introduce a constraint on the system:

p+1
∑

i=1

ai
(xi − x1)… (xi − xi−1)(xi − xi+1)… (xi − xp+1)

= 0. (32)

Since a p-th order finite element basis uniquely defines a polynomial of degree p and the finite element basis constrained by (32)

uniquely defines a polynomial of degree p− 1, it is possible to choose coefficients ui and ai to match the polynomials fp(x) and

gp−1(x). Selecting ui ∶= fp(xi) and ai ∶= gp−1(xi)∕ 0, we recover

p+1
∑

i=1
Ni(x)ui =

p+1
∑

i=1
Ni(x)fp(xi) = fp(x),  0

p+1
∑

i=1
Ni(x)ai =

p+1
∑

i=1
Ni(x)gp−1(xi) = gp−1(x), (33)

and hence the assertion is established.

If the enrichment function  (x) is a polynomial of degree greater than 1 (as with the modified abs-enrichment), additional

constraints would be required on the coefficients ai to ensure that the resulting approximation uℎe (x) is of degree p. However,

these additional constraints result in fewer than 2p + 1 unique coefficients remaining in (31) to define the approximation. As

established above, 2p + 1 parameters are needed to uniquely define the polynomials in (27).

Two dimensions: Having established the connection between the extended finite element approximation using the bimaterial

enrichment function and the reproduction of arbitrary polynomial functions in one dimension, we now turn to the two-

dimensional case. We can gain a better understanding of the enriched approximation space in two dimensions through use of

the L2 minimization procedure used in Section 4.1 of Chin et al.51 Consider the biunit square Ω = [−1, 1]2, which contains a

weak discontinuity across the interface located along the implicitly defined line '(x) = (y− x)∕
√

2− 1
4
= 0. We note that '(x)

is also a signed distance function from the interface. Let u(x) ∶ Ω ←→ ℝ be a scalar-valued polynomial of degree two that has a
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discontinuous derivative across '(x) = 0:

u(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−(x − y)2 + 2(x − y) + 13+3
√

2
4

, '(x) ≤ 0

(x − y)2 − (x − y) + 3, '(x) > 0
. (34)

We seek the best approximation of u(x) using a single quadratic (p = 2) extended finite element approximation:

uℎe (x) =
∑

i∈Ie

Ni(x)ui +
∑

j∈Je

 (x)Nj(x)aj .

Let Uℎ be the extended finite element space. If u(x) ∈ Uℎ, then the best approximation in Uℎ should exactly reproduce u(x).

The best approximation to u(x) is obtained by determining the L2 projection of u(x) on Uℎ. The coefficients d ∶= {u,a} are

obtained as the solution of the linear system:Md = f , where entries of the mass matrixM and force vector f are:

Mij = ∫
Ω

Ñi(x)Ñj(x) dA, fi = ∫
Ω

Ñi(x)u(x) dA,

where Ñi(x) = Ni(x) for standard degrees-of-freedom and Ñi(x) =  (x)Ni(x) for enriched degrees-of-freedom. The evaluation

ofM and f requires integrating weakly discontinuous polynomials. For integration, we split the domain at the location of the

interface, then use the HNI method to integrate the polynomials that are present on either side of the weak discontinuity. The

error u− uℎ using the modified abs-enrichment ranges from about +0.3 to −0.2, as shown in Fig. 14a. On the other hand, using

the proposed enrichment function, u − uℎ reduces to (10−13), which is close to machine precision. Based on these findings,

we observe that the enrichment function proposed in (26) can reproduce weakly discontinuous polynomial functions in two

dimensions when the level set function matches the signed distance function.

To reveal the consequences of choosing a level set function that is not a signed distance function, we now select

'(x) =

(

y − x
√

2

)2

+ 3

(

y − x
√

2

)

− 13
16

(35)

to represent the same interface. The function u(x) defined in (34) is retained. The spatial error between u(x) and uℎ(x) is displayed

in Fig. 15a for the modified abs-enrichment function and in Fig. 15b for the new enrichment function. Maximum error using the

modified abs-enrichment increases to over 0.35, while maximum error in the best L2 approximation increases to approximately

0.02 using the proposed enrichment—considerably higher than the (10−13) error observed when the signed distance function

is selected as the level set function.

In the circular inclusion (curved interface) problem in Section 6.6, a non-polynomial signed distance function is used for the

level set function. As a result, some error is introduced due to the (polynomial) finite element interpolation of the signed distance

function. With ℎ-refinement of the mesh, error in the polynomial approximation of the signed distance function reduces, and

therefore this source of error does not affect the rate of convergence of the method. Additionally, as ℎ→ 0, the signed distance
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FIGURE 14 Error between u(x) and uℎe (x), the best extended finite element approximation to u(x) in Uℎ, with the level set
function equal to the signed distance function. (a) Modified-abs enrichment function10 and (b) proposed enrichment function.
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FIGURE 15 Error between u(x) and uℎe (x), the best extended finite element approximation to u(x) in Uℎ, with the level set
function in (35). (a) Modified-abs enrichment function10 and (b) proposed enrichment function.

function approaches an affine interface, akin to the example in this section. To obtain optimal rates of convergence when solving

a boundary-value problem, p-th order polynomial reproduction is sufficient on both sides of the interface. On affine interfaces,

this behavior is observed with the proposed enrichment when used in conjunction with a signed distance function. Since p-th

order polynomial reproduction on both sides of an affine interface is not retained with the modified abs-enrichment, suboptimal

rates of convergence are obtained, as observed in Cheng and Fries9 and also verified in our own studies.
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4.4 Discrete equations

For the hole problem, choosing (22) to form the displacement field u(x) and the virtual displacement field �u(x) in (19), and

then using the arbitrariness of nodal variations, we obtain the element level quantities:

Ke = ∫
Ωe∩Ω

(

Bu(x)
)TD(x)Bu(x) dx, fe = ∫

Ωe∩Ω

(

Nu(x)
)T b(x) dx + ∫

Γe∩Γt

(

Nu(x)
)T t̄(x) dS, (36)

where Γe is the boundary ofΩe andD(x) is the piecewise constant two-dimensional linear elastic constitutivematrix. In addition,

Nu(x) is the standard element shape function vector and

B�(x) =
[

B1�(x) B
2
�(x) … B|L|

� (x)
]

, (37)

where � = u, L = Ie and

Blu (x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Nl,x(x) 0

0 Nl,y(x)

Nl,y(x) Nl,x(x)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (38)

When Ωe ∩ Ω ≠ Ωe, the region of integration does not coincide with the element, and standard tensor-product Gauss cubature

fails to yield satisfactory results.

For the material interface problem, choosing (23) to represent u(x) and �u(x) in (19), and using a standard Galerkin procedure,

we obtain the following element quantities:

Ke =∫
Ωe

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

Bu(x)
)TD(x)Bu(x)

(

Bu(x)
)TD(x)Ba(x)

(

Ba(x)
)TD(x)Bu(x)

(

Ba(x)
)TD(x)Ba(x)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

dx,

fe = ∫
Ωe

[

Nu(x)Na(x) (x)
]T b(x) dx + ∫

Γe∩Γt

[

Nu(x)Na(x) (x)
]T t̄(x) dS,

(39)
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where B�(x) for � = u, a is defined in (37) and Na(x) is the element shape function vector for nodes in Je. Referring to (37),

for � = a and L = Je, we define

Bla (x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

Nl(x) (x)
)

,x 0

0
(

Nl(x) (x)
)

,y

(

Nl(x) (x)
)

,y

(

Nl(x) (x)
)

,x

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (40)

Weak (strain) discontinuities due to  (x) and strong discontinuity of D(x) across Γmat result in the integrands in (39) being

discontinuous, rendering tensor-product Gauss cubature ill-suited to handle integration.

Assembling element level quantities using the finite element assembly procedure, the discrete linear system of equations,

Kd = f , is obtained. Element-level integration over elements intersected by holes and over discontinuous integrands is con-

ducted using the HNI method, which requires homogeneous integrands. We elaborate on the homogeneous functions that make

up these integrands in Section 4.5. Details of the integration procedure are described in Section 5.

4.5 Homogeneous functions in the X-FEM

The integrands introduced in Section 4.4 consist of vectors and matrices with discontinuous polynomial terms. Since a poly-

nomial is a linear combination of homogeneous monomials, the integrands in (36) and (39) are all compatible with the HNI

method provided we subdivide the integration regions into ones that contain continuous integrands.

Specifically,D(x) is a constant in Ω1 and Ω2, and is therefore a homogeneous function of degree q = 0. The shape functions

for a p-th order spectral finite element are polynomial functions of degree q = 2p. For example, with p = 2, the i-th shape

function can be decomposed to

Np=2
i (x) = N [0]

i +N [1]
i (x) +N

[2]
i (x) +N

[3]
i (x) +N

[4]
i (x),

where the bracketed superscript refers to the degree of homogeneity of the polynomial. The matrixB�(x) contains derivatives of

the shape functions, which are polynomials of degree q = 2p−1. Since  (x) is computed using shape functions, the enrichment

function is a linear combination of homogeneous functions. Finally, since b(x) must be integrated over the element, we require

the body force to be either a homogeneous function or decomposable into homogeneous functions.

For the integrands in (36) and (39), products of these homogeneous terms of a polynomial are computed. Special care is taken

to ensure the product remains homogeneous. This process is simplified by computing P = a1⊗a2, where a1 and a2 are vectors

containing the homogeneous terms of a polynomial. The matrix P is assigned to a new vector of homogeneous terms via the

entries of a Hankel matrix with appropriate values.



32 E. B. CHIN AND N. SUKUMAR

4.6 Conditioning of the stiffness matrix

The extended finite element approximation for holes and material inclusions can induce high condition number in the global

finite element stiffness matrix, which can lead to reduced accuracy when solving the algebraic system of linear equations.70 The

reason for poor matrix conditioning is distinct in the hole problem versus the material inclusion problem. For voids, elements

where Ωe ∩ Ω is very small compared to Ωe cause very small regions of support in some degrees of freedom. These ultimately

result in modes of deformation with much lower stiffness when compared to others, resulting in an ill-conditioned system of

linear equations. In the material inclusion problem, conditioning issues arise when Ωe ∩ Ω1 or Ωe ∩ Ω2 is very small compared

toΩe. This causes the approximation space of the enriched DOFs to be similar to the approximation space of unenriched DOFs,

causing near linear dependence in the linear system of equations. A summary of methods to improve conditioning in the X-FEM

is discussed in de Prenter et al.71 Two of these methods are implemented in the results presented in Section 6.

1. A Jacobi preconditioner that normalizes the diagonal of the stiffness matrix.72

2. An additional term in the weak form called a ghost penalty52,16 that provides coercivity over the computational domain

for the hole problem.

A Jacobi preconditioner is a method to improve a badly scaled matrix that is otherwise well-conditioned. The implementation

of the preconditioner is as follows. For the linear system of equationsKd = f , we make the substitution d = Dd̃ whereD is the

inverse of the square root of the main diagonal ofK , i.e.,D = diag (K)−1∕2. Rather than solving the original system of equations,

we instead solve
(

DTKD
)

d̃ = DTf , where
(

DTKD
)

is a modified stiffness matrix with all ones on the diagonal. Examples

of the effect of the preconditioner on the condition number of the stiffness matrix are provided in Section 6.1, Section 6.2, and

Section 6.5.

The ghost penalty term is designed to eliminate the influence of very small cut elements on the condition number of the

stiffness matrix. The term adds an additional stiffness contribution to DOFs that have some support in Ωhole, which minimally

changes the finite element solution. We establish the set of elements in Ω and the set of cut elements as

a =
{

Ti ∶ Ti ∈  , Ωi ∩ Ω ≠ ∅
}

, c =
{

Ti ∶ Ti ∈ a, Ωi ∩ Ω ≠ Ωi
}

,

where Ti is the i-th element in  with domain Ωi. Additionally, we define a set of edges

 =
{

F = Ti ∩ Tj ∶ Ti ∈ a, Tj ∈ c
}

for i, j = 1,… ,M . The set of edges  is demonstrated for two domains in Fig. 16. Following Sticko et al.,17 the supplemental

weak form term in (19) is

j(u, �u) = �
∑

F∈

p
∑

k=1

ℎ2k−1

(2k + 1) (k!)2 ∫
F

[

)knu
] [

)kn�u
]

dS, (41)
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hole

hole

(a)

hole

hole

(b)

FIGURE 16 Illustrating the set of edges  on which the ghost penalty stabilization term is computed. Edges in  are bold. The
element tessellation,  , is a 10 × 10 mesh of square elements.

where n denotes a unit vector normal to F , � = 
 (� + 2�), 
 is a parameter that sets the magnitude of the ghost penalty, � and

� are the Lamé parameters for the material, p is the order of the finite element approximation, and ℎ is the average characteristic

element length for the two elements connected to F . The bracket [⋅] is used to represent the difference of its argument evaluated

over the elements attached to F . Note the computation of (41) is simplified since we use a Cartesian mesh that is aligned with

the Cartesian axes. The ghost penalty contribution penalizes derivative discontinuities over element edges. The effectiveness of

the ghost penalty term is evaluated for an example in Section 6.1.

5 INTEGRATION OF DISCONTINUOUS POLYNOMIALS

Polynomials are integrated accurately and efficiently using Gauss cubature. However, integration accuracy is severely compro-

mised by lack of smoothness (discontinuous or piecewise-continuous polynomials) in the integrand. To improve integration

accuracy of discontinuous polynomial integrands that arise in the X-FEM for holes and material discontinuities, we employ

the HNI method. For elements with continuous integrands, tensor-product Gauss cubature is used. The HNI scheme requires a

three-step approach:

1. Subdivide the element at Γmat or Γhole into two regions separated by a curved section that follows Γmat or Γhole.

2. Develop a cubature rule for the region in Ω (hole problem) and for both regions for the material interface problem.
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(a) (b) (c) (d)

FIGURE 17 Examples of regions on which integration can be performed using the HNI method without the need for mesh
refinement. (a) An element that wholly contains an interface, (b) an element cut by an interface with sharp points, (c) an element
cut in multiple locations, and (d) an element cut by a complicated interface with high curvature.

3. Carry out cubature using (14) for affine edges and (16) over curved sections.

We describe the details for each of the three steps in the remainder of this section.

5.1 Element subdivision and interface reconstruction

To identify elements cut by Γhole or Γmat, the level set function is first evaluated at all the nodes. Based on the value of the level set

function, the nodes are either assigned as inside the level set geometry, on the level set zero (within a prescribed tolerance close

to machine precision), or outside the level set geometry. Elements that have at least one node inside the geometry and at least

one node outside the geometry are considered as cut elements. These cut elements are subdivided at the interface (either Γhole

or Γmat), recovering smooth, polynomial integrands within each subelement. Cubature points lie on the boundary using the HNI

method; therefore, within these cut elements, the interface must be obtained in closed form to define the boundary of regions of

integration on either side of the interface. Whether the interface is reconstructed exactly or approximately is dependent on how

the level set geometry is described. Four methods for representing Γhole are used in this paper, which are covered in Section 2. For

material interface problems, Γmat is only reconstructed using the procedure described in Section 2.3. This provides consistency

with the enrichment function, which is also constructed using the finite element interpolant.

The use of theHNI scheme simplifies interface reconstruction, even for very complicated scenarios such as a level set geometry

completely contained in a single element, sharp features in level set isocontours, level set curves entering and exiting an element

multiple times, or curved regions with high curvature in elements. Scenarios such as sharp corners can occur, for example, when

multiple level set functions are used in one element—a scenario the HNI scheme is capable of handling. Examples of these

complicated level set functions are illustrated in Fig. 17. The process of interface reconstruction is simplified over these complex

geometries since element tessellation is not required for purposes of integration. For spectral X-FEM, the ability to correctly

account for these types of features is crucial to retaining optimal convergence behavior in the method.
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In the following two examples, we numerically investigate the behavior of the interface reconstruction scheme presented

in Section 2.2 by computing the area of regions defined as the intersection of a square domain, Ω, and an implicitly defined

domain, '(x) > 0. Curved portions of the boundary of the region coincide with the zero isocontour of the level set function.

In all examples, the zero isocontour is approximated using G1 interpolatory optimized cubic Hermite functions. The area of the

approximated region is determined using the HNI method. Since Hermite functions are polynomial, cubature of the approximate

geometry is exact using an appropriate Gauss rule. In the first example, the interfaces '(x) = 0 are polynomial curves and in

the second example, the interfaces include a conic section and non-polynomial curves.

5.1.1 Example: Integration error versus � with polynomial curve interfaces

We wish to compute the area of the region defined as the intersection of a square domain Ω = [−1, 1]2 and an implicit region

defined by '(x) > 0, where '(x) = 0 is a polynomial curve. A cubic Hermite curve can provide an exact representation for

polynomial curves up to degree three. We verify this property in this example and examine the number of iterations needed for

convergence using the minimization procedure outlined in Section 2.2. When the degree of a polynomial curve is greater than

three, we investigate the convergence properties of the integration error in computing the area versus increasing cubic Hermite

curve approximations to the polynomial curve. To generate a level set isocontour that is a polynomial curve, we choose the level

set function

'(x) =
p
∑

k=0
bkx̄

k − ȳ, (42)

where x̄ = x cos � + y sin �, ȳ = −x sin � + y cos �, and � is the counterclockwise angle of rotation from x to x̄.

For p ≤ 3, we select values of � and bk that correspond to linear, quadratic, and cubic curves, then generate the cubic Hermite

function that minimizes the objective function in (6). In the minimization procedure, the BFGS algorithm is used to approximate

the Hessian of the objective function. Using this optimized cubic Hermite spline, we then compute the estimated error e(m∗)

in (7) and the error in computing the area of intersection ofΩ = [−1, 1]2 and'(x) ≥ 0. Values of e(m∗), error in area calculation,

and number of iterations to convergence for the values of � and parameters bk tested are presented in Table 1. Illustrations of the

three regions defined by the level set functions are provided in Fig. 18. The linear curve is reproduced exactly, with no iterations

required. This is expected since the curve is uniquely defined by its endpoints. The quadratic and cubic curves require 3 and

13 iterations, respectively, to arrive at the optimal curve. For both curves, both e(m∗) and integration error are near machine

precision. These results reveal that the cubic Hermite function can exactly reproduce these curves.

Cubic Hermite parametric curves cannot reproduce polynomial curves that are degree p > 3. However, multiple cubic Hermite

curves can be used to reduce the error of the approximation, as measured by e(m∗). We select two implicit polynomial curves to

test: one quartic and one quintic. The level set function follows the form of (42), and the coefficients and � are listed in Fig. 19a

for the quartic curve and in Fig. 20a for the quintic curve. For five different values of � (10−4, 10−6, 10−8, 10−10, and 10−12), we
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TABLE 1 Iterations to generate the optimal cubic Hermite curve to approximate a polynomial curve, estimated error in the
approximation, e(m∗), and integration error in computing the area of the regions partially bounded by the polynomial curve (see
Fig. 18 for illustrations of the regions).

p � b0 b1 b2 b3 Iterations e(m∗) Integration error

1 − 3�
4

1 −2 0 0 0 7.4 × 10−17 6.8 × 10−17

2 − �
4

− 3
4

− 1
3

4 0 3 5.2 × 10−17 0

3 �
6

− 1
4

−1 1
5

1 13 1.1 × 10−16 2.2 × 10−16

(a) (b) (c)

FIGURE 18 Example regions of integration defined as Ω ∩ {'(x) > 0}, where '(x) = 0 is a polynomial curve. (a) p = 1, (b)
p = 2, and (c) p = 3.

tabulate the number of cubic Hermite curve segments required and the error in computing the area of the region of integration.

The regions of integration, distribution of cubic Hermite curves for � = 10−8, integration error versus �, and integration error

versus the number of curve segments are presented in Fig. 19 and in Fig. 20 for the quartic curve and quintic curve, respectively.

The distribution of Hermite parametric curves along the implicitly defined boundary is not equal since additional Hermite curves

are placed adaptively in regions where e(m∗) > �. In these two examples, integration error and � are approximately equal,

revealing the relationship between e(m∗) and integration error. The rate of convergence with additional curve segments ranges

between R = 5 and R = 6. This is an improvement when compared to C2 cubic Hermite splines, which have a convergence rate

of R = 4.

5.1.2 Example: Integration error versus � with other interfaces

In this example, we compute the area of the regions pictured in Fig. 21 which consist of squares cut by a propeller (Fig. 21a), a

circle (Fig. 21b), and a sine wave (Fig. 21c). The location of Ω and the level set functions that are used to generate the curved

portion of the boundary are listed in Table 2. For the circular region, the curved interface is a conic section and for the propeller
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FIGURE 19 Computing the area of a region bounded by a quartic polynomial curve of the form (42). (a) Coefficients of the
polynomial, (b) region of integration defined asΩ∩{'(x) > 0}, (c) cubic Hermite curve endpoints for � = 10−8, (d) integration
error in computing the area of the region versus �, and (e) integration error in computing the area of the region versus number
of curve segments.

and the sine wave, the curved interface is a trigonometric function. Since polynomial curves such as the cubic Hermite function

cannot reproduce these curved interfaces, we instead measure how the parameter � and the number of curves used to approximate

the interface compare to the error in measuring the area of the region. Note that rational Bézier curves can reproduce conic

sections exactly (see Section 2.1), but they cannot reproduce non-polynomial curves. As in the previous example, five values of

� are selected: 10−4, 10−6, 10−8, 10−10, and 10−12. We plot integration error versus the parameter � and integration error versus
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FIGURE 20 Computing the area of a region bounded by a quintic polynomial curve of the form (42). (a) Coefficients of the
polynomial, (b) region of integration defined as Ω ∩ {'(x) > 0}, (c) cubic Hermite curve endpoints for � = 10−8, (d) error in
computing area of the region versus �, and (e) error in computing area of the region versus number of curve segments.

the number of cubic Hermite functions used to approximate the level set zero isocontour in Fig. 22. We observe from Fig. 22a

that the parameter � and the integration error in computing the area of the region are approximately equal. In addition, Fig. 22b

shows that the integration error with increasing curve segments converges at a rate of R = 5.6 for the propeller example to a

rate of R = 6.5 for the sine wave example.
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(a) (b) (c)

FIGURE 21 Example regions of integration defined as Ω ∩ {'(x) > 0}. (a) Propeller: a biunit square, Ω = [−1, 1]2, cut by a
level set function defined in polar coordinates, '(r, �) = r + 2

5
sin4

(

3
2
�
)

− 4
5
. (b) Circle: a square, Ω = [0, 1]2, intersected with

the level set function '(x) = ||x|| − 0.5. (c) Sine wave: a biunit square, Ω = [−1, 1]2, cut by a low amplitude sinusoidal wave,
'(x) = x − 1

2
sin

(

2y + 1
3

)

.

TABLE 2 Definitions for Ω and '(x) for regions of integration defined by non-polynomial level set functions.

Region Ω '(x) or '(r, �)

Propeller [−1, 1]2 r + 2
5
sin4

(

3
2
�
)

− 4
5

Circle [0, 1]2 ||x|| − 0.5

Sine wave [−1, 1]2 x − 1
2
sin

(

2y + 1
3

)
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FIGURE22Computing the area of a square cut by a semi-circular hole (see Fig. 21b) using the optimization procedure described
in Section 2.2. (a) Integration error versus �, and (b) cubic Hermite functions required to satisfy e(m∗) ≤ � in all curve segments.
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5.2 Cubature rule with the HNI method

We desire a cubature rule of the form

∫
Ωe

ℎ(x) dx ≈
nq
∑

i=1
ℎ(xi)wi, (43)

where nq is the total number of cubature points,
{

xi
}nq
i=1 are the cubature points, and

{

wi
}nq
i=1 are the cubature weights. We

combine (13), (14), and (16) to recover an integration rule of this form for a homogeneous function over Ωe. However, since

the integrands for the X-FEM are generally the sum of multiple homogeneous functions of varying degree, we instead choose

to remove the portions of the cubature rule that are dependent on the degree of homogeneity of the homogeneous functions.

This permits generation of a single cubature rule that is applicable to all the homogeneous terms in the integrand. To separately

handle the case of the affine interface and the parametric interface, we split (43):

∫
Ωe

ℎ(x) dx = Iaffine + Iparametric, (44)

where Iaffine is the integral contribution from affine edges and Iparametric is the integral contribution from curved sections described

by parametric curves (we refer to these as parametric edges).

Consider a function ℎ(x) = f1(x) + f2(x) + … + fnℎ(x) that is the sum of nℎ homogeneous functions, where the degree of

the homogeneous function fi(x) is qi. Let the boundary be composed of n affine edges and m−n parametric edges. On the affine

edges, we can combine (13) and (14) and introduce the terms in ℎ(x) to obtain

Iaffine =
nℎ
∑

j=1

1
2 + qj

n
∑

i=1

bi
||ai|| ∫

Fi

fj(x) d�. (45)

To compute the one-dimensional integral, ∫Fi fj(x) d�, we introduce a Gauss quadrature rule,

∫
Fi

fj(x) d� ≈
nq1D
∑

k=1
fj(xk)w̄k,

where nq1D is the number of quadrature points that is needed to accurately integrate ℎ(x). Combining the Gauss rule with (45),

we obtain

Iaffine ≈
nqaffine
∑

l=1

nℎ
∑

j=1

1
2 + qj

fj(xl)wl , (46)

where l is an index that maps to a different unique values of (i, k) and wl = w̄kbi∕||ai||.

On the m − n parametric edges, (13) and (16) are combined:

Iparametric =
nℎ
∑

j=1

1
2 + qj

m−n
∑

i=1

1

∫
0

(

ci(t) ⋅
(

c′i (t) × e3
))

fj
(

ci(t)
)

dt. (47)
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Since different parametric edges may have different integrands, each parametric edge is provided its own quadrature rule. On

the i-th parametric edge, we introduce a Gauss quadrature rule to compute the one-dimensional integral,

1

∫
0

(

ci(t) ⋅
(

c′i (t) × e3
))

fj
(

ci(t)
)

dt ≈
nq1D
∑

ki=1

(

ci(tki) ⋅
(

c′i (tki) × e3
))

fj
(

ci(tki)
)

w̄ki ,

where nq1D is the number of quadrature points required to evaluate the one-dimensional integral to sufficient accuracy. Including

the quadrature rule in (47) and rearranging terms that appear, we obtain

Iparametric ≈
nqparametric
∑

l=1

nℎ
∑

j=1

1
2 + qj

fj(xl)wl , (48)

where l maps to a quadrature point/weight on one of the parametric edges, xl = ci(tki), and wl =
(

ci(tki) ⋅
(

c′i (tki) × e3
))

w̄ki .

A cubature rule for the element is generated by combining Iaffine and Iparametric, resulting in

∫
Ωe

ℎ(x) dx =
nq
∑

i=1

nℎ
∑

j=1

1
2 + qj

fj(xi)wi. (49)

Positive cubature weights are a desirable feature of an integration rule, since they prevent loss of significant digits due to finite-

precision arithmetic. To improve the number of positive weights in the final cubature rule, we choose the domain of integration

to be the biunit square centered at the origin. The standard bilinear finite element transformation is used to map points in the

element domain to the biunit square. Integrating over [−1, 1]2 results in positive weights for cubature points on the boundary

of the domain, though cubature weights on curves may be negative depending on the location of the curve with respect to the

origin. Additionally, integrating over the biunit square centered at the origin results in better scaling of the homogeneous terms,

limiting loss of precision errors caused by positive and negative terms in the homogeneous expansion.

5.3 Computation of element stiffness matrix and element force vector

In order to use the HNI method over a subdivision ofΩe, homogeneous expansions of the quantitiesBu(x),Ba(x),Nu(x),Na(x),

 (x), and b(x) are needed. The number of homogeneous terms in all of these expansions is dependent on the polynomial degree

of the spectral finite element. For a p-th order spectral element, we have the following homogeneous expansions:

Bu(x) = B[0]u + B[1]u (x) +… + B[2p−1]u (x),

Ba(x) = B[0]a + B[1]a (x) +… + B[4p−1]a (x),

Nu(x) = N [0]
u +N [1]

u (x) +… +N [2p]
u (x),

Na(x) = N [0]
a +N [1]

a (x) +… +N [2p]
a (x),

 (x) =  [0] +  [1](x) +… +  [2p](x).

(50)
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Inserting these homogeneous expansions into the stiffness matrix and force vector integrands for the hole problem given in (36),

we obtain

Ke = ∫
Ωe

(

B[0]u + B[1]u (x) +… + B[2p−1]u (x)
)T D(x)

(

B[0]u + B[1]u (x) +… + B[2p−1]u (x)
)

dx (51a)

and

fe = ∫
Ωe

(

N [0]
u +N [1]

u (x) +… +N [2p]
u (x)

)T (b[q1](x) +… b[qnq](x)
)

dx, (51b)

where b(x) is a body force vector field that can be expanded into nq homogeneous functions. The cubature rule in (49) is applied

to (51), which yields

Ke ≈
nq
∑

i=1

(

K [0]
e

2
+
K [1]
e (xi)
3

+… +
K [4p−2]
e (xi)
4p

)

wi (52a)

and

fe ≈
nq
∑

i=1

(

f [q1]e

2 + q1
(x) +… +

f [2p+qnq]e

2 + qnq + 2p

)

wi, (52b)

where K [k]
e (x) =

∑

i+j=k
(

B[i]u (x)
)T D[0](x)B[j]u (x) and f [k]e (x) =

∑

i+j=k
(

N [i]
u (x)

)T b[j](x). Similar equations are developed

for the material interface problem from (39).

6 NUMERICAL EXAMPLES

Several benchmark problems are chosen to demonstrate the efficacy of the HNImethod to solve extended finite element problems

with holes and material interfaces under plane strain conditions. The extended finite element code is developed using MatlabTM

R2018b. Unless stated otherwise, ghost penalty stabilization and the Jacobi preconditioner are used where applicable. Also,

rates of convergence are computed using linear regression of the three data points from the most refined meshes. Section 6.1

through Section 6.4 are for problems where the X-FEM is used to model holes in the domain. In Section 6.5 and Section 6.6,

we present several bimaterial problems that are modeled using the X-FEM. These examples are designed to illustrate various

aspects of the implementation described in the previous sections of this paper.

6.1 Uniaxial stress patch test

First we investigate the effect of the ghost penalty term and the preconditioner through a uniaxial stress patch test. The region

(0, 2) × (−1, 1) is discretized using a 2 × 2 finite element mesh. The problem domain Ω is (0, 1 + Δw) × (−1, 1), resulting

in a cut element on the right-end of the mesh. A load of magnitude �0 = 100 is applied in the y-direction on the top and

bottom edges of Ω. Symmetry boundary conditions about the y-axis are applied at x = 0, and the node at the origin is fixed.
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Material parameters are E = 1000 and � = 0.3. The configuration is illustrated in Fig. 23a. The problem is solved with

Δw = 0.99, 0.1, 0.01, 0.001, 0.0001, and 0.00001. Higher-order elements with p = 1, 2, 3, 4, and 5 are used. The problem

is solved under three scenarios: with no stabilization, with a ghost penalty term, and lastly with ghost penalty and a Jacobi

preconditioner. For the ghost penalty term, parametric studies indicate a parameter value of 
 = 0.01 considerably reduces the

condition number of the stiffness matrix while having minimal effect on solution accuracy for all values of p and Δw.
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FIGURE 23 Uniaxial stress patch test with a cut edge. (a) Patch geometry, mesh, and boundary conditions, (b) cond (K)
for different p and different Δw, (c) cond (K) with a ghost penalty term, and (d) cond (K) with ghost penalty and Jacobi
preconditioning. A constant 
 = 0.01 is chosen for all p.
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We investigate the effect of the ghost penalty term and the ghost penalty with preconditioner on the condition number of

the stiffness matrix. The 2-norm condition number provides the exact maximum error magnification in the solution from finite

precision inputs; however, since matrix norms are equivalent,73 convergence behavior of the condition number can be inves-

tigated using any matrix norm. Accordingly, condition number is estimated using condest() in MatlabTM, which estimates

the 1-norm condition based on a technique by Hager.74 With no stabilization, condition number increases rapidly as Δw → 0.

The effect worsens as p becomes larger. Condition number peaks at just below (1020) for p ≥ 2. With the ghost penalty term,

the dependence of Δw on condition number is eliminated, with minimal change in condition number at Δw ≤ 10−2. Condition

numbers range from(103) for p = 1 to(109) for p = 5. When the preconditioner is added to the ghost penalty term, condition

numbers improve further, ranging from (101) for p = 1 to (108) for p = 5. Detailed results are presented in Fig. 23.

6.2 Plate with a circular hole

Consider an infinite plate with a hole of radius a that is centered at the origin. A far-field uniaxial stress, �0 = 1, is applied in

the x-direction. An exact solution for this problem is available in Szabó and Babus̆ka.75 The displacement field components in

polar coordinates are:

u1(r, �) =
a
8�

[

r
a
(� + 1) cos � + 2a

r
((1 + �) cos � + cos 3�) − 2a

3

r3
cos 3�

]

,

u2(r, �) =
a
8�

[

r
a
(� − 3) sin � + 2a

r
((1 − �) sin � + sin 3�) − 2a

3

r3
sin 3�

]

,

where � is the shear modulus and � is the Kolosov constant defined as

� =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

3 − 4� for plane strain

3 − �
1 + �

for plane stress.

The stress field is given by the components

�11(r, �) = 1 −
a2

r2
(3
2
cos 2� + cos 4�

)

+ 3
2
a4

r4
cos 4�,

�22(r, �) = −
a2

r2
(1
2
cos 2� − cos 4�

)

− 3
2
a4

r4
cos 4�,

�12(r, �) = −
a2

r2
(1
2
sin 2� + sin 4�

)

+ 3
2
a4

r4
sin 4�.

(53)

We model the problem using a finite, biunit plate that occupies the region Ω = (−1, 1)2. A void, Ωhole, of radius a = 0.5 that

is centered at the origin is located within Ω. The material constants are E = 10 and � = 0.3, and the exact strain energy in

Ω∖Ωhole is:

SE =
13(441068 − 18417�)

24576000
,
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with the value of 0.202706736054886 (15 digits of precision). Cartesian, square elements are used to represent Ω, with the hole

modeled using the X-FEM. Traction boundary conditions that are consistent with (53) are applied on the external boundary of

the domain. A sample mesh is shown in Fig. 24a. This problem is solved using two different methods to represent the boundary

Γhole.

1. Exact representation using rational quadratic Bézier curves.

2. A cubic Hermite curve reconstructed interface using the gradient-augmented level set procedure described in Section 2.2.

Using the exact level set interface avoids the need to reconstruct Γhole, thereby eliminating a potential source of error caused by

inaccurate geometric representation of the void. The Hermite curve reconstruction is done using � = 1× 10−10. We observed in

numerical experiments that strain energy output is affected by the ghost penalty term at significant digits beyond the exponent of

the ghost penalty parameter 
 . As a result, rates of convergence degrade when relative error is smaller than 
 . Accordingly, we

set 
 = 1× 10−10, which permits approximately ten digits of accuracy in the strain energy approximation, while still decreasing

the condition number of the stiffness matrix.

(a) (b)

FIGURE 24 Plate with a circular hole problem. (a) 10 × 10 cubic finite element mesh. Dark shaded (cut) elements use the HNI
scheme to integrate element stiffness matrix. Nodes marked by open squares have entire basis function support whereas those
marked by open circles have their basis function support cut by the void, and (b) error in displacement, e(x) = ||u(x) − uℎ(x)||,
for the mesh in (a).

Spatial magnitude of displacement error on the mesh shown in Fig. 24a is plotted in Fig. 24b. As the figure illustrates,

displacement error is greater in elements that are cut by the hole. This holds true for the exact hole geometry and the reconstructed
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hole geometry. To establish the accuracy of the X-FEM with HNI in solving this problem, ℎ- and p-convergence studies are

conducted using both methods of representing the circular hole. The results of these studies are presented in Fig. 25. Using

either the exact hole geometry or a cubic Hermite reconstruction of the hole geometry, optimal 2p rates of convergence in strain

energy are recovered in ℎ-refinement studies. These rates are obtained using spectral element shape functions of order p = 1 to

p = 5. In p-refinement studies, exponential rates of convergence are obtained using both methods that are used to represent the

hole geometry. In the ℎ-refinement studies, matrix condition numbers range from a maximum of(105) for p = 1 to a maximum

of (1011) for p = 5. Without ghost penalty and preconditioning, the condition number exceeds (1020) in some cases. The

variation of stiffness matrix-conditioning is presented in Fig. 26. In Fig. 26, results are shown for the exact hole geometry, and

in our studies we obtained similar results when the hole is reconstructed using cubic Hermite curves.

6.3 Plate with an elliptical hole

Inglis76 is widely credited as the first to derive the exact elasticity solution for an infinite plate with an elliptical hole under

far-field uniaxial tension. This solution has guided some of the earliest results in fracture mechanics, since a sharp crack can

be approximated as the limiting case of an ellipse whose aspect ratio approaches zero. Stevenson77 subsequently realized a

simplified solution to the same problem by substituting the Airy (real) potential function with the Kolosov (complex) potential

function. This is the solution presented herein. Consider an infinite plate with an elliptical hole that is centered at the origin.

The elliptical hole has major axis 2a and minor axis 2b aligned along the x- and y-directions, respectively. A remote load of

magnitude �0 is applied at y = ±∞. A schematic of the boundary-value problem is shown in Fig. 27a. The stress field for this

problem is determined from77

�11 + �22 = Re
[

� ′(z)
]

, (54a)

�11 − �22 + 2i�12 = −
1
2
(

z�̄ ′′(z̄) + !̄′′(z̄)
)

, (54b)

where

�(z) = �0c
[(

1 + e2�
)

sinh � − e2� cosh �
]

, (54c)

!(z) = −�0c2
[

(cosh 2� + 1) � + 1
2
e2� cosh 2 (� − � − i�)

]

, (54d)
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FIGURE 25 Convergence rates in strain energy error for the plate with a circular hole problem. Exact circle geometry: (a)
ℎ-refinement and (b) p-refinement (p = 1, 2… , 7). Hermite curve reconstruction of the circle: (c) ℎ-refinement and (d) p-
refinement (p = 1, 2,… , 7).

c =
√

a2 − b2, � = cosh−1(a∕c), z = x + iy, � = cosh−1(z∕c), and a superposed bar denotes the complex conjugate of the

indicated complex variable. Computing the complex derivatives in (54) and simplifying, we obtain

�11 + �22
�0

= Re
[

1 + e2�
tanh �

]

− e2� , (55a)

�11 − �22 + 2i�12
�0

=

(

1 + e2�
)

cosh � − e2�
[

cosh
(

2�̄ − 2�
)

sinh �̄ + sinh
(

2� − �̄
)]

− (1 + cosh 2�) cosh �̄

2 sinh3 �̄
. (55b)
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FIGURE 26 Stiffness matrix condition number for the plate with a hole problem using (a) no stabilization and (b) stabilization
using ghost penalty (
 = 1 × 10−10 for all analyses) and a Jacobi preconditioner.

Stress components �11 and �22 are computed from the sum and difference, respectively, of (55a) and the real part of (55b). The

shear stress component, �12, is computed from the imaginary part of (55b).

We select the ellipse geometry to be a = 0.5 and b = 0.3 and solve the elastostatic boundary-value problem over the domain

Ω = (−1, 1)2. The material constants are E = 1000 and � = 0.3, and the applied load is �0 = 10. The exact strain energy (10

digits of precision) is 0.2033773802. In the extended finite element computations, the ellipse is modeled exactly using rational

Bézier curves. Traction boundary conditions consistent with the exact stress field are applied on the boundary of the domain.

The problem is executed at varying levels of mesh refinement for spectral elements of order p = 1 to p = 5. Convergence of the

strain energy error with ℎ-refinement is plotted in Fig. 27b. We observe that the asymptotic rates of convergence approach the

optimal 2p rate predicted by theory. Similar to the circular hole problem in Section 6.2, the results herein are computed using

ghost penalty stabilization (
 = 1 × 10−10) and Jacobi preconditioning to reduce the condition number of the stiffness matrix.

6.4 Multiple holes

Using the framework developed in this paper, more complicated problems with multiple voids can be solved. For example, level

set functions can define multiple holes, as illustrated in the example in Fig. 28. Additionally, multiple Bézier curves can be

used to define holes with complicated shapes. For example, glyphs in TrueTypeTM and OpenTypeTM fonts are defined using line

segments and multiple quadratic and cubic Bézier curves, respectively. The example in Fig. 29 demonstrates analysis done on a

mesh cut with text whose glyphs are defined using quadratic Bézier curves. The glyphs are represented exactly in the analyses.
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FIGURE 27 Plate with an elliptical hole under far-field uniaxial tension. (a) Schematic of the infinite domain problem, and (b)
convergence of strain energy error for the finite plate problem with ℎ-refinement (p = 1, 2,… , 5).

(a) (b)

FIGURE 28 Multiple holes described using a single level set function over the domain Ω = (−1, 1)2. Boundary conditions
include uniaxial tension in the y-direction applied at y = −1 and y = 1. (a) x-displacement field and (b) y-displacement field.
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(a) (b)

FIGURE 29 Text whose glyphs are defined using quadratic Bézier curves and line segments. Uniaxial tension in the y-direction
is applied at y = −1 and y = 1. (a) x-displacement field and (b) y-displacement field.

6.5 Bimaterial patch test

Consider a bimaterial linear elastic bar that occupies Ω = (0, 1), which is composed of two elastic materials with the material

interface located at x = �. Accordingly, we have Ω = Ω1 ∪ Ω2, with Ω1 = (0, �) and Ω2 = (�, 1). In Ω1, the material has a

Young’s modulus of E1 and the Young’s modulus in Ω2 is E2. The cross-sectional area of the bar is unity. The bar is fixed at

x = 0 and is traction-free at the right end. A body force per unit length of magnitude b(x) = xm (m ≥ 0) is applied. The exact

solution for the displacement field for this one-dimensional elastostatic boundary-problem is:

u(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
E1(1+m)

(

x − x2+m

2+m

)

x ≤ �

1
E2(1+m)

(

� + x − x2+m

2+m

)

x > �
, (56)

where

� =
E2 − E1
E1

(

� − �2+m

2 + m

)

.

First, we select m = 0, which produces the piecewise quadratic displacement field,

u(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
E1

(

x − x2

2

)

x ≤ �

1
E2

(

� + x − x2

2

)

x > �
, (57)
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where

� =
E2 − E1
E1

(

� − �2

2

)

.

We choose the quantitiesE1 = 1,E2 = 2, and � = 0.5. The exact displacement field is presented in Fig. 30a. For a finite element

space capable of reproducing two quadratic functions with C0 continuity, this displacement field should be recovered exactly.

With a judiciously chosen interface enrichment function in the X-FEM, it should be possible to construct this space with a single

quadratic element. To emphasize the importance of appropriate enrichment, we compare the modified abs-enrichment to the

proposed enrichment function (defined in Section 4.3.2). Note the modified abs-enrichment is designed for linear elements—for

p > 1, the ridge-like shape of this enrichment is not retained. The enrichment functions for this problem are plotted in Fig. 30b.

Solving the problem using a single quadratic element, we obtain the exact displacement field using the proposed enrichment

function. Using the modified abs-enrichment, the exact displacement field cannot be reproduced. These results are depicted

in Fig. 30c.
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FIGURE 30One-dimensional bimaterial patch test. (a) Exact displacement field from (57). (b) Enrichment functions: modified
abs-enrichment is a solid line and the proposed enrichment is a dashed line. (c) Error in the extended finite element displacement
field, e(x) = u(x) − uℎ(x), using the modified abs-enrichment function. The solution using the proposed enrichment function is
exact.

Next, we choose m = 3, resulting in a piecewise quintic polynomial displacement field:

u(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
4E1

(

x − x5

5

)

x ≤ �

1
4E2

(

� + x − x5

5

)

x > �
, (58)

where

� =
E2 − E1
E1

(

� − �5

5

)

.
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We solve this problem using finite elements of order p = 1 to p = 4 over the two-dimensional domain Ω = (0, 1) × (−0.5, 0.5).

In Ω, the relevant properties are E1 = 1, E2 = 2, and � = 0.5. Since the extended finite element space does not span the

exact solution, we perform a ℎ-refinement convergence study. In the analyses of this problem, we use the enrichment function

proposed in (26) and the finite element interpolation of nodal values of the level set function to describe the location of the

interface. Over the two-dimensional domain, the exact one-dimensional piecewise quintic polynomial displacement field is

presented in Fig. 31a. For all p, ℎ-refinement studies result in optimal 2p rate of convergence in strain energy (see Fig. 31b).

Condition number is at or below(106) in all analyses carried out with the Jacobi preconditioner. For the same analysis without

preconditioning, condition numbers range from (1017) to (1019) in all analyses. However, the strain energy error is identical

regardless of whether the preconditioner is used or not.
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FIGURE 31 Bimaterial boundary-value problem with cubic body force. (a) Exact displacement field from (58), and (b) ℎ-
refinement convergence study in strain energy error using the extended finite element method.

6.6 Circular inclusion

In this example, we consider a circular domain,Ω, of radius b composed of two materials and centered at the origin. The domain

of the first material, Ω1, is located in a circular region of radius a < b, also centered at the origin. The domain of the second

material, Ω2, makes up the bulk of Ω. The essential boundary condition that is imposed on the outer boundary r = b is a radial

displacement of magnitude b. An illustration of the problem is shown in Fig. 32a. Due to symmetry, the radial displacement

field ur(r) depends only on r and u� is identically zero. This problem was first considered in Sukumar et al.,3 where a solution
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is also provided. The exact displacement field is:

ur(r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[(

1 − b2

a2

)

� + b2

a2

]

r 0 ≤ r ≤ a
(

r − b2

r

)

� + b2

r
a < r ≤ b

,

u� = 0,

where

� =

(

�1 + �1 + �2
)

b2
(

�2 + �2
)

a2 +
(

�1 + �1
) (

b2 − a2
)

+ �2b2
,

and �1 and �1 and �2 and �2 are the Lamé parameters in Ω1 and Ω2, respectively.
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FIGURE 32 Radial displacement boundary conditions for a circular inclusion problem. (a) Schematic, and (b)–(c) bimaterial
enrichment function on a 16 element quadratic mesh when '(x) is the signed distance function.
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This problem is solved with the parameters E1 = 1, �1 = 0.25, E2 = 10, �2 = 0.3, a = 0.4, and b = 2 over the domain

Ω = (−1, 1)2. The exact strain energy is:

SE =
8
25

[

(25 − �)�2�2 + �(25 − 24�)2(�1 + �1) +
{

25(−4 + 8� − 3�2) + �
(

625 − 50(� − 1)2 − 1250� + 624�2
)}

�2

]

,

with the value of 74.3856735951026 (15 digits of precision). Exact displacement boundary conditions are applied on )Ω. The

level set function for this problem is the signed distance function given in (3). This function is recreated through the finite element

interpolant of its nodal values. The location of the interface is determined through cubic Hermite reconstruction of the level set

zero (see Section 2.3). The proposed enrichment function on a 16 element quadratic mesh is illustrated in Fig. 32. Evenly-spaced

isocontours on the plot indicate that the normal derivative of the enrichment function to the interface is nearly a constant.

The displacement error on a 10 × 10 cubic finite element mesh is shown in Fig. 33a. As we earlier observed in the circular

hole problem, the largest magnitude errors in displacement are concentrated in elements cut by the interface. To assess the

capabilities of the X-FEM, the HNI method, and the proposed enrichment function, ℎ- and p-refinement convergence studies in

the strain energy error are conducted for this problem. The results of the ℎ-refinement study are presented in Fig. 33b. Optimal,

or near-optimal 2p rates of convergence are obtained using spectral finite elements of order p = 1 to p = 5. Exponential rates

of convergence are obtained in the p-refinement study, as is revealed in Fig. 33c. Using a Jacobi preconditioner, the condition

number of the stiffness matrix is (1010) or less in all analyses.

To demonstrate the effect of a level set function that is not the signed distance function, we repeat the analyses with

'(x) = ||x − xc||2 − a2. (59)

Similar to the signed distance function in (3), this level set function also exactly defines the location of the material interface;

however, it does not coincide with the signed distance function. A consequence is that the enrichment function no longer approx-

imates a smooth ridge function in enriched elements. As established in Section 4.3.3, when the level set function is not a signed

distance function, the approximation space no longer includes p-th order polynomials on both sides of the interface. On a 4 × 4

quadratic finite element mesh, the enrichment function is shown in Fig. 34. For this enrichment function, the isocontours are not

equispaced, and hence its normal derivative to the interface is not a constant. Error in strain energy with ℎ-refinement is plotted

in Fig. 34a. Optimal rates of convergence are obtained for p = 1, 2, and 3. However, for p > 3, suboptimal rates are recovered.

While better asymptotic convergence rates are obtained when the level set function coincides with the signed distance function,

notably, sometimes the error is smaller when using (59), especially on coarse meshes. The reason for this observation becomes

apparent upon recognizing that the level set function in (59) is a quadratic polynomial, and can therefore be exactly reproduced
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FIGURE 33 Extended finite element solution for the circular inclusion problem. The level set function for the inclusion is the
signed distance function. (a) Error in displacement on a 10 × 10 cubic finite element mesh, (b) relative error in strain energy
with ℎ-refinement, and (c) relative error in strain energy with p-refinement (p = 1, 2,… , 6 for ℎ = 1∕4 and p = 1, 2,… , 5 for
ℎ = 1∕8.

by the finite element element basis when p > 1. Since this level set function is reproduced exactly by higher-order finite ele-

ments and the signed distance level set function is not, the error in representing the circle geometry when p > 1 is significantly

reduced, eliminating a source of error in the analysis results.
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FIGURE 34 Extended finite element solution for the circular inclusion problem using a level set function that does not coincide
with the distance function. (a) Convergence study of strain energy error with ℎ-refinement. Convergence rates are suboptimal
for p = 4 and p = 5. (b)–(c) Contour and 3D plots of enrichment function on a 4 × 4 quadratic finite element mesh.

7 CONCLUDING REMARKS

In this paper, we proposed an extended finite element method that converges optimally on Cartesian higher-order (spectral)

finite element meshes for elastostatic problems with curved interfaces. Our focus was on solving the elastostatic boundary-value

problemswith domains that contained voids (holes) and distinct linear elasticmaterials (bimaterials). To this end, three important

new contributions were realized: improved interface reconstruction techniques using rational Bézier curves and cubic Hermite

curves that permitted interface reconstruction to converge to arbitrary order, use of the homogeneous numerical integration (HNI)

method for efficient cubature of weak form integrals without the need to partition elements that are cut by curved boundaries,

and construction of an enrichment function for material interface problems that accurately captured weak discontinuities on
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spectral finite element meshes. Several examples were presented that demonstrated the capabilities of the method and its ability

to recover optimal algebraic and exponential rates of convergence with ℎ- and p-refinement, respectively, for problems with

affine and curved interfaces. Even though we only considered structured meshes in this study, we point out that the HNI method

is also applicable on higher-order simplicial (Delaunay) meshes with affine facets.

Recent contributions on conformal decomposition methods31,32,33 have amply demonstrated the capabilities of a mesh-based

approach to solve challenging problems in two dimensions and three dimensions. Nonetheless, the present study provides new

pathways for exploration within computational methods on unfitted meshes. The HNI method has several benefits when com-

pared to other competing numerical integration schemes. It reduces integration over a two-dimensional domain to integration

over its one-dimensional boundary, thereby avoiding the need for element-partitioning. Since the number of cubature points

generally scales with dimension, reducing the dimensionality of the problem can substantially reduce the number of integration

points. Reconstructing curved interfaces is also simplified by the HNI scheme, as many different parameterized representations

of the curve can be used to build the interface. These parameterizations can be refined arbitrarily and are used directly in the

HNI method to provide accurate, robust integration to any desired degree of accuracy. Additionally, complicated intersections of

interfaces with an element can be integrated using HNI, since only the boundary of this intersection needs to be reconstructed,

rather than the entire domain of integration.

In addition, we introduced an improved enrichment function for use in the X-FEM for material interface problems that

accurately captures weak discontinuities. The enrichment function was used for problems in solid mechanics, but it is equally

applicable to other phenomena that involve weak discontinuities. While theoretical rates of convergence were obtained using this

enrichment function, we anticipate further improvements may be possible through improved selection of DOFs in the enrich-

ment function. For example, DOFs may be chosen to minimize the second derivative of the enrichment function normal to the

interface, which may eliminate the need for a relationship between the level set function and the signed distance function. Also,

forming the enrichment function with Bernstein polynomials may be beneficial, since the Bernstein polynomial basis is non-

negative and possesses the shape-preserving property. Taken together with improvements made possible by the HNI scheme,

the new enrichment function provides a way to realize optimal convergence rates for material interface problems on Cartesian

higher-order finite element meshes.

As part of future work, we can identify several possible topics. Instead of higher-order Lagrange interpolation, use of hier-

archical or Bernstein basis functions can potentially deliver additional benefits. On structured meshes, Hermite and B-spline

basis functions can be used to solve fourth-order interface problems. Extensions of the approach herein for three-dimensional

interface problems on Cartesian meshes (where the HNI scheme remains applicable78) and to solve problems with weak dis-

continuities that arise in two-phase fluid flow, heat conduction, and electrostatics with discontinuous material coefficients are

also worthy of pursuit.
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