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SUMMARY

In this paper, the numerical modelling of complete sliding contact and its associated singularity is carried out using

the partition of unity finite element method. Sliding interfaces in engineering components lead to crack nucleation

and growth in the vicinity of the contact zone. To accurately capture the singular stress field at the contact corner,

we use the partition of unity framework to enrich the standard displacement-based finite element approximation

by additional (enriched) functions. These enriched functions are derived from the analytical expression of the

asymptotic displacement field in the vicinity of the contact corner. In order to characterize the intensity of the

singularity, a domain integral formulation is adopted to compute the generalized stress intensity factor. Numerical

results on benchmark problems are presented to demonstrate the improved accuracy and benefits of this technique.

We conduct an investigation on issues pertaining to the extent of enrichment, accurate numerical integration of

weak form integrals, and the rate of convergence in energy. The use of partition of unity enrichment leads to
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accurate estimations of the generalized stress intensity factors on relatively coarse meshes, which is particularly

beneficial for modelling non-linear sliding contact. Copyright c© 2000 John Wiley & Sons, Ltd.

KEY WORDS: sliding contact; singularity enrichment; partition of unity; extended finite element method; domain

integral

1. INTRODUCTION

In engineering components, friction along sliding interfaces is a common occurrence, which may lead

to crack nucleation and growth, a phenomenon known as fretting fatigue [1]. More specifically, fretting

fatigue problems arise when two mechanical components are in contact under the action of normal

forces and simultaneously undergo relative displacements of small amplitude. Under these conditions,

the stresses are steep in the vicinity of the contact zone. These gradients combined with their cyclic

evolution lead to the nucleation of small cracks that often grow under fatigue loads until failure of

the component (hence the term fretting fatigue). Examples can be found in riveted or bolted joints,

shrink-fit assemblies, hub-axle joints, spline shafts such as those used in gas turbines, etc.

When the size of the contact zone does not depend on the normal load applied to the components, the

contact is said to be complete and the stress state at the corners of the contact zone is usually singular

for linear elastic media. In fact, two different situations can arise: the region next to the contact corner

can be either adhered or slipping. Furthermore, this contact condition can vary over a loading cycle.

The distribution of the elastic fields near the end of the contact for the adhered case was given by

Williams [2]. For the sliding condition (the case considered in this study), the corresponding stress

and displacement fields, which are due to Gdoutos and Theocaris, and Comninou, can be found in

References [3, 4, 5].
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SINGULARITY ENRICHMENT FOR SLIDING CONTACT USING PUFEM 3

Two parameters are used to describe the singular fields: the eigenvalue, λ, which represents the order

of the singularity, and a multiplier constant, the so-called generalized stress intensity factor (GSIF),

KC , which is analogous to the stress intensity factor in linear elastic fracture mechanics (LEFM). The

eigenvalue, λ, is usually known in advance whereas the GSIF is numerically computed, for instance,

using the finite element (FE) method. For points sufficiently close to the singularity, the stress field can

be expressed as

σij ∝ KCrλ−1, (1)

where r is the radial distance to the contact corner. We use a specially conceived domain integral to

compute KC from the numerical solution of the elastic problem [6]. The path-independent contour

integral is recast in domain form for the sliding contact problem [7, 8], and is better-suited for post-

processing in a FE analysis. In previous studies [6, 7, 8], this integral has provided accurate estimations

of the GSIF.

In this study, we use the partition of unity framework (PU) to introduce additional functions

(enrichment functions) in the FE formulation. The use of known functions to better capture the local

character of a solution in the vicinity of a discontinuity, singular point or line, etc., has come to

prominence in FE analysis during the last decade. Melenk and Babuška [9, 10] set the mathematical

foundations of the procedure. One of the most widespread applications of this approach has been in

modelling strong discontinuities, as in Reference [11] and especially in the extended finite element

method [12, 13] and the generalized finite element method [14], that have proved to be successful in 2-

and 3-dimensional LEFM. In Reference [15], partition of unity enrichment for a crack impinging on

a bimateral interface is proposed, whereas in Reference [16], PU enrichment for bimaterial interfacial

cracks is introduced. In a similar vein, in this study we adopt the partition of unity framework to better

capture the stress singularity that exists in complete sliding contact problems.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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4 E. GINER, N. SUKUMAR, F. J. FUENMAYOR AND A. VERCHER

In this work, we show that the proposed enrichment technique yields accurate estimates of the

GSIF on relatively coarse meshes, since the analytical description of the singular field is embedded

in the FE approximation. The advantages of this approach are two-fold: first, use of coarse meshes to

accurately estimate the GSIF is pertinent for modelling non-linear sliding contact problems since such

problems are computationally demanding. Secondly, the proposed formulation enables the modelling

of the singular point at any arbitrary location along the contacting surface. This introduces an important

advantage over previous finite element techniques, which are based on the use of special singular

elements [17, 18] that are restricted to fixed locations (chosen a priori) in the FE analysis.

The remainder of this paper is organized as follows. In the next section, a brief description of the

elastic fields that characterize complete sliding contact is given. Then, we briefly touch upon the

domain integral formulation that is used to compute the GSIF. In Section 4, the PU enrichment for

complete sliding contact is introduced, and a few particulars of its numerical implementation within

ABAQUSTM are indicated. A benchmark problem and the corresponding numerical verification are

presented in Section 5, with assessment of the rate of convergence in strain energy and the error in

the GSIF due to enrichment. In addition, the effect of numerical quadrature is also studied. A second

numerical example is presented to demonstrate the accuracy and performance of the method in a sliding

contact problem. Finally, some concluding remarks are mentioned in Section 6.

2. FRICTIONAL COMPLETE CONTACT IN GLOBAL SLIDING

The elastic fields present around the edge of the frictional contact between a sliding wedge and a half-

plane were analyzed by Gdoutos and Theocaris [3] and Comninou [4] using asymptotic analysis. They

studied the frictional contact problem for indenters elastically dissimilar to the contacting surface.

More recently, Mugadu et al. [5] specialized these results to fretting fatigue applications, where the

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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SINGULARITY ENRICHMENT FOR SLIDING CONTACT USING PUFEM 5

same material for both contacting bodies is assumed.

Now, the classical solution of the frictional contact problem with global sliding condition between a

wedge and a half-plane is summarized. It is assumed that the bodies are elastically similar, isotropic,

and homogeneous. Figure 1 shows the end of the contact zone. A polar co-ordinate system is defined,

with origin at the end of the contact plane. The wedge angle is denoted by ψ and f is the coefficient of

friction.

Figure 1. The problem of a sliding wedge on a contact plane with friction.

The stress fields σ(i) and displacement fields u(i) for each of the bodies (i), i = 1, 2, can be obtained

from the Airy functions ϕ(i) that satisfy the boundary conditions for both contacting bodies, as detailed

for example in References [5, 6]. In each body, the Airy function satisfies the biharmonic equation

∇4ϕ(i) = 0. (2)

The solution of this equation has the following form:

ϕ(i)(r, θ) = rλ+1
(
a(i)s+θ + b(i)c+θ + c(i)s−θ + d(i)c−θ

)
, (3)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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6 E. GINER, N. SUKUMAR, F. J. FUENMAYOR AND A. VERCHER

where the following definitions are used: s+θ = sin(1+λ)θ, s−θ = sin(1−λ)θ, c+θ = cos(1+λ)θ and

c−θ = cos(1− λ)θ. In addition, a(i), b(i), c(i) and d(i) are eight unknowns to be determined using the

boundary conditions for each body. From Figure 1, the natural boundary conditions are zero-traction

on the free-boundary of the bodies:

σ
(2)
θθ (r,−π) = 0,

σ
(2)
rθ (r,−π) = 0,

σ
(1)
θθ (r, ψ) = 0,

σ
(1)
rθ (r, ψ) = 0,

(4)

and the traction and displacement continuity conditions at the common boundary are

σ
(2)
rθ (r, 0) + fσ

(2)
θθ (r, 0) = 0,

σ
(1)
rθ (r, 0) + fσ

(1)
θθ (r, 0) = 0,

σ
(2)
θθ (r, 0)− σ

(1)
θθ (r, 0) = 0,

u
(2)
θ (r, 0)− u

(1)
θ (r, 0) = 0.

(5)

The parameter f is the coefficient of friction. It can take a positive value (if the slip of the wedge is in

the positive x1-direction) or a negative value (if the slip is in the negative x1-direction).

A system with eight equations and eight unknowns is obtained when using the relationships between

the Airy stress functions and the polar components of stress and displacement [6, 19], combined with

Equations (4) and (5). In the derivation, it is convenient to use the Michell solution for the polar

components of displacements (see [19]).† The system is of the form:



[A11] [A12]

[A21] [A22]








{
k(1)

}

{
k(2)

}





=





{0}

{0}





, (6)

where
{
k(i)

}
=

{
a(i) b(i) c(i) d(i)

}T
are the eight unknowns to be solved. The submatrices [Aij ] in

†The same result can be obtained using the Mellin transform instead, as in Reference [5].
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SINGULARITY ENRICHMENT FOR SLIDING CONTACT USING PUFEM 7

Equation (6) can be found in References [6, 8]. In order to solve for the displacement and stress fields, a

non-trivial solution of the homogeneous system given in Equation (6) must be found. The system has a

non-trivial solution if and only if its determinant is equal to zero. Therefore, the following characteristic

equation is obtained:

∆(λ) = cos(λπ)
(
sin2 λψ − λ2 sin2 ψ

)
+

0.5 sin(λπ) (sin 2λψ + λ sin 2ψ) +

fλ(1 + λ) sin(λπ) sin2 ψ = 0.

(7)

The roots of the characteristic equation are the eigenvalues λj (j = 1, . . . ,∞). Given an eigenvalue

λj , the system of equations (6) is used to solve the eigenvector problem for λ = λj and to find the

constants a
(i)
j , b

(i)
j , c

(i)
j and d

(i)
j . The displacement field is then computed as

{
u(i)(r, θ)

}
=





u
(i)
r

u
(i)
θ





=
∞∑

j=1

KC
j rλj

{
Ψ(i)

j (θ, λj)
}

(8)

with

{
Ψ(i)

j (θ, λj)
}

=
1
2µ





−(λj + 1)(a(i)
j s+θ + b

(i)
j c+θ) + (κ− λj)(c

(i)
j s−θ + d

(i)
j c−θ)

(λj + 1)(−a
(i)
j c+θ + b

(i)
j s+θ) + (κ + λj)(c

(i)
j c−θ − d

(i)
j s−θ)





, (9)

where κ is the Kolosov’s constant (κ = 3 − 4ν for plane strain and κ = (3 − ν)/(1 + ν) for plane

stress), ν is the Poisson’s ratio and µ is the shear modulus of the material. In addition, the singular

stress field is expressed as:

{
σ(i)(r, θ)

}
=





σ
(i)
rr

σ
(i)
θθ

σ
(i)
rθ





=
∞∑

j=1

KC
j rλj−1

{
Φ(i)

j (θ, λj)
}

, (10)
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8 E. GINER, N. SUKUMAR, F. J. FUENMAYOR AND A. VERCHER

where

{
Φ(i)

j (θ, λj)
}

=





λj(λj + 1)
(
−a

(i)
j s+θ − b

(i)
j c+θ

)
+ λj(λj − 3)

(
−c

(i)
j s−θ − d

(i)
j c−θ

)

λj(λj + 1)
(
a
(i)
j s+θ + b

(i)
j c+θ + c

(i)
j s−θ + d

(i)
j c−θ

)

λj(λj + 1)
(
−a

(i)
j c+θ + b

(i)
j s+θ

)
+ λj(1− λj)

(
−c

(i)
j c−θ + d

(i)
j s−θ

)





.

(11)

The traction vector T
(i)
k is defined as σ

(i)
jk nj , where the stress components are defined in Equation (10)

and nk is the normal vector to a given contour.

3. DOMAIN INTEGRAL FOR GSIF EXTRACTION

As indicated in Section 2, the GSIFs are the multiplier constants KC
j that scale the intensity of the

elastic fields in Equations (8) and (10). For a given problem, λj can be computed in advance by solving

the characteristic equation (7). However, the GSIFs are generally unknown because they depend on the

specific boundary conditions of the problem. This usually implies that numerical methods must be

used to approximate the elastic fields, followed by post-processing techniques to extract the GSIFs. In

practice, the first term in the expansion series in Equations (8) and (10) (singular term) dominates the

elastic fields, so the value KC
1 (denoted here simply as KC) is the quantity of interest. Collocation

procedures, like the stress or displacement extrapolation techniques have been used in the literature

[17], but they need very refined meshes and sufficient user-intervention that renders it difficult to

conduct a systematic study. An efficient way of extracting KC from a FE solution is the special domain

integral presented in Reference [6]. We now present the essentials of this formulation.

Figure 2 shows the singular point surrounded by a domain Ω∗. The domain integral method yields

the value of KC by performing the following integration over the domain Ω∗:

KC
j = − 1

Cj,E

∫

Ω∗

(
σh

klu
E
l − σE

klu
h
l

) ∂q

∂xk
dΩ. (12)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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SINGULARITY ENRICHMENT FOR SLIDING CONTACT USING PUFEM 9

x1
x2

P0P+
P–

Ω∗

Γ∗

(1)

(2)

x1
x2

P0P+
P–

Ω∗

Γ∗

(1)

(2)

Figure 2. Domain region Ω∗ over which the integration is performed.

The contour integral that leads to the domain integral (12) was proposed in References [7, 8]. It is

path-independent, yielding the same result when the paths Γ∗ and P0 defined in Figure 2 are traversed.

In practice, this independence is not exact due to the discretization error. This contour integral is based

on Betti’s Reciprocal Theorem. In Reference [6], this integral is recast into the domain integral form

shown in Equation (12), where uh
l , σh

kl are the elastic fields obtained via a finite element analysis

and uE
l , σE

kl are the extraction fields specially conceived for this type of problem, and are defined

in References [6, 7, 8]. The constant Cj,E that relates the jth term of the series expansion and the

extraction field E is defined as

Cj,E =
∫ ψ

−π

(
λj{Ξj}T{ΨE}+ λE{ΞE}T{Ψj}

)
dθ, (13)

where Ψj , Ξj are the trigonometric functions that are associated with the displacement field given in

Equation (9) and the traction vector Tk = σjknj (derived from Equation (10)), respectively.

The gradient of the so-called q-function is a factor in the integrand as a result of the conversion into a

domain integral, which is analogous the domain integral form of the J-integral in LEFM. The function

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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10 E. GINER, N. SUKUMAR, F. J. FUENMAYOR AND A. VERCHER

q(x1, x2) can be any continuous function, provided that it is zero on the outer contour Γ0 and the

external region. In addition, q must be 1 on the inner contour Γ∗ and the region enclosed. The q-function

is a mere mathematical function that allows the recast into a domain integral and only the region where

the gradient of q is non-zero (i.e. Ω∗) will contribute to the domain integral in Equation (12). Within

the limits of finite element discretization errors, the domain integral yields a value that is independent

of Ω∗. In Reference [6], it is concluded that the elements closest to the singular point should not be

included in Ω∗ due to the large discretization error that is present in these elements. The simplicity and

high-accuracy of the domain integral formulation renders it to be well-suited for use within the PUFE

method.

4. PARTITION OF UNITY FINITE ELEMENT APPROXIMATION

To better capture the local character of the sliding contact solution in the vicinity of the singular

point, we enrich the finite element approximation. This is accomplished using the partition of unity

framework, and follows previous applications in LEFM [12]. In a standard FE formulation, the

displacement approximations (trial functions) are written as:

uh(x) =
∑

i∈I

φi(x)ui (14)

where I is the set of all nodes in the domain, and ui is the solution at node i and φi is the corresponding

basis function. The trial space for each displacement component is then span{φi}i∈I , and it is well-

known that the finite element basis functions form a partition of unity:
∑

φi(x) = 1. The essential

feature of the PU method is the multiplication of the nodal basis functions φi(x) with enrichment

functions F (x). If we define J as the subset of enriched nodes, J ⊂ I , then the enriched approximation

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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SINGULARITY ENRICHMENT FOR SLIDING CONTACT USING PUFEM 11

using the PU framework is [9]:

uh(x) =
∑

i∈I

φi(x)ui +
∑

j∈J

φj(x)

(∑
α

Fα(x)ajα

)
, (15)

where Fα(x) are a set of enrichment functions that are included at each enriched node j ∈ J , together

with new degrees of freedom ajα. The trial space is now augmented by span{φjFα}j∈J . Following

this approach, the enriched bases inherit properties of the FE basis functions, such as their compact

support, and hence preserves many of the advantages of the FEM, like the symmetry and sparsity

of the stiffness matrix. In addition, this allows a straightforward implementation of this technique

within a FE-based code. Owing to the partition of unity property, the ability to represent rigid body

translation and constant strain modes is retained (sufficient conditions for convergence). In contrast,

other approaches that include power type singularities within special finite elements [20] cannot meet

these conditions.

The first term of the analytical displacement fields given in Equations (8) and (9) is the term of

interest, since it constitutes the dominant singular term in the expression for the stress field. This first

term is of the form:




u
(i)
r

u
(i)
θ





= KCrλ 1
2µ





−(λ + 1)(a(i)s+θ + b(i)c+θ) + (κ− λ)(c(i)s−θ + d(i)c−θ)

(λ + 1)(−a(i)c+θ + b(i)s+θ) + (κ + λ)(c(i)c−θ − d(i)s−θ)





(16)

where the subscript j = 1 has been dropped for the sake of simplicity. Expressing these polar

components of the displacement field in the vicinity of the singular point as Cartesian components

and after algebraic manipulation, the following enrichment functions (these span the dominant term in

the analytical displacement field) are obtained:

[Fα(r, θ), α = 1–4] = rλ [sinλθ, cos λθ, sin(λ− 2)θ, cos(λ− 2)θ] (17)

These functions are the same for both solids, and are used in the enriched approximation given in

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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12 E. GINER, N. SUKUMAR, F. J. FUENMAYOR AND A. VERCHER

Equation (15). We note in passing that the span of these enrichment functions has the same form as

those used for a crack impinging a bimaterial interface [15, 21].

Figure 3 shows the enriched nodes for a given configuration of both contacting solids. The enriched

nodes are the nodes located at the singular point together with the surrounding nodes. In other words,

the enriched nodes are those whose basis function support includes the singular point. Depending on

the position of the indenter (solid 1) on the substrate (solid 2), the number of enriched nodes may vary.

The elements that contain at least one enriched node will be called enriched elements. According to

Equation (15), every enriched node j ∈ J has 10 degrees of freedom (dof): two standard dof (the two

components of the vector uj) and eight extra dof ajα, where ajα is the two-component vector for each

enrichment function Fα, with α = 1–4. To illustrate the effect of the enrichment functions on the trial

space, Figure 4 shows plots of φ1F2 and φ1F4 corresponding to the node located at the singular vertex

of the indenter (denoted as node 1 in Figure 4). Note the steep gradient in the vicinity of the vertex node

that gives rise to the strong singular behaviour in stresses and the compact support feature inherited

from the basis function φ1.

4.1. Implementation

The implementation of the enrichment has been carried out in the commercial code ABAQUSTM.

Taking advantage of the user element capability of this code, we have defined a new user element that

includes the proposed enrichment in its formulation, allowing 10 dofs per enriched node. In this way,

we benefit from the contact algorithms implemented in the code, as well as from the built-in pre- and

post-processing features.

Figure 5 shows a comparison of contour plots using standard FE and the enriched implementation

in ABAQUS. The results are obtained using the benchmark problem described in Section 5 and are

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Singular point

Sliding

Solid 2

Solid 1

= Enriched nodes

Figure 3. Enriched nodes belonging to elements that contain the singular point.
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Figure 4. Plots of φ1F2 and φ1F4 corresponding to the node located at the singular vertex of the indenter.

specialized here for a given strain component ε11. In this example, the singular point coincides with a

node of the substrate. Therefore, the number of enriched elements is 4 for the indenter and 8 for the

substrate. An important limitation of user elements in ABAQUS is that they cannot be represented in

any post-processing plots. This is shown in the center plot in Figure 5, where the four and eight enriched

elements of the indenter and substrate, respectively, cannot be plotted. ABAQUS simply marks with
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14 E. GINER, N. SUKUMAR, F. J. FUENMAYOR AND A. VERCHER

a cross the position of the first node in the connectivity of the enriched element. Of course, this first

node in the connectivity is not necessarily an enriched node. As is apparent from Equation (15), the

displacement approximation at an enriched node j, uh(xj) is given by the contribution of the standard

dof uj and the extra dof Fαajα. Since ABAQUS only uses the standard dof uj to represent the

displacement in the physical co-ordinates, the deformed position of the first nodes in the connectivity

of the enriched elements has no physical meaning, as can be seen in the center plot of Figure 5.

ε11

Standard FEM

ε11

PUFEM

ε11

PUFEM with modified enrichment 
+ overlay elements (E ≈ 0) 

Figure 5. Implementation using ABAQUS. Comparison of contour plots for a given field ε11: left, standard FEM

without any enrichment. Center, enrichment with user elements in ABAQUS. Right, modified enrichment with

user elements and overlay elements.

To overcome this problem, the following approach has been used. The enriched approximation given

in Equation (15) is modified as in Reference [22]:

uh(x) =
∑

i∈I

φi(x)ui +
∑

j∈J

φj(x)

(
4∑

k=1

[Fα(x)− Fα(xj)]ajα

)
(18)

where xj are the nodal co-ordinates of the enriched node j. Therefore, the contribution of the

enrichment functions cancels at the enriched node (but not at any other point, such as the integration

points). Note also that Fα(xj) are singled-valued in the present application and Equation (18)
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SINGULARITY ENRICHMENT FOR SLIDING CONTACT USING PUFEM 15

introduces no ambiguity. As a consequence, the values of the standard dof uj will contain the physical

displacements. This enables a representation of the deformed configuration of the enriched elements

in ABAQUS. We use standard 4-node linear elements with negligible stiffness connected to the nodes

of every enriched element, retaining the same connectivity, and hence, overlapping them. We refer to

these dummy elements as overlay elements. Therefore, a plot of the displacement or strain field using

overlay elements will result in bilinear interpolation of the nodal values within these elements (see the

rightmost plot in Figure 5). We point out that due to the negligible stiffness of the overlay elements,

the stress field is virtually zero within them and hence a contour plot of the enriched stress field would

not be very revealing.

It is clear that this added capability in the post-processing of the enriched solution is of interest.

The use of overlay elements also plays a critical role in this study: all the node-to-surface contact

interactions in the model are established using only the standard and overlay elements (ABAQUS

cannot handle contact interactions between user-elements). As the modified enrichment approach of

Equation (18) is implemented, and since ABAQUS uses the standard dof uj during the non-linear

analysis stage, the updated positions of the nodal co-ordinates correspond to the desired physical

co-ordinates. This procedure has proved to be robust and has allowed us to combine user-elements

with the contact capabilities within ABAQUS. In this way a sliding contact problem with friction can

be modelled in combination with the enriched formulation, as exemplified in Section 5.2. Note that

the sliding of the singular corner on the substrate implies a redefinition of the enriched nodes of the

substrate as the corner changes its position. The enriched nodes of the indenter remain unchanged.
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5. NUMERICAL EXAMPLES

In this section, we show that the proposed enrichment yields better estimates of the GSIF on relatively

coarse meshes compared to standard finite elements. In assessing the accuracy of the technique, a

difficulty that arises is the lack of a suitable benchmark sliding contact problem that can serve as

a reference. For this reason, we have considered the following benchmark problem: a finite portion

of the domain of the two bodies with the imposition of the exact singular field on the boundaries

(Problem 1). This is equivalent to solving two separate linear elastic singular problems, because the

contact interaction is not considered and is substituted by the exact displacements of the singular field.

We have also applied the enrichment to a true sliding contact problem (Problem 2), taking the solution

provided by the standard FEM with a very refined mesh as the reference solution.

5.1. Problem 1: Benchmark problem

5.1.1. Problem description. Figure 6 shows a deformed configuration of the benchmark FE model

used in this work. We have taken a finite portion of the two bodies and imposed the exact singular

field on their boundaries, just as if they were two separate elastic solids. We have applied exact

displacements (Dirichlet boundary conditions) on the contacting sides. For the enriched elements on

the contacting side, the exact displacements are applied in accordance to the displacement interpolation

(15). For the non-enriched elements on the contacting side, the exact solution is imposed in a weak

form. On the rest of the boundary, exact tractions are imposed respecting the two traction-free sides.

The indenter angle ψ is 90◦ (see Figure 1) and the value of the friction coefficient is f = −1.6. The

minus sign indicates that the sliding direction of the indenter is to the left (i.e., the corner of interest is

a leading corner). Note that the same corner can have a different behaviour when it slides to the right

(trailing corner), implying a positive f . On solving the characteristic equation (7), the eigenvalue λ is
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rq Exact 
displacements

Exact 
tractions

Exact 
tractions

Exact 
tractions

d

Figure 6. Benchmark problem used for evaluating the performance of the proposed enrichment. rq is the radius of

the q-function for evaluating the domain integral. Shown: mesh 2 of the sequence.

obtained as the smallest positive root: λ = 0.17944. The relatively high value of the friction coefficient

and the corresponding small value of λ lead to a strong singular stress field:

σ ∝ r0.179−1, (19)

which is much stronger than, for example, the singularity in LEFM (σ ∝ r0.5−1). The material is

assumed to have a linear elastic behaviour, with E = 210000 (units of pressure) and ν = 0.3. The

singular field imposed corresponds to the first term of the expansions given in Equations (8) and (10).

We have assumed a GSIF, KC
exact = 1, as the exact reference solution for the subsequent analyses.

In this study, the q-function is defined as in Reference [12]: all nodes within a circle of radius rq

centered at the singular point take the value of 1 (see Figure 6). At the rest of nodes, q = 0. Therefore,

only elements traversed by the circumference rq have a non-zero gradient of q and contribute to the

domain integral in Equation (12). The q-function in these elements is defined via bilinear finite element

interpolation within the element. Note that the dimensions of the indenter (height d) limits the range of
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18 E. GINER, N. SUKUMAR, F. J. FUENMAYOR AND A. VERCHER

rq . The results that follow are presented for several values of rq scaled with respect to d.

5.1.2. GSIF values for a sequence of uniform meshes. To verify the improvement in the GSIF

extraction when using enrichment functions, a sequence of six uniformly refined meshes has been

analyzed. The ratios of the element size h to the height d of the indenter are 1/9, 1/15, 1/30, 1/45,

1/60 and 1/90. The mesh shown in Figure 6 corresponds to mesh number 2, with 1504 dof. For each

mesh, the domain integral has been applied with different ratios of rq/d both to a standard and enriched

FE solutions, enabling the assessment of the proposed enrichment.

Figure 7 shows the GSIF estimations obtained with the domain integral for the sequence of six

meshes. The number of dof for each mesh refers to the standard FE solution. For the enriched solution

with topological enrichment (which is usually the first choice), the number of dof is increased by 80,

since only 10 nodes are enriched: two nodes at the singular point (indenter and substrate) plus three and

five surrounding nodes, respectively. Following the strategy presented in References [23] and [24], the

sequence of uniform meshes has also been enriched geometrically (i.e., the enriched nodes are those

located within a fixed area surrounding the singular point). The chosen fixed region is a circle of radius

0.213d.

As the reference solution is KC
exact = 1, it can be seen that the enriched FE solutions provide a better

estimation of the GSIF than the standard FEM, both for all meshes and for all ratios rq/d. As expected,

the standard and the enriched solutions tend to converge as the refinement of the mesh increases. Note

also that although the domain integral should be theoretically independent of the radius rq , there is a

slight dependency on rq which is stronger for coarse meshes due to the discretization error. In the first

three meshes, low values of rq/d imply that only the closest elements to the singular point are computed

in the domain integral. This yields less accurate estimations of the GSIF for both the standard FE and

the topologically enriched solution. The vertical lines in the plots for meshes 1 and 2 mark the extent of
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the enriched elements in the topological enrichment case. Nevertheless, the GSIF estimation is always

better for the enriched solution, including the cases in which the domain integral is computed only

within the enriched elements.
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Figure 7. Estimations of the GSIF for a sequence of uniformly refined meshes, comparing the enriched and the

standard FE solution. The exact reference value is 1. Estimations are given for different radii of the q-function.

5.1.3. Error in energy norm and in GSIF. The same sequence of six uniformly refined meshes is

used to study the error in energy norm and in the quantity of interest KC , and hence evaluate their

convergence rates. It is well known that the error in energy norm of a standard FE solution of a singular

problem with a uniform mesh refinement is bounded by

‖e‖E ≤ Chmin(p,λ), (20)
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20 E. GINER, N. SUKUMAR, F. J. FUENMAYOR AND A. VERCHER

where e = u−uh is the error in displacements introduced by the finite element approximation, C is a

constant that depends on the problem, h is the characteristic element size, p is the order of the elements

used in the discretization and λ is the eigenvalue related to the order of the singularity introduced in

previous sections. In this work, we will use the square of the error in the energy norm (which is related

to the error in strain energy) and therefore

‖e‖2E ≤ C2h2min(p,λ) = C2h2λ. (21)

Since λ = 0.17944 in our problem, the theoretical rate of convergence of ‖e‖2E is 2λ = 0.35888.

The results are plotted in Figure 8 (left) for the six meshes. It can be seen that the convergence rate is

in very good agreement with the predicted value (which is a very slow rate due to the high-order of

singularity for the problem). It can be seen that the enriched solution yields an error that is about one

order of magnitude less than the corresponding FE solution, although retaining the same convergence

rate. This behaviour is expected when using uniform refinement with topological enrichment, as has

been demonstrated in other LEFM applications with partition of unity enrichment [23, 24].

In Figure 8 (left) it can also be seen that a geometric enrichment greatly improves both the precision

of the calculation together with the convergence rate. The geometric enrichment removes the effect

of the singularity, recovering the expected convergence rate for a smooth problem. This behaviour is

consistent with that obtained in linear elastic fracture mechanics [24].

Figure 8 (right) shows the relative error in the quantity of interest (GSIF) computed for rq/d =

0.87. The improvement obtained with the introduction of the enrichment functions is clear, with a

convergence rate greater than the convergence rate of the error in strain energy. As expected, when

using geometric enrichment, a more accurate estimation of the GSIF is obtained as well as an improved

convergence rate. In this case, the a priori error estimate for post-processed functionals (or quantities
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Figure 8. Convergence rates and relative error in energy norm (squared) and in KC for the sequence of meshes

analyzed in Figure 7. In the GSIF computation, the radius of the q-function for all meshes is rq/d = 0.87. A

40× 40 Gauss quadrature has been used for the enriched elements.

of interest) is of the form [25, 26]:

|KC −KC,h| ≤ ‖u− uh‖E‖z− zh‖E = ‖e‖E‖z− zh‖E , (22)

where z is the exact solution to an auxiliary (or adjoint) problem, zh its finite element approximation

and |KC−KC,h| is the error in the computed functional (GSIF). In general, ‖z−zh‖E is of comparable

magnitude to ‖e‖E , and hence, the error in the computed functional is of comparable magnitude to the

squared error in energy norm, but it also can be much smaller (depending on the functions involved in

the auxiliary problem). The results obtained for the error in the GSIF and the convergence rates shown

in Figure 8 (right) are in good agreement with this a priori estimate.
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5.1.4. Effect of quadrature. The number of integration points necessary to properly implement the

enriched formulation has been analyzed and the results are shown in Figure 9. The results presented

in Figure 8 were computed using a 40 × 40 Gauss quadrature to guarantee that integration errors do

not affect the convergence rate of the error in energy norm for the small errors associated with the

geometric enrichment. However, from a practical point of view, a 15×15 quadrature is sufficient when

a topological enrichment is used, since it virtually yields the same results as for the 40×40 quadrature.

However it cannot guarantee the expected convergence rate for a geometric enrichment. Note that the

integration error when using a 5 × 5 quadrature causes a larger error in energy norm, although the

results are always better than the standard FE solution. Obviously, the necessity of a high order of

quadrature is due to the highly singular behaviour reproduced by the enrichment functions.

For the aforementioned results the elements of the indenter and specimen do not need any

subdivision for integration purposes, since the singular point is always located at the corner node.

However, when the indenter slides, the singular point on the specimen can be located along the side

between surface nodes (i.e. the mesh is non-conforming). In this case, the enriched element containing

the singular point is subdivided into triangles. Figure 9 depicts only the situation in which the singular

point is located at a node both in the indenter and in the specimen. Therefore, no subdivision is needed

and a Gauss quadrature is employed. However, subdivision into triangles can always be performed

and the corresponding results are shown on the same plot for a 73-point integration rule (used for the

triangular subdomains next to the singular point in combination with a 15× 15 quadrature for the rest

of enriched elements). In this case, the squared error in ‖e‖E for a topological enrichment is again

very close to the error when using no subdivision. Similar comments can be made on the effect of the

quadrature on the quantity of interest KC .
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Figure 9. Effect of the number of integration points for the case of the singular point at a node on the specimen

side (solid 2). The case of subdivision into triangles with 73 integration points is also considered.

5.2. Problem 2: Application to a sliding contact problem

Figure 10 shows the model used to assess the behaviour of the enrichment under sliding contact

conditions. A distributed normal load p is applied on the indenter top. The vertical load is applied

to a reference node which is linked to the rest of nodes on the indenter top by means of multipoint

constraints (MPCs) to ensure an even load distribution. A displacement ∆Ux is then imposed to the

reference node to cause a sliding condition of the whole indenter. Note that this second load step

is displacement controlled, so as to guarantee the convergence of the sliding condition. The friction

coefficient is f = −1.6 (sliding to the left) and the bodies are assumed elastically similar. To model

the sliding frictional contact, we have used a Lagrange multiplier formulation. In addition, a Coulomb
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friction model has been assumed between the contact surfaces. We recall here that the contact between

enriched elements on both sides of the contact surfaces is not directly defined. It is accomplished by

means of overlay elements with negligible stiffness that are linked to the enriched nodes, as explained

in Section 4.1. Since an exact solution is not available in the literature for this problem, the model

p 

∆Ux

p 

∆Ux

p 

∆Ux

Figure 10. Model of a sliding problem for evaluating the enrichment performance.

was solved using standard FEM with a refined mesh using quadratic elements. This overkill mesh is

used as a reference solution and is shown in Figure 11. The GSIFs obtained for different rq/d with

the quadratic mesh were averaged to get a reference value of KC
ref. On the other hand, a coarse mesh

was enriched as shown in Figure 11. This coarse mesh was also analyzed with a standard FE approach

using only linear elements.

Figure 12 shows the clear improvement achieved when using the enriched formulation, especially

when it is compared to the standard FE solution. For the same coarse mesh (348 nodes) the enriched

solution (715 dof) is clearly more accurate than the standard bilinear FE solution (651 dof). Moreover,

the enriched solution using just 715 dof compares rather favorably with the overkill finite element

solutions that contain two orders more of degrees of freedom.
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Enriched nodesEnriched nodes

Figure 11. Left, overkill mesh used as a reference solution and analyzed with standard FEM (quadratic elements).

Right, coarse mesh analyzed with both standard linear finite elements and with the proposed enrichment.
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drq0 0.2 0.4 0.6 0.8 10.70.80.91

1.11.2

FEM, quadratic, refined mesh (57564 dof)
FEM, linear, coarse mesh (651 dof) 
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.

Figure 12. GSIF estimations for the two meshes shown in Figure 11.

6. CONCLUSIONS

In this paper, a new approach to model the singularity in complete contact problems under sliding

conditions was presented. We enriched the standard finite element displacement approximations with

additional functions through the framework of partition of unity. This was carried out by including
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special (enrichment) functions that were based on the a priori knowledge of the analytical solution of

the singular contact field. These enrichment functions were derived, and a few salient features of their

implementation in the commercial code ABAQUSTM were described.

Two numerical examples were presented to assess the performance of the enrichment and the

accuracy of the method. A specific domain integral formulation was used to compute the generalized

stress intensity factors. Good estimations of the generalized stress intensity factor (GSIF) and the strain

energy were obtained, which were consistently much better than the ones obtained with the standard

FEM. The convergence rates in energy and in the GSIF were studied for topological and geometric

enrichment. Other issues such as the adequate number of integration points were also investigated. The

proposed approach enables the use of coarse meshes which is especially important in non-linear contact

problems, since it reduces the computational costs. Unlike special singular finite elements where the

singular point must be on a node, in the present technique, the singular point can be arbitrarily located

along the contact surface of the substrate.
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