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Abstract

In this paper, the extended finite element method (X-FEM) is considered for the

analysis of fretting fatigue problems. A two-dimensional implementation of the X-

FEM is carried out within the finite element software ABAQUSTM by means of user

subroutines, and crack propagation in fretting fatigue problems is investigated. On

utilizing the non-linear contact capabilities of this code, the numerical technique is

applied to a specimen-indenter model. The use of the X-FEM facilitates very accu-

rate stress intensity factor computations on relatively coarse meshes, and further-

more, no remeshing is required for crack growth simulations. The implementation

is applied to complete and incomplete contact fretting problems. A study of crack

growth is conducted for several bulk loads applied to the specimen, and the influ-

ence of the initial crack angle is ascertained. The numerical simulations reveal the

merits of applying the X-FEM to fretting fatigue problems.
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1 INTRODUCTION

Problems in fretting fatigue are characterized by the presence of two or more

contacting bodies, subjected to relative displacements of small amplitude. Un-

der these conditions, the stresses exhibit steep gradients in the vicinity of the

contact zone. The combination of such a high stress gradient with the cyclic na-

ture of the loading leads to the nucleation of small cracks that often propagate

until the eventual failure of the component (hence the term fretting fatigue).

In practice, two different stages are distinguished during this process: crack

nucleation and crack propagation.

In fretting fatigue, nucleation processes are usually relatively fast, due to the

strong tractions on the contacting surfaces. Hence, under these circumstances,

most of the component life is spent in the propagation stage (Sheikh et al.,

1994; Adibnazari and Hoeppner, 1994; Hattori et al., 2003). Thus a fracture

mechanics approach is usually considered to be appropriate to estimate fret-

ting fatigue propagation life (Faanes and Fernando, 1994; Faanes, 1995; Hills

and Nowell, 1994). In this study, the nucleation or initiation stage is not con-

sidered and a fully-formed crack is assumed. Its size will be such that the

surrounding material is assumed to be homogeneous and isotropic, i.e. the

crack length is greater than several material grains (Hills and Nowell, 1994;

Dai et al., 1994).

The propagation stage in a fretting fatigue problem is substantially different

from that of plain fatigue during the phase in which the crack length is less

than the characteristic dimension of the contact zone (Hills and Nowell, 1994;

Dai et al., 1994). In such a situation, it is essential to account for the effect of
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the contact stress field on the crack and vice versa (contact-crack interaction).

It is especially important to estimate realistic values of the stress intensity

factors (SIFs) and as a consequence, numerical modelling often becomes a

necessity (for example, using the finite element method, FEM).

Due to the intrinsic complexity of modelling fretting fatigue, simplifications

are often introduced. Several authors have studied the propagation stage in

two dimensions. Faanes and Härkeg̊ard (1994) calculated KI analytically by

applying equivalent contact tractions and Green’s functions. They assumed

either straight cracks growing in a normal direction to the contact surface

or inclined cracks (Faanes, 1995). Kimura and Sato (2003) used a similar

approach extended to inclined mixed-mode cracks. Sheikh et al. (1994) used

a FE model of the classic fretting bridge and studied the SIFs for several

crack lengths and different crack angles with respect to the contact surface.

Mutoh et al. (2003) presented one of the most comprehensive experimental

and numerical studies on crack propagation for a fretting bridge configuration.

Their FE model included the contact influence, with the crack located at the

end of the contact zone. They considered several crack propagation increments

to simulate the crack growth path and applied the estimated values of the

SIFs to compute the fretting fatigue life. General strategies for predicting the

crack growth path in LEFM can be found in the works of Sumi (1985) and

Rubinstein (1991).

As opposed to earlier FE approaches, in recent years the extended finite ele-

ment method (X-FEM) (Moës et al., 1999) has proven to be a very efficient

tool for the numerical modelling of cracks in LEFM. In this study, the method

is applied to 2D crack analysis under fretting conditions. In comparison to the

standard finite element method, the X-FEM provides significant benefits in
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the numerical modelling of crack propagation. The main advantages are that

the finite element mesh need not to conform to the crack boundaries (crack

faces) to account for the geometric discontinuity, and furthermore, mesh re-

generation is not needed in crack growth simulations. Therefore, only a single

mesh, which is often easily generated, can be used for any crack length and

orientation. The X-FEM is based on the introduction of additional degrees

of freedom (dofs), which are associated with the nodes of the elements inter-

sected by the crack geometry. These extra dofs in combination with special

functions enable the accurate modelling of the crack.

In this paper, we assume a small initial crack that is located near the con-

tact zone, and crack propagation is studied using the extended finite element

method. The objective is to determine the influence of the contact stress field

on the crack growth path. We assume that the crack is open at the max-

imum bulk load on the specimen, and therefore the contact between crack

faces is not modelled in this work. Several situations are studied, combining

different initial cracks and load combinations. The use of the X-FEM enables

the evaluation of the influence of the contact zone on crack propagation in

a very efficient way. Moreover, it permits to estimate accurate values of the

SIF along the crack path by combining energetic post-processing techniques,

like the equivalent domain integral form of the J-integral (EDI method) or

the interaction integral. An analogous study using a standard finite element

formulation would be far less accurate and prohibitively costly, because of the

need for mesh regeneration for each crack length and orientation.
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2 FUNDAMENTALS OF THE X-FEM

In a standard finite element formulation, a crack must conform to the finite

element mesh and remeshing is required to conduct crack propagation simu-

lations. In contrast, in the X-FEM, a crack is modeled via the displacement

approximation—a function that is discontinuous across the crack is added to

the displacement approximation to model the presence of a crack. Therefore,

crack growth can be done without the need for remeshing. This engenders

additional degrees of freedom (dofs) that are tied to the nodes of the elements

intersected by the crack. The displacement approximation for crack modelling

in the extended finite element method takes the form (Moës et al., 1999):

uh(x) =
n∑

i=1

Ni(x)










ui + H(x)ai
︸ ︷︷ ︸

only Heaviside nodes

+
4∑

α=1

Fα(x)biα

︸ ︷︷ ︸

only crack-tip nodes










, (1)

where n is the number of nodes in the mesh, Ni(x) is the shape function of node

i, ui is the classical dof of node i, and ai and biα are the dofs associated with the

Heaviside step function H(x) and the crack-tip functions Fα(x), respectively.

The discontinuous function H(x) takes on the value +1 above the crack and

−1 below the crack. The crack-tip functions Fα(x) provide improved accuracy

and are required if the crack-tip terminates inside an element. These functions

are

[Fα(r, θ), α = 1–4] =

[

√
r sin

θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
sin θ,

√
r cos

θ

2
sin θ

]

, (2)

where r, θ are local polar co-ordinates defined at the crack-tip. Further details

on the criteria for the selection of enriched nodes and on the implementation of

X-FEM can be found in Moës et al. (1999) and Sukumar and Prévost (2003).
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Fig. 1 shows a portion of a mesh. The circled nodes are the nodes enriched

with 2 additional dofs (total 4 dofs per node) whereas the nodes marked with

a square are enriched by 8 more dofs (total 10 dofs per node). Elements that

contain at least one enriched node are known as enriched elements. Nodes with

2 additional dofs (one for each co-ordinate direction) have shape functions that

multiply H(x). Nodes with 8 additional dofs are enriched in the two Cartesian

directions with Fα(x). To compute the element stiffness matrix, the elements

that are intersected by the crack are subdivided into subelements for numerical

integration. In this study, we have used 7 integration points in triangular

subelements and 5× 5 quadrature points in quadrilateral subelements as well

as in elements that are not subdivided but contain at least one enriched node.

Heaviside enrichment

Crack tip enrichment

Fig. 1. Enriched nodes in the X-FEM. Circles: nodes with 2 additional dof. Squares:

nodes with 8 additional dof.
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3 IMPLEMENTATION AND POST-PROCESSING

In this study, we have implemented the X-FEM in the FE commercial code

ABAQUS (Hibbitt et al., 2004). To our knowledge, this is one of the first

implementations of X-FEM for crack growth simulations within ABAQUS. In

the interest of space, just the main features are mentioned. The analysis pro-

cedure is as follows. After a single mesh generation, geometric computations

based on an exact crack description are carried out to determine the nodes

and elements to be enriched, following the approach described in Moës et al.

(1999). Next, the ABAQUS solver is called to link the user subroutines that

incorporate the X-FEM. The SIFs are then extracted using post-processing

techniques and a crack propagation increment is computed. This increment is

added to the existing crack geometry and the analysis procedure is repeated.

The ABAQUS user-element capability has been used to formulate the enriched

elements. The user-element enables the definition of elements with several dofs

per node. ABAQUS capabilities are limited insofar as user-elements can not

be directly used as part of contacting surfaces in contact problems nor can

user-elements be visualized for plotting purposes. We have overcome these

problems using standard 4-node linear elements with very small (negligible)

stiffness connected to the nodes of every enriched element and retaining the

same connectivity. These overlay elements can then be part of the contact

pair surfaces to model the contact problem in ABAQUS. Note that the over-

lay elements of negligible stiffness are added in parallel to the user-elements,

preserving the actual stiffness of the model. As a consequence, displacements

associated with overlay elements are governed by the underlying X-FEM ele-

ments. In addition, this enables the representation of a linearly interpolated
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deformed shape of the enriched elements.

From Eq. (1), it is clear that the physical displacement at an enriched node i,

uh(xi) is given by the standard dof ui plus the enriched contribution H(xi)ai

or Fα(xi)biα. This implies that the standard dof ui (the ones used by ABAQUS

in its internal contact algorithm or for plotting) do not correspond to the true

displacement computed with the X-FEM. In order to make the dof ui of an

enriched node i be the physical solution of the nodal displacement, the X-FEM

has been implemented according to the following modification of Eq. (1), the

so-called shifted-basis enrichment (Zi and Belytschko , 2003; Ventura et al.,

2003):

uh(x) =
n∑

i=1

Ni(x)










ui + [H(x) − H(xi)] ai
︸ ︷︷ ︸

only Heaviside nodes

+
4∑

α=1

[Fα(x) − Fα(xi)]biα

︸ ︷︷ ︸

only crack-tip nodes










. (3)

The above procedure has proven to be a very good way to combine user-

elements with the contact algorithm capabilities available within ABAQUS.

To extract the SIFs, we use the domain form of the interaction integral (Chen

and Shield, 1977; Yau et al., 1980). The details on the derivation and its

implementation in the X-FEM is available in the literature (Moës et al., 1999;

Sukumar and Prévost, 2003; Huang et al., 2003). For the crack orientation

prediction based on the values of KI and KII, the MTS criterion proposed

by Erdogan and Sih (1963) (maximum tangential stress or hoop stress σθθ) is

used:

θc = arccos




3K2

II +
√

K4
I + 8K2

I K
2
II

K2
I + 9K2

II



 , (4)

where θc is the angle that will follow the crack for each of the crack increments.

θc is measured with respect to a local polar co-ordinate system with its origin
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at the crack tip and aligned with the direction of the existing crack. The sign

convention is such that θc < 0 when KII > 0 and vice versa. Other criteria

lead to very similar orientation angles for 2D problems (see a recent review

by Richard et al., 2005).

Orientation criteria are well-established for the determination of crack prop-

agation angles under proportional mixed-mode conditions. However, it is re-

ported (Lamacq et al., 1996; Dubourg and Lamacq, 2000) that new criteria or

extensions of these criteria are needed under the strong non-proportional con-

ditions of fretting fatigue loading cycles. Under non-proportional conditions,

the predicted crack angle is different at each step of the loading cycle. It is

claimed that the crack orientation is governed by the direction in which the

amplitude of the mode I opening during the cycle is maximum (not only the

maximum value of the opening). Criteria based on the maximum value of ∆k∗

I

and other modifications seem to yield good estimates under certain conditions

(Lamacq et al., 1996; Dubourg and Lamacq, 2000), where k∗

I is the mode I

SIF associated with an infinitesimal kinked crack emanating from the exist-

ing crack in a given direction (see for example Anderson, 1995). For the two

problems and loading conditions analyzed in this work (which are described

in the next section), we have verified that the criterion based on max(∆k∗

I )

over a cycle yields virtually the same results as the MTS criterion applied at

the instant of maximum bulk loading, as exemplified in Fig. 2. This figure is

computed for a given crack increment of the first problem with a maximum

bulk stress of σB,max = 60 MPa. It can be seen that the maximum effective

range ∆k∗

I is attained at the same angle that maximizes k∗

I for the maximum

bulk loading. Therefore, Eq. (4) has been used at that instant.
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Fig. 2. Mode I SIF associated with an infinitesimal kinked crack emanating from an

existing crack. Non-proportional evolution under varying bulk load for Problem 1.

4 NUMERICAL MODELS

Crack propagation in two fretting fatigue test configurations are studied us-

ing the extended finite element method. First, a complete contact problem is

considered, in which squared-ended indenters are pressed on both sides of a

flat specimen. This problem is used here as a benchmark problem to show the

merits of the approach for parametric crack growth studies. We have tested

the sensitivity of certain parameters to the crack trajectories, such as length

and angle of the assumed initial crack or the crack growth increment used in

each growing step. In order to verify the accuracy of the X-FEM, we have

also compared the SIFs estimations to other solutions obtained by analyti-

cal approaches. In addition, a second problem is modelled that represents an

incomplete contact with cylindrical indenters. This problem is introduced to

demonstrate the robustness of the X-FEM implementation in the presence of
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relatively large sliding zones.

B(t)σ

l

h

c2 B

x
y

σ (t)w

a0

σP

Fig. 3. Problem 1: complete contact model with flat indenters.

The first problem consists of a rectangular specimen subjected to a variable

bulk stress and pressed by two opposite square-angled indenters (see Fig. 3).

The model dimensions are h = 2c = 2w = 10 mm, l = 40 mm. The material

considered is aluminum alloy 7075-T6, with E = 72 GPa and ν = 0.3. Plane

strain condition is assumed (although the SIF values are independent of this

state) and the friction coefficient is taken as f = 0.8 (see Mutoh et al., 2003).

The normal load is constant, with a value of σP = 60 MPa and the bulk load

is cyclical, with a stress ratio R = −1 and a maximum amplitude denoted by

σB,max. Five different values of σB,max have been analyzed (20, 40, 60, 120 and

180 MPa).

k

2a

l

H

spec

c2

e
y

(t)Bσw

rpad

x

a0

Pkpad

Fig. 4. Problem 2: incomplete contact model with cylindrical pads.
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The second problem represents an incomplete contact originated by cylindrical

fretting pads of radius rpad = 25 mm. A sketch is shown in Fig. 4, with dimen-

sions l = 2w = 20 mm. The normal load P = 40 kN is held constant during

the test producing a Hertzian contact region of semi-width aH = 177.9 µm,

having assumed the same material as in the first problem. A variable bulk

stress with a maximum value of σB,max = 90 MPa is applied to the right end

of the specimen. Because of the frictional contact and the way the pad is

supported, a tangential load Q is generated on the fretting pad. The values

of the tangential load and the bulk stress on the left part of the specimen

depend on the compliances of both the specimen and the fretting pad sup-

port. These compliances are represented in the model by spring elements of

stiffnesses kspec and kpad, respectively. We have used multi-point constraints

(MPCs) to guarantee an even distribution of point forces over the application

side. The specimen spring is attached to a node linked through MPCs to the

rest of nodes of the left boundary. They share the same dof in the x-direction.

In this way, the force exerted by the spring is equivalent to a distributed load

along the whole left side of the specimen. The spring attached to the indenter

acts in an analogous manner with respect to the top of the indenter. Under

these loading conditions, the contact area of width 2aH has an internal stick

zone of width 2c, located between two slip zones (Hills and Nowell, 1994).

The stick zone has an eccentricity e measured from the center of the contact

zone (see Fig. 4). The spring stiffnesses kspec and kpad have been calibrated to

obtain a tangential load Q/fP = 0.6. This corresponds to a sticking zone of

size c/aH = 0.634 and eccentricity e/aH = 0.210.

Under reverse cyclic load (i.e. R = −1), it is worth noting that the crack

opens approximately during the tensile half-cycle. In this case, the compressive
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half-cycle does not have an important effect on the crack growth (Faanes

and Fernando, 1994; Faanes, 1995; Hills and Nowell, 1994). Note that the

maximum KI and KII values are obtained when the crack is totally open,

since the tangential slip of crack faces are not hindered by the compressive

stresses acting on crack faces (Faanes, 1995; Hills and Nowell, 1994; Dubourg

and Lamacq, 2000). Under this assumption we have taken ∆K = Kmax.

Both problems are modelled with 4-node bilinear quadrilateral elements. The

minimum element size in this zone is he = 10 µm (see Fig. 1). This element

size enables the modelling of small cracks that are still longer than he. An

alternative X-FEM formulation for modelling short cracks when compared to

the element size can be found in Bellec and Dolbow (2003). At this point, the

question of the suitability of the initial crack length a0 arises. An initial value

of a0 = 50 µm has been assumed. This size is of the order of several grains for

this material, a necessary condition for the applicability of the LEFM. The

initial crack size has also been estimated using the El Haddad equation (El

Haddad et al., 1979):

a0 =
1

π

(
∆Kth

σN=106

)2

. (5)

The following values were found in Wittkowsky et al. (2000) for the aluminum

alloy 7075-T6: plain fatigue limit (in terms of stress amplitude) σN=106 =

214 MPa and threshold value ∆Kth = 2.2MPa m1/2 (both for R = −1). Using

Eq. (5), the estimation a0 = 33.6 µm is obtained, which is in good agreement

with the grain size perpendicular to the surface of 35µm reported by Navarro

et al. (2003), measured according to ASTM Standards. Therefore the value

a0 = 50 µm is considered acceptable.

The friction model assumed for the contact zone is a Coulomb model and
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the ABAQUS contact formulation based on Lagrange multipliers is used. The

Lagrange multiplier formulation enables the exact modelling of sticking con-

tact conditions, in contrast to contact formulations based on penalty methods

(these require a certain amount of slip, the so-called elastic slip dependent on

the penalty constant, to develop a sticking frictional shear traction). The ex-

act modelling of sticking conditions is an important issue in fretting problems

(Goh et al., 2003), to resolve the stick/slip behaviour along the interface.

5 NUMERICAL RESULTS AND DISCUSSION

5.1 Problem 1: Complete contact problem

In Fig. 5, an enlarged detail of the deformed shape (σxx stress field) of the

extended finite element model analyzed with ABAQUS is illustrated. The de-

formation due to the implicit crack opening can be observed at the instant

of maximum amplitude σB,max. As explained earlier, this opening is generated

by the mathematical discontinuity present in the enriched elements. The steep

stress gradient in the vicinity of the crack tip can be seen. Note also the ex-

pected σxx stress discontinuity across the indenter interface due to the sliding

contact conditions. User defined elements (enriched elements in this applica-

tion) are marked with crosses by ABAQUS, indicating the position of the first

node in the connectivity of the enriched element. Of course, the first node in

the connectivity is not necessarily an enriched node.

The crack propagation path for each of the cases considered for σB,max is shown

in Fig. 6. The number of crack increments is 20, with value ∆a = a0 = 50µm.

The radius of the q-function (Moës et al., 1999) used in the domain interaction
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1

2

3

Fig. 5. Enlarged view of the deformed shape for the σxx stress field at the instant

when σB(t) is maximum. Scale factor: 8x.

integral has been taken as rq = 40µm (the minimum element size in this zone is

he = 10 µm). Like the initial length a0, the initial crack orientation θc,0 must

also be defined. In principle, this value can be inferred from experimental

information found in the literature (Adibnazari and Hoeppner, 1994; Mutoh

et al., 2003). The application of certain critical plane methods to estimate the

angle of initiating cracks could also be used (Lamacq et al., 1997). For all cases

of Fig. 6, the initial angle θc,0 is 60o with respect to the free surface of the

specimen. For larger values of σB,max, it can be observed that the influence of

the contact zone due to σP is less significant and the crack tends to grow in a

direction normal to the bulk load σB.

For low bulk loads σB,max, it can be noticed that there is an abrupt change of

direction departing from the initial crack angle θc,0 = 60o. Hence, it is indica-

tive that the true initial angle for those load conditions is different from the

one assumed a priori. The effect of the assumed initial crack angle θc,0 is stud-

ied in Fig. 7. The results reveal that the value of θc,0 does not strongly affect

the orientation after a few crack increments, because the crack propagation
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Fig. 6. Crack propagation paths for several values of σB,max. The initial crack angle

is θc,0 = 60o.

follows a natural path based on the maximum energy that is released. For low

values of σB,max, the calculated SIFs are very low for the first crack increments

(in some cases, even less than the threshold value used in long crack growth

models, like Paris’s law). This issue has not been considered in this study and

it has been assumed that the crack eventually propagates in all cases.

Fig. 8 proves that a refined discretization of the crack increment (20 increments

with ∆a = 25 µm instead of ∆a = 50 µm) leads basically to the same results

shown in Fig. 6. The agreement revealed in Fig. 8 demonstrates the robustness

of the X-FEM: for ∆a = 25 µm, the radius of the q-function rq is 24 µm,

which implies that very few elements are contributing to the domain integral

computation because he = 10 µm in this zone. However, the quality of the

estimation is still good.
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Fig. 7. Effect of the initial crack angle θc,0 on the propagation path. Load case

σB,max = 60MPa.
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Fig. 8. Effect of the crack increment size ∆a = 25µm and 50µm on the propagation

path. The initial crack is the same in both cases.

5.2 SIF calculations for Problem 1 (complete contact problem)

In order to estimate the orientation angle θc using Eq. (4), all previous analyses

need the computation of KI and KII for each crack growth increment. Since
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the SIF extraction with the interaction integral is based on the numerical

solution provided by the X-FEM, it is convenient to assess the quality of the

SIF computation, which is obviously affected by the discretization error (like

in a standard FE formulation). In this subsection, we compare some SIFs

calculations using the presented approach with other analytical solutions of

reference for certain configurations.

Fig. 9 shows the value of KI vs. the crack length a for a crack located at

the end of the contact zone. In order to make feasible the comparison with

reference solutions, the crack is enforced to be normal to the contact surface

(i.e. no crack deviation is allowed). One of the plotted series of results has

been calculated with only bulk load on the specimen and no contact pressure

on the indenters. The corresponding SIFs agree very well with the analytical

approximation given in Tada et al. (1985) for a double edge crack in a strip of

finite width in tension (DENT). As expected, the approximation with a single

edge crack solution (SENT) is only valid for short cracks (less than 7% of the

half thickness of the specimen w). The SIF solution for the fretting fatigue

loading condition (bulk load combined with the normal load on the indenter)

is also plotted in Fig. 9. The effect of the contact load is to increase the severity

of the crack, yielding larger values of KI than for a plain fatigue situation. This

effect agrees well with the experimental evidence reported in the literature (see

for example Hills and Nowell, 1994), as fretting tends to induce faster crack

growth rates than plain fatigue during the early propagation stages. As the

crack grows, the contact influence decreases and the behaviour approaches

that of plain fatigue.

This latter series of fretting fatigue results has been also estimated in this

work using weight functions, an analytical procedure that, together with the
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Fig. 9. Problem 1: Mode I SIF vs. crack length a for a series of cracks located at

the end of the contact zone, which are all normal to the contact surface.

Green’s function technique, is often used in the fracture mechanics approach

to fretting fatigue (Faanes and Fernando, 1994; Navarro et al., 2003). Ana-

lytical approaches in literature make use of the knowledge of the theoretical

contact stress fields to estimate the SIFs. In the weight function formulation

(Bueckner, 1973) the stress distribution along the crack location (solved for

a configuration without a crack) is combined with a weight function w(y)

derived for a given geometry to yield K:

KWF
I =

√

2

π

∫ a

0
σx(x, y)w(y) dy. (6)

In the case considered here of a straight crack normal to the surface at the

end of the contact zone (x = 0, see Fig. 3), the stresses σx for a no-crack

configuration must be known along the y-direction (the direction of the normal

crack). However, there is no analytical solution available for the finite domain

geometry of Problem 1, so we have calculated the generalized stress intensity

factors (GSIF) that characterize the singular field in the vicinity of the corner
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of a complete contact. In this way, we can have a description of the singular

contact field for the given loads and geometry.

With no crack, the bulk stress provokes a relative slip with friction of the

contact zone next to the corner. However, the presence of a crack next to

the contact zone tends to preclude the partial slip, since the discontinuity of

the crack diverts the path followed by the bulk forces. The contact pressure

is very high in this zone (it is theoretically singular at the corner) and the

shear traction needed to cause partial slip can not be reached when the bulk

forces are diverted due to the crack discontinuity. Therefore, it is reasonable

to assume that the contact zone sticks when a crack is present in the analyzed

model. This has been confirmed numerically. For a totally adhered contact

zone, the singular field adjacent to the corner can be thought of as forming a

V-notch problem. The singular field derived by Williams for a re-entrant or

V-notch corner is (Williams, 1952):







σrr(r, θ)

σθθ(r, θ)

σrθ(r, θ)







= KGSIF
I rλI−1 ΨI(θ) + KGSIF

II rλII−1 ΨII(θ) (7)

where the trigonometric functions ΨI(θ), ΨII(θ) are defined in Appendix A.

The eigenvalues in our problem are λI = 0.5445, λII = 0.9085 (see Ap-

pendix A). The values of KGSIF
I and KGSIF

II were estimated using stress ex-

trapolation from the FE solution for a no-crack configuration, yielding 26.21

MPa mm1−λ and −177.75 MPa mm1−λ, respectively. In this way, the singular

field due to the contact corner can be reconstructed via (7) and used as an

approximation to σx(x, y) in (6). Fig. 10 shows the estimation of KI computed
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using (6). It can be seen that the agreement with the extended finite element

solution is good for very small cracks, where the singular field dominates. Due

to the small crack size, this agreement is attained with both the single-edge

crack weight function (SENT) given by Bueckner (1973) and with the more

appropriate double-edge crack weight function (DENT) given by Fett et al.

(1988). Obviously, the solution for a DENT weight function tends to approach

the extended finite element solution for longer cracks.
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Fig. 10. Problem 1: Mode I SIF vs. crack length a for a series of cracks located at the

end of the contact zone, which are all normal to the contact surface. Comparison

with analytical computations using weight functions.

From the above analysis for normal cracks, we conclude that the X-FEM

yields good estimations of the SIF. We must point out that the extended

finite element method is not restricted to normal straight cracks, but allows

the analysis of more complex crack geometries, including inclined and kinked

geometries. In addition, since the X-FEM inherits the main advantages of the

FEM, the influence of nearby boundaries is also considered, which can be more
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involved in other methods, such as the distributed dislocation technique (Hills

and Nowell, 1994).

Finally, in Fig. 11 we represent the numerical value of KI and KII as well as

the orientation angle calculated with Eq. (4) vs. crack length (measured as the

addition of the crack growth increments) for the case σB,max = 120MPa shown

in Fig. 6. It can be observed that the propagation path tends to minimize the

value of KII and that the sign of KII is opposite to the θc sign, according to

the customary sign convention. As expected, the values of KI increase with

the crack length and can be identified with ∆KI.
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Fig. 11. Problem 1: SIFs values and orientation angle for the case σB,max = 120MPa

shown in Fig. 6.

5.3 Problem 2: Incomplete contact problem

The approach presented in this study can be applied to other geometries and

contact conditions. We introduce now the incomplete contact problem to show
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the good behaviour of the implementation under conditions of partial slip.

Unlike in complete contacts, the contact pressure distribution is Hertzian,

decreasing rapidly near the end of the contact zone, and a partial slip zone is

developed (Hills and Nowell, 1994). Fig. 12 shows the variation of the partial

slip zones along the contact width 2aH for a no-crack case and for two different

crack lengths. The presence of a normal crack of length a = 0.17aH located at

the end of the contact (x = aH) reduces the amount of partial slip near the

crack, due to the stress redistribution and the ’shading’ effect of the crack.

For a longer crack a = 1.12aH, this effect leads to complete sticking at the

left hand side of the crack (x < aH). Note also that some nodes located at

the right hand side of the crack (x > aH) enter into contact due to the stress

redistribution and experience a large relative slip caused by the traction of the

bulk stress. This analysis shows that the X-FEM implementation carried out

in this work is capable of representing stick-slip transitions along the contact

zone.

In Fig. 13 we represent an estimation of the crack growth path during the

propagation stage for the incomplete contact problem. The analysis has been

carried out for the loading conditions described in Section 4. An initial crack

of 40 µm with an angle θc,0 = 120o located at the end of the contact zone

has been assumed. The crack path agrees very well with the results presented

by Hills and Nowell (1994) for similar loading conditions and where the crack

trajectory is computed as the orthogonal direction to the maximum positive

principal stress.

The proposed methodology can be very useful for the estimation of the prop-

agation life in fretting fatigue problems due to the positive attributes of the

method, namely its robustness, accuracy, ease of geometric modelling of the
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crack and the inclusion of the contact model with friction. The estimation of

the propagation life in fretting is considered in the literature (Faanes and Fer-

nando, 1994; Faanes, 1995; Mutoh et al., 2003) based on the SIFs calculated

under contact influence. Navarro et al. (2003) compute the SIF using weight

functions during the propagating stage. In general, these studies are based on

simplifications regarding the crack shape and the effects of contact tractions.

Following the approach we have pursued, such simplifications in the numerical

model are circumvented, and more accurate SIFs are realized. This is espe-

cially important when using crack growth laws for estimating propagation lives

that strongly depend on the accuracy of the SIFs.

There are other important issues that have not been addressed in this work,

which deserve further attention, such as the study over complete cycles includ-

ing crack closure effects. To study crack closure effects, X-FEM formulations

that include frictional contact between crack faces (Dolbow et al., 2001; Kim

et al., 2007; Ribeaucourt et al., 2007) are promising.

6 CONCLUSIONS

The combination of the advantages of the X-FEM and the inherent capabil-

ities in ABAQUS for modelling contact problems has lead to a methodology

for the analysis of crack propagation in fretting fatigue problems. The X-

FEM has been implemented in the commercial code ABAQUS by means of

user-element subroutines. The use of X-FEM in fretting fatigue introduces

a number of distinct benefits over existing models that appear in the litera-

ture. The main advantage is that modelling any crack location and orientation

becomes a straightforward task, using an easily generated single mesh. This
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allows the simulation of crack propagation in a computationally elegant, sim-

ple, and cost-effective manner. In addition, the methodology provides accurate

SIF extractions through energetic methods based on domain integrals. The ac-

curacy attained is much better than with a standard FE formulation due to

the use of crack-tip enrichment functions that adapt much better than the FE

solution to the singular crack-tip fields.

In this paper, the methodology has been applied to complete and incomplete

contact problems. The influence of the bulk load, the effect of the initial crack

angle θc,0 and the crack increment ∆a have been studied, as well as the per-

formance of the implementation under sticking or partial slip conditions. The

proposed methodology is robust and accurate and allows the study of sev-

eral crack configurations. The numerical results demonstrate the merits of the

X-FEM for the estimation of the fretting fatigue life during the propagation

stage.
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A The V-notch solution

In accordance with the polar reference system of Fig. A.1, the stress field can

be decomposed into two parts: a symmetric solution with respect to θ = 0

(i.e. the bisector line BB) and an antisymmetric solution (Williams, 1952).

The trigonometric functions ΨI(θ), ΨII(θ) that define the singular stress field

given in (7) have the following components:

ΨI(θ) = λI(λI + 1)







cos(λI + 1)θ
cos(λI − 1)α

cos(λI + 1)α
−

λI − 3

λI + 1
cos(λI − 1)θ

− cos(λI + 1)θ
cos(λI − 1)α

cos(λI + 1)α
+ cos(λI − 1)θ

− sin(λI + 1)θ
cos(λI − 1)α

cos(λI + 1)α
+

λI − 1

λI + 1
sin(λI − 1)θ







(A.1)

ΨII(θ) = λII(λII+1)







sin(λII + 1)θ
sin(λII − 1)α

sin(λII + 1)α
−

λII − 3

λII + 1
sin(λII − 1)θ

− sin(λII + 1)θ
sin(λII − 1)α

sin(λII + 1)α
+ sin(λII − 1)θ

cos(λII + 1)θ
sin(λII − 1)α

sin(λII + 1)α
−

λII − 1

λII + 1
cos(λII − 1)θ







.
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Fig. A.1. V-notch in an infinite half-space.
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In (7) the eigenvalue λI is the lowest positive solution of the so-called charac-

teristic equation for the symmetric solution:

λI sin(2α) + sin(2λIα) = 0 (A.3)

and corresponds to the most singular solution. Analogously, the eigenvalue λII

is the lowest positive solution of the characteristic equation for the antisym-

metric solution:

λII sin(2α) − sin(2λIIα) = 0. (A.4)
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Navarro, C., Garćıa, M., Domı́nguez, J., 2003. A procedure for estimating the

total life in fretting fatigue. Fatigue and Fracture of Engineering Matererials

and Structures 26 (5), 459–468.

Ribeaucourt, R., Baietto-Dubourg, M.-C., Gravouil, A., 2007. A new fatigue

frictional contact crack propagation model with the coupled X-FEM/LATIN

method. Computer Methods in Applied Mechanics and Engineering 196,

3230-3247.

Richard, H.A., Fulland, M., Sander, M., 2005. Theoretical crack path predic-

tion. Fatigue and Fracture of Engineering Matererials and Structures 28,

3-12.

Rubinstein, A.A., 1991. Mechanics of the crack path formation. International

Journal of Fracture 47, 291–305.

Sheikh, M.A., Fernando, U.S., Brown, M.W., Miller, K.J.M., 1994. Elastic

stress intensity factors for fretting cracks using the finite element method.

ESIS 18. In: Fretting Fatigue (Edited by R.B. Waterhouse and T.C. Lind-

ley). Mechanical Engineering Publications Ltd, London, pp. 83–101.

Sukumar, N., Prévost, J.-H., 2003. Modeling quasi-static crack growth with

the extended finite element method. Part I: Computer implementation. In-

ternational Journal of Solids and Structures 40 (26), 7513–7537.

Sumi, Y., 1985. Computational crack path prediction. Theoretical and Applied

31



Fracture Mechanics 4, 149–156.

Tada, H., Paris, P.C., Irwin, G.C., eds., 1985. The stress analysis of cracks

handbook. 2nd. ed. Paris Productions, Inc. St. Louis, Missouri.

Ventura, G., Budyn, E., Belytschko, T., 2003. Vector level sets for description

of propagating cracks in finite elements. International Journal for Numerical

Methods in Engineering 58, 1571–1592.

Williams, M.L., 1952. Stress singularities resulting from various boundary con-

ditions in angular corners of plates in extension. Journal of Applied Mechan-

ics 19, 526–528.

Wittkowsky, B.U., Birch, P.R., Domı́nguez, J., Suresh, S., 2000. An experi-

mental investigation of fretting fatigue with spherical contact in 7075-T6

aluminum alloy. In: Fretting Fatigue: Current Technology and Practices.

Edited by D.W. Hoeppner, V. Chandrasekaran and C.B. Elliot). ASTM

STP 1367, West Conshohocken, pp. 213–227.

Yau, J.F., Wang, S.S., Corten, H.T., 1980. A mixed-mode crack analysis of

isotropic solids using conservation laws of elasticity. Journal of Applied Me-

chanics 47, 335–341.

Zi, G., Belytschko, T., 2003. New crack-tip elements for XFEM and applica-

tions to cohesive cracks. International Journal for Numerical Methods in

Engineering 57, 2221–2240.

32



FIGURE CAPTIONS

Fig. 1. Enriched nodes in the X-FEM. Circles: nodes with 2 additional dof.

Squares: nodes with 8 additional dof.

Fig. 2. Mode I SIF associated with an infinitesimal kinked crack emanating

from an existing crack. Non-proportional evolution under varying bulk load

for Problem 1.

Fig. 3. Problem 1: complete contact model with flat indenters.

Fig. 4. Problem 2: incomplete contact model with cylindrical pads.

Fig. 5. Enlarged view of the deformed shape for the σxx stress field at the

instant when σB(t) is maximum. Scale factor: 8x.

Fig. 6. Crack propagation paths for several values of σB,max. The initial crack

angle is θc,0 = 60o.

Fig. 7. Effect of the initial crack angle θc,0 on the propagation path. Load

case σB,max = 60MPa.

Fig. 8. Effect of the crack increment size ∆a = 25 µm and 50 µm on the

propagation path. The initial crack is the same in both cases.

Fig. 9. Problem 1: Mode I SIF vs. crack length a for a series of cracks located

at the end of the contact zone, which are all normal to the contact surface.

Fig. 10. Problem 1: Mode I SIF vs. crack length a for a series of cracks located

at the end of the contact zone, which are all normal to the contact surface.

Comparison with analytical computations using weight functions.
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Fig. 11. Problem 1: SIFs values and orientation angle for the case σB,max =

120MPa shown in Fig. 6.

Fig. 12. Problem 2: Variation of the partial slip zone due to the crack presence

at the end of the contact zone x = aH. Effect of different crack lengths.

Fig. 13. Problem 2: Estimation of crack growth during the propagation stage.

Fig A.1. V-notch in an infinite half-space.
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