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Abstract In this paper, the extended finite element
method (X-FEM) is implemented to analyze fracture

mechanics problems in elastic materials that exhibit

general anisotropy. In the X-FEM, crack modeling is ad-

dressed by adding discontinuous enrichment functions

to the standard FE polynomial approximation within
the framework of partition of unity. In particular, the

crack interior is represented by the Heaviside function,

whereas the crack-tip is modeled by the so-called crack-

tip enrichment functions. These functions have previ-
ously been obtained in the literature for isotropic, or-

thotropic, piezoelectric and magnetoelectroelastic ma-

terials. In the present work, the crack-tip functions are

determined by means of the Stroh’s formalism for fully

anisotropic materials, thus providing a new set of en-
richment functions in a concise and compact form. The

proposed formulation is validated by comparing the ob-

tained results with other analytical and numerical so-

lutions. Convergence rates for both topological and ge-
ometrical enrichments are presented. Performance of

the newly derived enrichment functions is studied, and

comparisons are made to the well-known classical crack-

tip functions for isotropic materials.
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1 Introduction

The strong demand for materials with a high strength
per unit weight ratio in different branches of engineer-

ing has led to the development of different analytical

and numerical techniques to solve fracture mechanics

problems in anisotropic materials. Pioneering works by

Muskhelishvili [15] and Sih et al. [20], or more recently,
works by Nobile and Carloni [16], developed analytical

techniques to solve crack problems in anisotropic and

orthotropic plates. However, these methods are limited

to simple geometries and load combinations. There-
fore, numerical methods become essential to analyze

more complicated engineering applications. In partic-

ular, models based on the boundary element method

(both the classical [22] and the dual [11,17,23] approxi-

mations), meshless (meshless local Petrov-Galerkin [21]),
and the finite element method (FEM) [7], have been de-

veloped.

All the above-mentioned numerical techniques have

proven to be accurate and robust to solve crack prob-

lems. However, in the case of the FEM, its direct ap-

plication is unwieldly, since the mesh must conform to

the crack geometry, mesh refinement is required near
the crack-tip, and for crack propagation simulations,

remeshing is needed. To circumvent these difficulties,

the extended finite element method (X-FEM), first pre-

sented by Belytschko and co-workers [6,13], has emerged
as a powerful alternative in computational fracture. It

has been successfully applied to solve crack problems

in materials with different constitutive laws: see, for ex-
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ample, the works by Moës et al. [13] in isotropic media,

Sukumar et al. [25] in bimaterials, Asadpoure and Mo-

hammadi [2] in orthotropic materials, Béchet et al. [5] in

piezoelectric solids and Rojas-Dı́az et al. [19] in mag-

netoelectroelastic materials. Abbas and Fries [1] have
obtained enrichment functions that can be applied to

brittle as well as cohesive cracks. In the X-FEM, ad-

ditional (enrichment) functions are added to the clas-

sical finite element polynomial approximation through
the framework of partition of unity [3]. To model the

crack discontinuity, the crack interior is represented by

a discontinuous (Heaviside) function, whereas the be-

havior around the crack-tip is modeled by the asymp-

totic crack-tip enrichment functions.
In this work, a new set of crack-tip enrichment func-

tions is derived to simulate two-dimensional elastic frac-

ture in general anisotropic media. These new functions

are obtained in a concise and compact form in terms
of the Stroh’s formalism [24]. The resulting formula-

tion is validated by comparison of the obtained results

for several crack configurations with previous analyt-

ical and/or numerical solutions. Two different enrich-

ment strategies have been adopted: the conventional
X-FEM using a topological enrichment and a geometri-

cal (fixed area) enrichment [4,12]. Convergence rates for

both enrichments are presented and performance of the

newly derived enrichment functions is further analyzed
and compared with the classical crack-tip functions for

isotropic materials.

The paper is structured as follows. The governing

equations are stated in Section 2. The theoretical foun-

dations of the X-FEM are presented in Section 3, and
the new crack-tip enrichment functions are derived in

Section 4 and the computation of fracture parameters

using the domain form of the contour interaction inte-

gral is briefly described in Section 5. Several crack prob-
lems are solved in Section 6 to validate the approach

and characterize its convergence. The main conclusions

from this study are summarized in Section 7.

2 Governing equations

2.1 Basic equations

In an anisotropic elastic domain, the static equilibrium

equations in the presence of body forces b are given by

σij,j + bi = 0 (1)

Both the stress and strain tensors are symmetric: σij =

σji; εij = εji.

εij =
1

2
(ui,j + uj,i) (2)

The linear constitutive relations between stresses

σij and strains εkl are given by the generalized Hooke’s

law

σij = Cijklεkl (3)

where Cijkl define the material constants tensor, satis-
fying the following symmetry relations

Cijkl = Cjikl = Cijlk = Cklij (4)

that lead to a tensor with only 21 independent com-

ponents for the 3D case, and 6 components in the 2D

case.

2.2 Stroh’s formalism

To satisfy the equilibrium equations stated in (1), the

displacement field in a generally anisotropic plane do-

main may be written as [24, 27]

u = af(z) (5)

where z = x1 + µmx2 is the transformation into the

complex plane of the physical coordinates (x1, x2), and

µm represents the complex roots with positive imagi-

nary part, of the characteristic equation of the mate-
rial. Such an equation follows from derivation of (5),

and subsequent substitution of (3) into the equilibrium

relations (1), leading to

{Z+ (M+MT )µm + Lµ2
m}a = 0 (6)

with

Z := C1ij1; M := C2ij1; L := C2ij2 (7)

Equation (6) can be rearranged and further expressed

as the following eigenvalue problem

( −L−1M −L−1

Z−MTL−1M −MTL−1

)(

Am

Bm

)

=

µm

(

Am

Bm

)

(no sum on m)

(8)

Since the tensors A and B and the eigenvalues µm

depend only on the material properties, they are in-

dependent of the geometrical position of the adopted
coordinated system. These characteristics allow the cal-

culation of precise and general terms by means of the

Stroh’s formalism.
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2.3 Asymptotic fields around the crack-tip

The asymptotic displacement field around a crack-tip

in a plane anisotropic domain was first derived by Sih

et al. [20]. Adopting a polar coordinate system (r, θ)

with origin at the crack-tip, the displacement field can
be expressed by means of the Stroh’s formalism [26] as

ui(r, θ) =

√

2

π
ℜ
(

KαAimB−1
mα

√

r (cos θ + µm sin θ)
)

(9)

where the summation convention over repeated indices

holds; i,m = 1, 2; α = I, II is associated with the

fracture modes; and ℜ(·) is the real part of (·).
Similarly, the asymptotic stress fields may be writ-

ten as

σij(r, θ) =

(−1)j
√

1

2π
ℜ
(

KαBimB−1
mα

δj1µm + δj2
√

r (cos θ + µm sin θ)

)

(10)

where δjk is the Kronecker-delta.

3 Extended finite element formulation

Equation (10) reveals that the discontinuity induced by
the crack leads to a non-smooth behavior of the field

variables, with resulting singular gradient that needs to

be taken into account. For this purpose, the extended

finite element method [6, 13] is adopted in which the
classical FEM polynomial space is enriched through the

framework of partition of unity [3] with the addition of

special shape functions: the crack jump is represented

by a discontinuous (Heaviside) function and the crack-

tip
√
r-behavior is modeled by asymptotic crack-tip en-

richment functions. In this way, the FE mesh does not

need to match the crack geometry and only a subset of

nodes close to the crack needs to be enriched. Currently,

the X-FEM is a well-established technique and its ad-
vantages over conventional FEM for problems with non-

smooth behavior are well-recognized [10].

3.1 Crack modeling and selection of enriched nodes

Consider a domain Ω ⊂ R2 with boundary Γ , which

contains a crack Γc = Γ−
c ∪ Γ+

c . The domain is dis-

cretized by finite elements, so that N denotes the nodal

t

Γt

Γ+
c

Γ−
c

Ω

Γu

u

Fig. 1 Boundary-value problem with an internal crack.

set. Displacements are prescribed on Γu, whereas trac-

tions are imposed on Γt, so that Γ = Γu ∪ Γt as illus-
trated in Figure 1. The displacement approximation in

the X-FEM can be written as [13]

uh(x) =
∑

i∈N

Ni(x)ui +
∑

j∈NH

Nj(x)H(x)aj+

∑

k∈NCT

Nk(x)
∑

α

Fα(x)b
α
k

(11)

where Ni is the standard finite element shape function
associated with node i, ui is the vector of nodal de-

grees of freedom for classical finite elements, and aj
and bα

k are the added set of degrees of freedom that are

associated with enriched basis functions. H(x) is the

generalized Heaviside function, defined as +1 or −1,
depending on whether it is evaluated above or below

the crack, respectively. The Heaviside function thus en-

ables modeling of a crack that fully cuts a finite element.

Additionally, at the nodes around the crack-tip, crack-
tip functions Fα(x) are included. They are described

in more detail in Section 4. In elastic materials, bα
k is

an 8-component vector for two-dimensional problems,

since only two nodal variables (u1, u2) and four enrich-

ment functions are needed to describe all the possible
deformation states in the vicinity of the crack-tip. This

holds for both the well-known isotropic crack-tip func-

tions [13] as well as for the orthotropic [2] and fully

anisotropic cases, as will be shown next.
Figure 2 illustrates the classical topological enrich-

ment strategy [13] to model a crack in the X-FEM. The

nodes that are enriched with the Heaviside function (set

NH) are marked with a filled circle and they belong to

elements fully cut by the crack. The nodes that are en-
riched with crack-tip enrichment functions (set NCT )

are marked with a square and they belong to elements

that contain the crack-tip.

More recently, an alternative enrichment strategy
that leads to improved results was proposed by Laborde

et al. [12] (geometrical enrichment): some nodes around

the ones belonging to the elements that contain the
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Fig. 2 Node selection for topological enrichment.

crack-tips are also enriched with the crack-tip functions,
in order to improve the convergence of the method. Here

we adopt a fixed area enrichment, so that all nodes lying

inside a circle of diameter 2re centered at the crack-tip

are enriched with the crack-tip functions, as is depicted
in Figure 3.

Heaviside enrichment

Crack-tip enrichment

2re2re

Fig. 3 Node selection for geometrical enrichment.

3.2 Weak formulation and discrete equations

Let u be the displacement vector and σ the stress ten-

sor. The weak form (principle of virtual work) for a

continuum elastostatic problem in a general anisotropic

solid is given by

∫

Ω

σ : δε dΩ =

∫

Γt

t · δu dΓ +

∫

Ω

b · δu dΩ (12)

where δ is the variation operator, t is the prescribed
traction vector and b are the body forces. On substi-

tuting the trial and test approximations in the above

equation, and using the arbitrariness of nodal varia-

tions, we obtain the discrete equations:

Kd = f (13)

where K is the global stiffness matrix and f is the force

vector.

The element contribution to K and f are as follows:

ke
ij =





kuu
ij kua

ij kub
ij

kau
ij kaa

ij kab
ij

kbu
ij kba

ij kbb
ij



 (14a)

fei = {fui fai f bαi }T (α = 1, 4) (14b)

where the indices u, a, b refer to the nodal displace-
ments vector, the Heaviside enriched nodes and the

crack-tip enriched nodes, respectively.

krs
ij =

∫

Ωe

(Br
i )

TC(Bs
i ) dΩ (r, s = u, a, b) (15a)

fui =

∫

∂Ωe

NitdΓ +

∫

Ωe

NibdΩ (15b)

fai =

∫

∂Ωe

NiHtdΓ +

∫

Ωe

NiHbdΩ (15c)

f bαi =

∫

∂Ωe

NiFαtdΓ +

∫

Ωe

NiFαbdΩ (α = 1, 4)

(15d)

In (15), Bu
i , B

a
i and Bb

i are the matrices of shape

function derivatives, which are defined as

Bi =





Ni,x 0
0 Ni,y

Ni,y Ni,x



 (16a)

Ba
i =





(NiH),x 0

0 (NiH),y
(NiH),y (NiH),x



 (16b)

Bbα
i =





(NiFα),x 0

0 (NiFα),y
(NiFα),y (NiFα),x



 (α = 1, 4) (16c)

4 Enrichment functions

Crack-tip enrichment functions are defined by the set

of functions that span the asymptotic fields around the

crack-tip [6]. Such displacement fields are given in (9)

for a plane anisotropic solid. By expanding the sum-

mation in (9), these asymptotic displacements may be
expressed as follows:

u1(r, θ) =

√

2r

π
[KI(ℜ{A11B

−1
11 β1 +A12B

−1
21 β2})

+KII(ℜ{A11B
−1
12 β1 +A22B

−1
22 β2})] (17a)

u2(r, θ) =

√

2r

π
[KI(ℜ{A21B

−1
11 β1 +A22B

−1
21 β2})

+KII(ℜ{A21B
−1
12 β1 +A22B

−1
22 β2})] (17b)

where

βi =
√

cos θ + µi sin θ (17c)
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and µi are the eigenvalues from (8) with the positive

imaginary part.

Therefore, four crack-tip enrichment functions may

be directly derived from (17a) and (17b), to yield

Fl(r, θ) =
√
r









ℜ{A11B
−1
11 β1 +A12B

−1
21 β2}

ℜ{A11B
−1
12 β1 +A12B

−1
22 β2}

ℜ{A21B
−1
11 β1 +A22B

−1
21 β2}

ℜ{A21B
−1
12 β1 +A22B

−1
22 β2}









(18)

which may be expressed in matrix form as

F(r, θ) =
√
r

(

ℜ
[

B−1A1β

B−1A2β

])

(19)

where A1 and A2 correspond to the first and second
row of matrix A, respectively, and

β =

[

β1 0

0 β2

]

(20)

The matrices A and B depend only on the ma-

terial properties, but are independent of the adopted

coordinate system and the geometry of the problem.

In contrast to the isotropic enrichment functions, the
anisotropic enrichment functions depend on the mate-

rial properties of the domain, and are concisely obtained

using the Stroh’s formalism. It should be remarked that,

from a mathematical point of view, Stroh’s formalism is

valid for anisotropic material behavior laws and it does
not further lead to the isotropic enrichment functions,

since this is a degenerate case where repeated roots oc-

cur for the characteristic equation of the material. How-

ever, the derived enrichment functions for anisotropic
materials may be readily applied to the isotropic case

by simply introducing a small perturbation to one of

the repeated Stroh’s eigenvalues, leading to stable and

precise results as well.

5 Computation of the stress intensity factors

As in previous extended finite element studies [2, 13],

we adopt the domain form of the contour interaction
integral to calculate the stress intensity factors (SIFs).

In order to make this paper self-contained, a brief de-

scription of this approach follows.

The classical path independent J-integral is expressed

by [18]

J =

∫

Γq

(Wδ1j − σijui,1)nj dΓq (21)

where the indexes i and j vary from 1 to 2 in a two-
dimensional solid, Γq is an arbitrary closed contour that

contains the crack-tip, nj is the j-th component of the

outward unit vector normal to such a contour, and W

is the strain energy density, which for a linear material

can be expressed as

W =
1

2
(σijεij) (22)

Applying the divergence theorem to (21) the following

equivalent domain expression may be obtained for ho-

mogeneous materials:

J =

∫

A

(σijui,1 −Wδ1j)q,j dA (23)

where A is the area inside the contour Γq and q is an

arbitrary smoothing function such that it is unity at
the crack tip and zero on Γq.

Next, let us consider two independent states: a prin-
cipal one, which is the object of interest and denoted

as state (1), and an auxiliary state, denoted as (2).

This auxiliary state may be chosen to coincide with

the crack-tip asymptotic field, so that it satisfies both

equilibrium and the traction-free boundary condition
on the crack surface. Such auxiliary state is expressed

in terms of the generalized Stroh’s formalism [24,27] in

(9) and (10).

The superposition of these two states produces an-

other equilibrium state [2, 13] for which the J-integral

is

J (S) =

∫

A

(

(σ
(1)
ij + σ

(2)
ij )(u

(1)
i,1 + u

(2)
i,1 )−W (S)δ1j

)

q,jdA

(24)

with

W (S) =
1

2

[

(σ
(1)
ij + σ

(2)
ij )(ε

(1)
ij + ε

(2)
ij )
]

(25)

The J-integral in (24) can be further decomposed

into three distinct integrals as

J (S) = J (1) + J (2) +M (1,2) (26)

where M (1,2) is the interaction integral, defined as

M (1,2) =

∫

A

(σ
(1)
ij u

(2)
i,1 + σ

(2)
ij u

(1)
i,1 −W (1,2)δ1j)q,jdA (27)

with

W (1,2) =
1

2
(σ

(1)
ij ε

(2)
ij + σ

(2)
ij ε

(1)
ij ) (28)

The J-integral is related to the energy release rate,

and it may be written in terms of the SIFs as [26]:

J =
1

2
KNYKT

N (29)
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where KN = [KI KII ] and Y is the (2 × 2) Irwin

matrix, which depends on the material properties

Y = ℜ(i ·AB−1)

where A and B are defined in (8).

Thus, for plane problems, the following relation holds
for every equilibrium state

J =
1

2
K2

IIY11 +
1

2
K2

IY22 +KIKIIY12 (30)

Substituting this expression into (26), the interac-

tion integral M (1,2) can be rewritten as

M (1,2) =K
(1)
II K

(2)
II Y11 +K

(1)
I K

(2)
I Y22+

(K
(1)
I K

(2)
II +K

(1)
II K

(2)
I )Y12

(31)

The individual mode I and mode II SIFs may be

evaluated by solving the system of linear algebraic equa-

tions obtained from (31) by choosing appropriate aux-
iliary states. If the auxiliary state is chosen so that

K
(2)
I = 1 and K

(2)
II = 0, (31) is reduced to

M (1,I) = K
(1)
I Y22 +K

(1)
II Y12 (32)

whereas selecting an auxiliary state satisfying K
(2)
I = 0

and K
(2)
II = 1, (31) is reduced to

M (1,II) = K
(1)
II Y11 +K

(1)
I Y12 (33)

Therefore, the determination of the SIF is reduced

to solve the following system of linear equations:

(

M (1,II)

M (1,I)

)

= Y

(

K
(1)
II

K
(1)
I

)

(34)

6 Numerical results

The performance of the proposed enrichment functions

is evaluated by solving several fracture problems. A

convergence study is further conducted to character-

ize our approach. To this end, the obtained results are
compared with available solutions in the literature, de-

rived either analytically or numerically by means of the

boundary element method (BEM) [11, 23].

In all simulations bi-linear quadrilateral elements
are used, with a 2 × 2 Gaussian quadrature for non-

enriched finite elements and a 5 × 5 quadrature for el-

ements with enriched nodes but not cut by the crack.

The elements cut by the crack are partitioned into tri-
angles [8], as Figure 4 illustrates, and a 7 point trian-

gular Gaussian quadrature is used within each subtri-

angle.

Fig. 4 Partitioning elements that are cut by a crack.

6.1 Convergence study

Consider an anisotropic plate occupying [0, 2a]2, with

a center-crack of length a with crack-tips located at

(a/2, a) and (3a/2, a). The material properties of the
anisotropic plate are given by: C11 = 90.6448 GPa,

C12 = 23.7448 GPa, C16 = 41.2055 GPa, C22 = 23.8568

GPa, C26 = 16.6346 GPa and C66 = 30.9390 GPa.

The Dirichlet conditions corresponding to KI = 1

and KII = 0 are imposed on the boundaries. Conver-
gence is analyzed in terms of the relative error in the

energy norm, defined as

Erel =
||u− u∗||E(Ω)

||u∗||E(Ω)
=

(
∫

Ω(ε− ε∗)TC(ε− ε∗)dΩ)1/2

(
∫

Ω
ε∗TCε∗dΩ)1/2

where the superscript ∗ refers to the exact analytical

solution for the displacement and strain fields.
Figure 5 shows the obtained relative error in the

energy norm versus the mesh density on a logarithmic

scale. Results are obtained for both topological and ge-

ometrical enrichment strategies. The geometrical fixed

area enrichment is done for two radii of the enriched
domain, namely re/a = 0.2 and re/a = 0.3. Further-

more, two sets of enrichment functions are considered:

the newly derived anisotropic crack-tip functions pro-

posed in this work, and the simpler enrichment func-
tions for isotropic solids [9], namely

Fiso(r, θ) =

{√
r cos

θ

2
,
√
r sin

θ

2
,
√
r sin

θ

2
sinθ,

√
r cos

θ

2
sinθ

}

It can be noticed that the errors in the energy norm
calculated with topological enrichment are similar when

using either the anisotropic or the isotropic crack-tip

functions. However, differences are apparent with geo-

metrical enrichment. For this case, although isotropic
enrichment leads to a reasonable approximation with

a simpler enrichment function, the error in the energy

norm obtained with the isotropic enrichment functions
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Fig. 5 Relative energy norm for different types of crack-tip
enrichments.

is about 10% larger than the one obtained with the

anisotropic enrichment functions. Convergence rates are

in accordance with finite element theory and consistent
with previous extended finite element studies [14, 25]:

slopes of approximately 0.5 and 1 are obtained when

using topological and geometrical enrichment, respec-

tively.

6.2 Center-crack in an orthotropic plate

A square plate (h/w = 1) with a center-crack of length

2a under uniform traction at two opposite sides is an-

alyzed (Figure 6). The size of the crack is defined by

a/w = 0.2. Results are obtained using topological and
geometrical enrichment (fixed area with re/a = 0.3),

as well as with both the enrichment functions derived

in this work for anisotropic behavior and the simpler

isotropic enrichment functions.

Different material properties are considered. The

shear modulus and the Poisson’s ratio are fixed: G12 =

6 GPa and ν12 = 0.03, and the Young moduli E1 and

E2 are calculated from the expressions:

E1 = G12(ϕ+ 2ν12 + 1) (35)

E2 = E1/ϕ (36)

with ϕ being a material parameter defined by the ra-
tio between Youngs moduli. The numerical results are

compared with those obtained using the boundary el-

ement method in References [11, 23] and the extended

finite element method in Reference [2].

The plate is discretized using two different Ne ×Ne

meshes, with Ne = 45 and Ne = 85. The normalized

mode I SIF (KI/(σ
√
πa)), calculated for several values

σ

σ

E1

E2

2w

2h

2a

Fig. 6 Square plate with a center-crack under uniform trac-
tion.

of the material parameter ϕ are shown in Figures 7 and

8 for the Ne = 45 and the Ne = 85 meshes, respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
1

1.05

1.1

1.15

1.2

 

 

ϕ

K
I
/
(σ

√
π
a
)

Sollero and Aliabadi [23]
Garćıa-Sánchez et al. [11]
Asadpoure and Mohammadi [2]

topological enrichment (anisotropic)
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Fig. 7 Results for the orthotropic square plate with a center-
crack (45 × 45 FE mesh).

It can be observed that the results obtained with X-
FEM are in good agreement with the ones calculated

via BEM and with the orthotropic X-FEM enrichment

functions. Moreover, the geometrical enrichment leads

to a slightly better approximation as compared to the
topological enrichment. The difference in between the

adopted reference BEM results [11] and the X-FEM

results is shown in Table 1 for the two FE meshes, as



8 G. Hattori et al.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

 

 

Asadpoure and Mohammadi [2]

geometrical enrichment (isotropic)

ϕ

K
I
/
(σ

√
π
a
)

Sollero and Aliabadi [23]
Garćıa-Sánchez et al. [11]

topological enrichment (anisotropic)
geometrical enrichment (anisotropic)
topological enrichment (isotropic)

Fig. 8 Results for the orthotropic square plate with a center-
crack (85 × 85 FE mesh).

well as for the different enrichment strategies and crack-

tip enrichment functions considered. Results are shown

with a precision of four decimal digits so that com-
parisons to those obtained using isotropic enrichment

functions can be made.

Table 1 Difference (%) between the normalized mode I SIF
obtained with X-FEM and the reference BEM solution [11].
Orthotropic plate with center-crack.

45 × 45 mesh

ϕ Anisotropic Isotropic

Topological Geometrical Topological Geometrical

0.1 0.4399 0.1097 0.4926 0.2413
0.3 0.8684 0.5986 0.8699 0.6294
0.5 0.8329 0.5740 0.8307 0.5849
0.7 0.9211 0.6685 0.9193 0.6722
0.9 0.6677 0.4191 0.6670 0.4198
1.1 0.2173 0.0286 0.2181 0.0290
1.5 0.8856 0.6468 0.8893 0.6466
2.5 0.7795 0.5476 0.7907 0.5508
3.5 0.2141 0.0167 0.2321 0.0097
4.5 0.4413 0.2116 0.4654 0.2220

85 × 85 mesh

ϕ Anisotropic Isotropic

Topological Geometrical Topological Geometrical
0.1 0.0323 0.2187 0.0609 0.1469
0.3 0.5883 0.3968 0.5881 0.4140
0.5 0.5726 0.3915 0.5706 0.3977
0.7 0.6693 0.4937 0.6679 0.4958
0.9 0.4207 0.2483 0.4202 0.2487
1.1 0.0263 0.1968 0.0259 0.1971
1.5 0.6504 0.4851 0.6527 0.4847
2.5 0.5546 0.3945 0.5607 0.3957
3.5 0.0069 0.1656 0.0023 0.1622
4.5 0.2231 0.0659 0.2349 0.0713

6.3 Double edge-crack in an anisotropic plate

A square plate (h/w = 1) with a double edge-crack

(a/w = 0.5) is considered. The plate is subjected to a

uniform traction applied on opposite sides, as depicted

in Figure 9.

σ

σ

E1

E2

2w

2h

aa

φ

Fig. 9 Square plate with double edge-crack under uniform
traction.

The plate is a symmetric angle ply composite lam-

inate consisting of four graphite-epoxy laminae, with

the following elastic properties: E1 = 144.8 GPa, E2 =

11.7 GPa, G12 = 9.66 GPa and ν12 = 0.21. To analyze

the influence of the fiber orientation on the SIF, the
fibers are rotated from φ = 0◦ to φ = 90◦.

Due to the symmetry of the problem, only half of

the plate is discretized, using two different meshes with
45× 95 and 85× 175 elements, respectively. Figures 10

and 11 present the variation of the mode I normalized

SIF KI/(σ
√
πa) with respect to the direction of the

fibers φ for each mesh. The normalized SIF calculated

with X-FEM show good agreement with the reference
BEM solutions [11, 23]. As expected, better results are

obtained when using the finer mesh with geometrical

enrichment (with re/a = 0.3).

The difference between the X-FEM results and the

reference BEM solution [11] are given in Table 2 for the

85× 175 mesh.
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Fig. 10 Results for the anisotropic square plate with a dou-
ble edge-crack (45 × 95 FE mesh).
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Fig. 11 Results for the anisotropic square plate with a dou-
ble edge-crack (85 × 175 FE mesh).

Table 2 Difference (%) between the normalized mode I SIF
obtained with X-FEM and the reference BEM solution [11].
Plate with double edge-crack.

φ(◦)
Anisotropic Isotropic

Topological Geometrical Topological Geometrical

0◦ 2.3827 2.1387 2.4300 2.1759
10◦ 2.0287 1.7646 2.0765 1.8033
20◦ 1.5723 1.2415 1.6303 1.2894
30◦ 1.2332 0.7937 1.2994 0.8480
40◦ 0.3971 0.9580 0.3501 0.9058
50◦ 0.7346 0.0557 0.7591 0.1322
60◦ 4.4156 2.4605 4.4188 2.5704
70◦ 5.8270 3.8994 5.8253 3.9919
80◦ 3.1199 2.4017 3.1228 2.4335
90◦ 1.3978 0.6911 1.3907 0.6614

6.4 Slanted center-crack in an anisotropic plate

A rectangular plate (h/w = 2) with an inclined center-

crack is considered (see Figure 12). Uniform traction

is applied on opposite sides of the plate. The mate-

rial is a glass-epoxy composite with properties: E1 =

48.26 GPa, E2 = 17.24 GPa, G12 = 6.89 GPa and

ν12 = 0.29. The crack length is 2a = 0.4w and the

crack is inclined at an angle of 45◦. The directions of
the fibers are rotated from φ = 0◦ to 180◦.

σ

σ

E1

E2

2w

2h
2a 45◦

φ

Fig. 12 Slanted center-crack under uniform traction.

The numerical results are given in Figure 13 for the

normalized mode I SIF (KI/σ
√
πa) and in Figure 14 for

the normalized mode II SIF (KII/σ
√
πa), considering

a 85×175 mesh. As in previous examples, a normalized
radius of re/a = 0.3 was adopted for the geometrical

enrichment.

Good agreement is observed between the obtained

X-FEM results and the reference BEM solution [11].
Differences between both sets of results are given in

Tables 3 and 4.

Table 3 Difference (%) between the normalized mode I SIF
obtained with X-FEM and the reference BEM solution [11].
Plate with slanted center-crack.

φ
Anisotropic Isotropic

Topological Geometrical Topological Geometrical

0◦ 0.1516 0.0962 0.1717 0.0819
45◦ 1.1000 0.5624 1.0582 0.5048
90◦ 1.1449 0.9689 1.9120 1.7344
105◦ 1.8646 1.7598 2.6425 2.5376
120◦ 1.9719 1.8644 2.7595 2.6561
135◦ 1.9912 1.8579 2.7603 2.6226
180◦ 0.1516 0.0962 0.1717 0.0819
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Fig. 13 Normalized mode I SIF for a slanted center-crack
(85 × 175 FE mesh).
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Fig. 14 Normalized mode II SIF for a slanted center-crack
(85 × 175 FE mesh).

7 Concluding remarks

In this paper, we presented an extended finite element

formulation for the analysis of fracture problems in plane

fully anisotropic materials. New crack-tip enrichment
functions were derived in a compact form using Stroh’s

formalism. Fracture parameters were accurately com-

puted by means of the interaction integral method. Sev-

eral crack configurations were analyzed, and the accu-

racy of the obtained results compared favorably with
those available in the literature [11, 23]. Results based

on anisotropic crack-tip enrichment functions was com-

pared with those obtained using isotropic crack-tip func-

tions. Furthermore, both topological and geometrical
enrichment strategies were adopted, and it was demon-

strated that the latter yielded better accuracy at the

optimal rate of convergence in energy. Although the

Table 4 Difference (%) between the normalized mode II SIF
obtained with X-FEM and the reference BEM solution [11].
Plate with slanted center-crack.

φ
Anisotropic Isotropic

Topological Geometrical Topological Geometrical

0◦ 0.3451 1.0546 0.3026 1.0808
45◦ 1.6632 1.4036 1.6648 1.3965
90◦ 1.8654 0.9698 1.8555 0.9723
105◦ 0.9673 0.6836 0.9614 0.6816
120◦ 0.2618 0.5503 0.2842 0.5850
135◦ 0.4615 0.1919 0.4340 0.1528
180◦ 2.0109 1.8399 2.0534 1.8661

differences between both types of enrichment are small,

the anisotropic enrichment function provide better re-
sults than the isotropic ones. The proposed formula-

tion is versatile and can be extended to model cou-

pled phenomena such as thermoelasticity, piezoelectric-

ity and magnetoelectroelasticity. Moreover, the new en-
richment functions allow one to explore other types of

problems, such as crack identification in fully anisotropic

two-dimensional materials.
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