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aDepartamento de Ingenieŕıa Mecánica y de Materiales
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Abstract

In this paper, we introduce an implementation of the extended finite element

method for fracture problems within the finite element software ABAQUSTM. User

subroutine (UEL) in Abaqus is used to enable the incorporation of extended finite

element capabilities. We provide details on the data input format together with the

proposed user element subroutine, which constitutes the core of the finite element

analysis; however, pre-processing tools that are necessary for an X-FEM imple-

mentation, but not directly related to Abaqus, are not provided. In addition to

problems in linear elastic fracture mechanics, non-linear frictional contact analyses

are also realized. Several numerical examples in fracture mechanics are presented

to demonstrate the benefits of the proposed implementation.
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1 INTRODUCTION

In recent years, the extended finite element method (X-FEM) [1] has emerged

as a powerful numerical procedure for the analysis of crack problems. It has

been widely acknowledged that the method eases crack growth modelling un-

der the assumptions of linear elastic fracture mechanics (LEFM). Since the

introduction of the method about a decade ago, many new extensions and ap-

plications have appeared in the scientific literature, with substantially many

contributions on X-FEM in recent years. We point the reader to review arti-

cles [2,3] and to a recent monograph [4] for general overviews on the X-FEM.

We developed the present implementation of the X-FEM in the finite ele-

ment code Abaqus [5] for crack propagation simulations in fretting fatigue

problems [6]. In these problems cracks emanate from the edge of contact re-

gions between bodies that experience relative displacements of small ampli-

tude (these regions act as strong stress raisers). The Abaqus capabilities for

the analysis of contact problems together with the user-defined subroutine

options available in the code have proved to be useful for the analysis of these

problems. In addition, the user can benefit from the many built-in features

of such a code, including pre- and post-processing options. The present im-

plementation can also be adapted by the user to extend its application to a

broader class of problems.

The interest shown both by researchers in computational fracture mechan-

ics community and by engineers in industry on our presentations at confer-

ences [7,8] has encouraged us to pursue the present contribution. We attempt
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to provide procedures that could be used by fracture mechanics practitioners

who are familiar with Abaqus and can thus benefit from the crack growth

modeling capabilities of the X-FEM.

This paper focuses on the implementation aspects for two-dimensional LEFM

applications containing single or multiple cracks. We place emphasis on the

data input format and subroutines that interact with Abaqus as a finite ele-

ment solver through the user subroutine UEL [5]. Some of the important steps

in an extended finite element analysis are not considered, such as the crack

geometry and mesh interactions that are used to determine the nodes to be

enriched, element subdivisions, etc. We would like to remark that these pre-

processing tools, which are not directly related to Abaqus, but necessary for

a full X-FEM implementation, are not included in this work and need to be

provided by the user. This pre-processing step can be tackled in one of many

ways, for instance, using geometric predicates or level sets [1,9–11]). Similarly,

the computation of stress intensity factors using the domain form of the in-

teraction integral [12,13] is not elaborated; details on the extraction of stress

intensity factors in X-FEM can be found in Moës et al. [1].

In Sukumar and Prévost [11], a Fortran implementation of the X-FEM is pre-

sented, which is supported by benchmark numerical examples [14]. Bordas et

al. [15] describe an object-oriented programming library for extended finite

element analysis. Recently, Wyart et al. [16] provide a good description of the

possible approaches that can be followed to implement X-FEM in a general-

purpose FE software. They propose a substructuring approach to decompose

the cracked component into safe and cracked subdomains, which are analyzed
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separately by the general-purpose FE software and the extended finite element

code, respectively. An alternative approach is pursued in this work: introduc-

tion of a generic enriched element based on the user-element capabilities of

Abaqus. Although some researchers have introduced similar approaches for

Abaqus 1 , the authors are only aware of one recent contribution [17] at the

time of this writing.

In what follows, a brief review on the fundamentals of the extended finite el-

ement method is presented. Then, the kernel of the Abaqus implementation

is described in Section 3, including remarks on the extension to non-linear

contact problems. Several numerical examples in fracture mechanics are pre-

sented in Section 4 to demonstrate the versatility of the implementation, and

we close with a few concluding remarks in Section 5.

2 EXTENDED FINITE ELEMENT METHOD

In comparison to the classical finite element method, the X-FEM provides

significant benefits in the numerical modelling of crack propagation. In the

traditional formulation of the FEM, the existence of a crack is modelled by

requiring the crack to follow element edges. In contrast, the crack geometry in

the X-FEM need not be aligned with the element edges, which provides flex-

ibility and versatility in modelling. The method is based on the enrichment

of the FE model with additional degrees of freedom (DOFs) that are tied to

the nodes of the elements intersected by the crack [1]. In this manner, the

1 See discussion at http://imechanica.org/node/1125

4



discontinuity is included in the numerical model without modifying the dis-

cretization, as the mesh is generated without taking into account the presence

of the crack. Therefore, only a single mesh is needed for any crack length and

orientation. In addition, nodes surrounding the crack tip are enriched with

DOFs associated with functions that reproduce the asymptotic LEFM fields.

This enables the modelling of the crack discontinuity within the crack-tip ele-

ment and substantially increases the accuracy in the computation of the stress

intensity factors (SIFs).

Crack tip enrichment

Heaviside enrichment

Crack tip enrichment

Heaviside enrichment

Fig. 1. Enriched nodes in the X-FEM. Circles: nodes with 2 additional DOFs.
Squares: nodes with 8 additional DOFs.

2.1 Standard formulation

Fig. 1 shows a portion of the mesh with four-node bilinear elements. The cir-

cled nodes are the nodes enriched with two additional DOFs (total of four

DOFs per node), whereas the nodes marked with a square are enriched by

eight more DOFs (total of ten DOFs per node). Elements that contain at least

one enriched node are known as enriched elements. Nodes with two additional

DOFs (one for each coordinate direction) have shape functions that multiply
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the Heaviside function H(x) (function of unit magnitude whose sign changes

across the crack, H(x) = ±1). Physically, this function introduces the discon-

tinuity across the crack faces. Nodes with eight additional DOFs are enriched

in the two Cartesian directions with four crack tip functions Fα(x) [18]:

[Fα(r, θ), α = 1–4] =

[√
r sin

θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
sin θ,

√
r cos

θ

2
sin θ

]

,

(1)

where r, θ are local polar co-ordinates defined at the crack tip. We note that

the span of the above functions can reproduce the asymptotic mode I and

mode II displacement fields in LEFM, which gives rise to the near-tip singular

behavior in strains and stresses. It is well-documented in the literature [1,14],

and also verified through our studies that these functions significantly improve

the accuracy of KI and KII extraction.

The displacement approximation for crack modelling in the extended finite

element method takes the form [1]:

uxfem(x) =
∑

i∈I

Ni(x)ui +
∑

i∈J

Ni(x)H(x)ai +
∑

i∈K

[

Ni(x)
4
∑

α=1

Fα(x)biα

]

, (2)

where I is the set of all nodes in the mesh, Ni(x) is the nodal shape func-

tion and ui is the standard DOF of node i (ui represents the physical nodal

displacement for non-enriched nodes only). The subsets J and K contain the

nodes enriched with Heaviside function H(x) or crack-tip functions Fα(x), re-

spectively, and ai, biα are the corresponding DOFs. If there is no enrichment,

then the above equation reduces to the classical finite element approximation

ufe(x) =
∑

i Ni(x)ui. Hence, X-FEM retains many of the advantages of the
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finite element method.

It is important to note that the additional DOFs ai, biα in Eq. (2) are only

added to the nodes that are enriched. Moreover, in this implementation no

nodes are enriched with DOFs ai, biα simultaneously (they are mutually exclu-

sive) and hence the Heaviside functions that introduce the crack discontinuity

are not used at the nodes of the crack-tip element. The crack discontinuity

within the crack-tip element is modelled via the enrichment function
√

r sin θ
2

in Eq. (1), which is discontinuous at θ = ±π.

As in the standard FEM, it is necessary to perform numerical integration over

the element domain to compute the element stiffness matrix. However, the

elements that contain the crack include a displacement discontinuity due to

the X-FEM formulation. These elements must be subdivided into subdomains

in which the crack is one of the subdomain boundaries to carry out the nu-

merical integrations, as shown in Fig. 2. It is important to emphasize that

the mesh topology and connectivity are retained during the whole process of

crack propagation, which is the main advantage of the X-FEM. Unless other-

wise stated, in the numerical examples of Section 4 we have used 7 integration

points in triangular subdomains and 5 × 5 integration points in both quadri-

lateral subdomains and within elements that are not subdivided but contain

at least one enriched node. For crack-tip elements, a quasi-polar integration

can also be performed [19,20].
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Element subdivided
into triangles

Crack location

Element subdivided
into quadrilaterals

Heaviside enrichment

Fig. 2. Subdivision of elements intersected by a crack for integration purposes.

2.2 Shifted-basis formulation

From Eq. (2), it is clear that the physical displacement at an enriched node

i, uxfem(xi) is given by the standard DOFs ui plus the enriched contribution

H(xi)ai or Fα(xi)biα. This implies that the standard DOFs ui (the ones used

by Abaqus for representing the physical displacement in its internal contact

or plotting procedures) do not correspond to the true displacement computed

with X-FEM. In order to make the DOFs ui of an enriched node i be the

physical solution of the nodal displacement, the X-FEM has been implemented

according to the following modification of Eq. (2), the so-called shifted-basis

enrichment [10,21]. In Eq. (3), xi denotes the nodal coordinates of an enriched

node i. In this way, ai, biα do not contribute to the value of the physical

displacement at the enriched node i:

uxfem(x) =
∑

i∈I

Ni(x)ui +
∑

i∈J

Ni(x) [H(x) − H(xi)] ai

+
∑

i∈K

[

Ni(x)
4
∑

α=1

[Fα(x) − Fα(xi)]biα

]

.

(3)

Since H(x) and F1(x) are discontinuous functions across the crack, we choose

H(x) = 1 if x is on or above the crack, and H(x) = −1 otherwise. Similar

choices are made in defining F1(x). These choices ensure that the value of the
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enrichment functions at any node is single-valued for any crack geometry. The

enriched contribution vanishes at an enriched node, but not at an integration

point. This procedure has been very useful for plotting deformed shapes in

Abaqus. In addition, it has proven to be a good way to combine user elements

with the Abaqus contact capabilities, as explained in Sections 3.5 and 3.6.

3 ABAQUS IMPLEMENTATION FOR 2D LEFM

In this section we describe the main features related to the Abaqus [5] im-

plementation of the X-FEM through the user subroutine UEL. Implementing

the X-FEM in the commercial code Abaqus does imposes certain restrictions,

but it also provides access to many of the available features of such a code.

As stated earlier, we will focus on the input files and subroutines directly re-

lated to Abaqus. However, we will also give a general overview of the pre- and

post-processing steps used in our implementation.

3.1 Pre-processing: Crack-mesh interaction

A crucial step in any implementation of the X-FEM is the definition of the

nodes to be enriched as a result of the crack and mesh geometries. This task

can be relatively easy for 2D problems and can be tackled in different ways,

whereas it becomes more involved in 3D. In order to determine the nodes to

be enriched and the sign of the Heaviside function H(xi) for 2D problems, it

is sufficient to evaluate the nodal distances to the nearest crack segment and

to the crack tips. In Reference [1] this is done by checking the sign of scalar
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products of the distance vector and the normal and tangential vectors to the

crack. A similar approach is based on the use of geometric predicates [11],

where the sign of a determinant is computed to ascertain whether a point

lies to the left, right, or on a line segment. The much more general level set

method [22] has also been applied to LEFM problems [9,23]. It couples very

well with the extended finite element formulation and enables efficient crack

growth modelling. In crack modelling using level sets, the crack geometry

is represented by two level set functions, which consist of signed distance

functions used to specify the location of the crack. In 3D, the use of the

level set method [24] or related techniques like the fast marching method for

capturing crack propagation [25,26] becomes necessary.

In the present implementation, we have followed the simplest approach as

described in Reference [1,27]. From a typical Abaqus input file, .inp, the nodal

coordinates and mesh topology are saved as ASCII files m0XY.prn, m0Top.prn.

A routine reads the nodal coordinates, mesh topology and geometry of cracks

and computes the nodal distances to the nearest crack segment and to the

crack tips. We note that the crack geometry is described in terms of line

segments (restricted to straight-line segments in this work). As output of the

pre-processing stage the files listed in Table 1 are generated. These files are

incorporated within the Abaqus input file (described in Section 3.2) or read

by the user element subroutine (described in Section 3.3):

Files listed in Table 1 contain the essential information that must be prepared

to enter the Abaqus analysis stage; a more detailed description is provided at

the web link given in footnote 2. The way in which intersected elements are
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Table 1
Pre-processing input files for the X-FEM Abaqus analysis.

GGnodeX Nodes belonging to enriched elements with corresponding signed distances.

GGelemX Enriched elements with flags indicating the type of subdivision.

GGXYC Coordinates of vertices that describe each crack.

GGinfoX Number of cracks, maximum number of vertices for all cracks, number of
enriched elements and number of their nodes.

SETNodeX2dof Set containing non-enriched node numbers belonging to enriched elements.
SETNodeX4dof The same with Heaviside enriched nodes.
SETNodeX10dof The same with crack-tip enriched nodes.

TopNoX Element topology list of non-enriched elements.

TopX Element topology list of enriched elements.

TopXTypeX Analogous to TopX with enrichment type for each node.

TopXoverlay Analogous to TopX with an increased element number to generate duplicate
elements for the overlay elements.

subdivided is not critical (provided the subelements are convex [11]), because

no inherent restrictions are placed on the shape of partitioned elements. How-

ever, a tolerance that avoids subdivision when very small regions are obtained

is recommended [1,11]. Fig. 2 gives an idea of the type of subdivision carried

out in this work. Another option is to use the partitioning algorithm described

in Reference [28].

3.2 Structure of the input file

Once the elements and nodes to be enriched are defined, the Abaqus execution

procedures are called to link the user subroutine UEL_XFEM that incorporates

the core of the X-FEM formulation and solves the problem. In Appendix A

we give an example of an input file (.inp) that can be used as a template 2 .

2 Files can be downloaded from http://aim.upv.es/doc/XFEMAbq.zip
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We have made extensive use of the convenient *nset and *elset commands

to group the nodes and elements in sets. We describe now the main features

introduced in the input file.

Through the *user element command, in #1 3 we define a 4-node user el-

ement of 12 DOFs per node (labelled as U12) to be used for all enriched

elements. Abaqus admits distinct numbers of DOFs per node in the same

user element, but we have chosen to set all nodes to 12 DOFs per node and

then constrain the non-used DOFs at a later stage. Following Abaqus con-

vention rules [5], DOFs numbered 1,2 are the standard 2D displacements in

the x1, x2 directions. In Abaqus, DOFs numbered 3,4 are intended for the

x3-displacement and for the rotation about the x1-axis. However, they will

be used here for the extra DOFs associated with the Heaviside enrichment.

Degrees of freedom 5–7 and 11–15 will be associated with the crack-tip enrich-

ment. In Abaqus, DOFS 5,6 are originally meant for rotations about x2 and

x3 axes, DOF 7 for warping amplitudes of beam sections and DOFs 11–15 for

the first and successive temperatures in shell and plate elements. We do not

use DOFs 8–10 (DOF 10 is not used by Abaqus). Note that the use of DOFs

originally intended for other applications introduces limitations in the type

of analysis and capabilities that can be performed. However, the user might

define alternative DOF assignments depending on the desired type of analysis.

Other information that is provided with the *user element command are

the number of user-defined properties: 2 real-valued properties and 5 integer-

valued properties. These values are introduced in #6 as described below. The

3 The notation # is used to indicate the section in the .inp file given in Appendix A.
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maximum number of solution-dependent state variables per element is also

given. This is set to a large number and will be used for output of magni-

tudes at integration points of enriched elements (stresses, Jacobians, etc.).

The output is defined in #9.

In #2 the nodal coordinates and the topology of standard elements is in-

troduced, using the files described in Section 3.1. The standard elements are

grouped into the element set ELEMTOPNOX and also all the associated nodes

into the corresponding node set.

The topology of enriched elements is introduced in #3. Here, the element set

and node set are both called ELEMTOPXU12. They group all enriched elements

and all nodes belonging to enriched elements, respectively. In #4 other conve-

nient sets are introduced, especially those that will be used in #7 to restrict

non-used DOFs in an enriched element.

In #5 the input of the overlay elements is carried out. This is not an essen-

tial step and can be omitted if desired. Note that these elements are assigned

a different material (MaterOverlay). The material property assignment for

the standard, overlay and enriched elements is done in #6. The introduction

of properties for the enriched elements is done through the command *Uel

property. The first two parameters are real-valued properties, correspond-

ing to the Young’s modulus E and Poisson’s ratio ν. The same command is

used to introduce five integer-valued properties: a flag indicating either plane

stress or plane strain analysis, the number of integration points in enriched

elements (for non-subdivided, for triangular-subdivided and for quadrilateral-

subdivided elements) and the dimension of the physical domain of the prob-
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lem (2D in this work). In #7 we introduce boundary conditions to constrain

non-used DOFs for nodes that belong to enriched elements. This is done in

accordance to the enrichment key 0, 1 or 2 (see Section 3.1).

A very important issue is the load step definition done in #8. Solving static

problems would imply the usual analysis procedure *Static. However, we

have chosen to use a coupled thermo-mechanical analysis procedure *Coupled

temperature-displacement. In this way, Abaqus will solve for the DOFs

numbered 1–7 and 11–15 simultaneously, since DOFs 11–15 are originally con-

ceived for nodal temperatures, as indicated earlier.

Finally, output settings are specified in #9. User elements have limited capa-

bilities in Abaqus and are not output to the .odb file (output data base) for

plotting purposes. Therefore, only information associated with the standard

(non-enriched) elements will be written to the .odb file. On the other hand,

the solution values for the enriched DOFs can be printed to the .dat file:

DOFs 1–7 through the label U and DOFs 11–15 through the label NT (nodal

’temperatures’). Of course, output to the .dat file is not necessary. However,

it is very useful to output information to the binary results file .fil for further

post-processing (e.g., for computing stress intensity factors through domain in-

tegrals). The integration point values of stresses, Jacobian, spatial derivatives

of the shape functions, etc., are written as solution-dependent state variables

through the label SDV. This is done for all the enriched elements grouped in

the set ELEMTOPXU12. Similar information is also output to the .fil file for

standard elements, grouped in the set ELEMTOPNOX.
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3.3 User element definition

For running an analysis including the user-subroutine, the execution procedure

is of the form [5]:

abaqus job=<input file name> user=UEL_XFEM

This call will compile the user-subroutine UEL_XFEM, which constitute the core

of the implementation. This subroutine is included in the Appendix B and is

now briefly described. The subroutine heading and variable declarations follow

the Abaqus conventions and, in addition, we have introduced new variables

that are listed in Appendix B. Firstly, the real and integer properties set in #6

of the .inp file are read. Essentially, these correspond to the material prop-

erties and integration orders, as explained in Section 3.2. Next, information

related to the pre-processing stage commented in Section 3.1 is read. This in-

cludes the number of cracks, crack-path vertices, enriched nodes and elements,

type of enrichment and crack-element intersection points.

After initializing some vectors and matrices and if the element key U12 and

other conditions are fulfilled, the subroutine int2D X is called. This routine

defines the location of integration points according to the appropriate sub-

division, and computes the total number of integration points gint for the

current element. In the routine TypeXelement the keys for the enrichment

type associated with the element nodes are read. Then, the routine K U12

computes the element stiffness matrix. Once the overall system of equations

is solved, Abaqus calls again the user subroutine UEL and the force vector

and the residual force vector are calculated at the end of the current time
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increment. Finally, the stresses and other magnitudes are computed at Gauss

points and stored for output to the results file .fil in the routine SVARS U12.

The subroutine that computes the element stiffness matrix, K U12, is included

in Appendix C. After reading the element nodal coordinates and the stress-

strain constitutive matrix (isotropic linear elastic), a loop over the total num-

ber of integration points of the enriched element is entered. First, the standard

shape functions and their derivatives are computed. Then, if the enriched el-

ement contains Heaviside enriched nodes, the routine heaviside is called,

which returns the value of the H(x) function at the integration point plus the

values of H(xi), i.e. the values of H at nodes since we are using the shifted-

based given by Eq. (3). Analogously, for crack-tip enriched nodes, the spa-

tial derivatives of (NiFα) are calculated in the routine fCrackTip, together

with the nodal values Fα(xi) for the shifted-basis enrichment. The strain-

displacement element matrix B is then constructed and the element stiffness

matrix ke (order 48 × 48) is computed and returned as the Abaqus variable

AMATRX.

Before exiting the subroutine K U12, the strain-displacement element matrix

B and the Jacobian at integration points are stored to be passed to the sub-

routine SVARS U12. After solving the overall system of equations, Abaqus calls

again the user subroutine UEL in order to update the solution-dependent state

variables stored in SVARS. In the subroutine SVARS U12 (see Appendix D)

strains, stresses, strain energy density and strain-like magnitudes (such as

∂u2/∂x1, ∂u1/∂x2) are computed at the integration points. These are stored

in the array SVARS, together with the Jacobian, spatial derivatives of the shape
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functions Ni and global coordinates of integration points. This information is

needed for further post-processing of domain integrals to extract the stress in-

tensity factors. It is written by Abaqus in the results binary file .fil through

the label SDV as set in the input file (see Section 3.2).

3.4 Post-processing and SIF computation

Abaqus internal procedures for computing SIFs through domain integrals

are not applicable to the extended finite element solution, since the infor-

mation generated by user elements can not be processed by Abaqus. There-

fore, we have post-processed the solution of both standard and enriched el-

ements outside Abaqus in an external routine. After obtaining the extended

finite element solution, the results file .fil contains all the relevant infor-

mation. This file must be read according to Abaqus conventions for out-

put [5]. A subroutine named ABQMAIN must be programmed for the appro-

priate reading. This subroutine is compiled and linked through the Abaqus

execution procedure abaqus make job=<subroutine file name> and then run

with abaqus <subroutine file name>. The output file reading is rather specific

[5], so we have included this post-processing subroutine together with further

details at the web link given in footnote 2. The subroutine file name is ijarea.

As is customary in 2D implementations of the X-FEM [1], the interaction in-

tegral [29,30], which is recast in domain form, is used to compute KI and KII,

since energetic methods based on domain integrals yield accurate SIFs. Fol-

lowing Reference [1], the q-function used in the domain integral is an annular

function defined by a radius rq measured from the crack tip: q = 1 for nodes
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within a circle of radius rq and q = 0 for the rest of the nodes.

For the crack orientation prediction based on the values of KI and KII, the

MTS criterion [31] (maximum tangential stress or hoop stress σθθ) is used:

θc = arccos





3K2
II +

√

K4
I + 8K2

I K
2
II

K2
I + 9K2

II



 , (4)

where θc is the angle that will follow the crack for each of the crack increments.

θc is measured with respect to a local polar coordinate system with its origin

at the crack tip and aligned with the direction of the existing crack. The

sign convention is such that θc < 0 when KII > 0 and vice-versa. Other

criteria lead to very similar orientation angles for 2D problems (see a recent

review in Reference [32]). Once the crack growth orientation is determined,

a propagation increment ∆a is added to the existing crack geometry and the

analysis procedure is repeated.

3.5 Plotting

Currently, Abaqus does not have capabilities for user-element plotting because

the code does not post-process the information generated by user elements.

To plot the deformed shape after an extended finite element analysis, we have

used standard 4-node linear elements with very small (negligible) stiffness

connected to the nodes of every enriched element and retaining the same

connectivity. Since a shifted-basis formulation is used (see Section 2.2) the

standard DOFs of the nodes of an enriched element contain the corresponding

physical displacements. As the overlay elements share the same DOFs, the
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deformed shape can be visualized. Of course, the interpolation within the

overlay elements is a standard bilinear interpolation and can not capture local

discontinuities nor nonlinear variation of displacements due to the Heaviside

and crack-tip enrichment functions. For the same reason and since overlay

elements have negligible stiffness, stress or strain plots within overlay elements

do not represent the correct variations.

Fig. 3 shows a portion of a cracked finite strip loaded under uniform normal

stress. The lateral sides are constrained in the x1-direction and therefore this

model represents a sequence of infinite collinear cracks in a plate loaded in

tension. The crack location and the enriched nodes are shown in the sketch

on the left for two types of enrichment: only Heaviside enrichment and a full

X-FEM enrichment including crack-tip functions. Three contour plots of the

von Mises stress field are represented for each type of enrichment. From left

to right, these show the extended finite element solution without a shifted-

basis formulation, the extended finite element solution with a shifted-basis

formulation plus overlay elements and a standard FE solution for comparison

purposes. The DOF constraints are plotted on the enriched nodes according

to the type of enrichment (each type of enrichment implies the constraint

of the non-used DOFs as explained in Section 3.2). The shifted basis allows

the representation of the true location of the nodes, with overlay elements

that help to visualize the discretization. The enriched nodes location can be

compared with the standard FE solution, shown on the rightmost plot of Fig. 3.

Note that for the FE solution, a constraint equation for the node located at

the crack tip was included to make the displacement field compatible with the
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(b) Heaviside and crack-tip enrichment

Fig. 3. Plotting enriched elements in Abaqus. From left to right: crack location and
enriched nodes; von Mises contour plot without a shifted-basis formulation; the same
contour plot with a shifted-basis formulation and overlay elements; comparison with
a standard FE solution.

neighbouring side. For the enrichment with only Heaviside functions, Fig. 3(a),

the extended finite element and FE solutions provide exactly the same DOF

solution 4 . As expected, it can be observed in Fig. 3(b) that the extended

finite element stress distribution is not the same as the FE solution, since the

4 Strictly speaking, the von Mises stress distribution is slightly different near the
nodes that belong to enriched elements due to the Abaqus averaging procedure,
which cannot take into account the true user element results.
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former includes the effect of the crack-tip enrichment functions.

3.6 Contact problem

Abaqus capabilities are limited insofar as user elements can not form part of a

contact surface. The use of overlay elements can be of interest in applications

in which the enriched elements (user-elements) must form part of contact sur-

faces. This situation arises when other bodies contact near a surface-breaking

crack, as in fretting fatigue.

We have overcome this shortcoming using the overlay elements with a negligi-

ble relative stiffness as described earlier. Overlay elements are used to establish

a master surface for the NTS (“node-to-segment”) Abaqus contact algorithms.

Since these elements share the same nodes as the enriched elements, displace-

ments associated with an overlay element are governed by the enriched ele-

ment. Therefore, it is crucial that the nodal physical displacements correspond

to the standard DOFs, i.e., the first two DOFs of an enriched node. The shifted

basis enables this feature. Obviously, a small displacement assumption must

be considered, because the displacement interpolation along the sides of an

overlay element is linear.

We have used this approach for the numerical example that appear in Sec-

tion 4.2.4. It has also been used in Reference [33], where a variant of this

Abaqus implementation with a different enrichment basis is developed. This

enables the enrichment of other type of singularities within the framework of

the partition of unity finite element method, such as one that arises at the
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end of a squared ended contact zone under a sliding condition.

4 NUMERICAL EXAMPLES

4.1 Westergaard’s crack problem

In order to assess the accuracy of the proposed implementation, a problem with

an exact reference solution has been solved for a sequence of uniformly refined

meshes. The problem analyzed is an infinite plate with a crack of finite length

2a, biaxially loaded with remote uniform tractions (see Fig. 4). The exact

solutions for the SIFs for this problem are: KI,ex = σ
√

πa and KII,ex = τ
√

πa.

τ
σ

σ c2

x2

a2 σx1

b2

σ
τ

Fig. 4. Westergaard’s crack problem.

The Westergaard’s solution to the exact stress fields at any point of the plate

can be expressed in terms of stress functions (see Reference [34]). In Refer-

ence [35], we presented explicit expressions for the stress fields in terms of

the spatial coordinates, which enables the computation of equivalent nodal

forces for a finite portion of the domain. We note in passing that the problem

presented here does not simply correspond to the pure singular asymptotical
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stress field, but includes all the terms of the series expansion. For the biaxial

loading with remote uniform traction σ, the stress field at a point (x1, x2)

associated with mode I loading is:

σI
11 =

σ
√

|t|

[(

x1 cos
φ

2
− x2 sin

φ

2

)

+ x2
a2

|t|2
(

m sin
φ

2
− n cos

φ

2

)]

, (5a)

σI
22 =

σ
√

|t|

[(

x1 cos
φ

2
− x2 sin

φ

2

)

− x2
a2

|t|2
(

m sin
φ

2
− n cos

φ

2

)]

, (5b)

σI
12 = x2

a2σ

|t|2
√

|t|

(

m cos
φ

2
+ n sin

φ

2

)

, (5c)

and for loading with remote uniform traction τ (antisymmetric mode or mode

II) the stress fields at points (x1, x2) belonging to the half plane x1 ≥ 0 are

given by

σII
11 =

τ
√

|t|

[

2

(

x2 cos
φ

2
+ x1 sin

φ

2

)

− x2
a2

|t|2
(

m cos
φ

2
+ n sin

φ

2

)]

, (6a)

σII
22 = x2

a2τ

|t|2
√

|t|

(

m cos
φ

2
+ n sin

φ

2

)

, (6b)

σII
12 =

τ
√

|t|

[(

x1 cos
φ

2
− x2 sin

φ

2

)

+ x2
a2

|t|2
(

m sin
φ

2
− n cos

φ

2

)]

, (6c)

where m,n, |t| and φ, which are real-valued functions of x1, x2, are defined as

m = Re t = x2
1 − x2

2 − a2, (7)

n = Im t = 2x1x2, (8)

|t| = |m + in| =
√

m2 + n2, (9)

φ = arg t̄ = arg(m − in) with φ ∈ [−π, π]. (10)

The crack length is a = 1 and the dimensions of the finite portion of the domain
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are b = 2a, c = a. Five uniform meshes have been considered, with element

sizes h = a/4, a/8, a/16, a/32 and a/64. The nodal equivalent forces applied

on the boundary of the model are computed for the remote loads σ, τ that

yield KI,ex = KII,ex = 1. These nodal equivalent forces are sketched in Fig. 5

for the third mesh of the refinement sequence. The x1- and x2-displacements

are constrained at the crack tip and an anti-symmetry constraint equation

is imposed between points of the x2-axis to avoid rigid body rotation [35].

The Young’s modulus is E = 107 (units of pressure), the Poisson’s ratio is

ν = 0.333 and plane stress condition is assumed.

Fig. 5. Westergaard’s crack problem. Third mesh of a sequence of uniformly refined
meshes. von Mises contour plot using an X-FEM topological enrichment (center)
and a geometric enrichment (right).

For the extended finite element solution, the crack location has been chosen

to end at a node to simplify the application of the displacement boundary

conditions. To verify the accuracy of the SIFs with the proposed implemen-

tation, two enrichment schemes for the crack-tip functions have been tested:

the standard topological enrichment (Fig. 5, center) and the geometric enrich-

ment (Fig. 5, right). The geometric enrichment follows the strategy presented

in References [19] and [20], i.e., the crack-tip enriched nodes are those located

within a fixed area surrounding the crack tip. The chosen fixed region is a circle

of radius 0.38a. For numerical integration in enriched elements, we have used
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5×5 Gauss quadrature for quadrilateral subdomains and 73-point quadrature

for triangular subdomains (adjacent to the crack-tip).
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Fig. 6. Westergaard’s crack problem. Relative error in KI and KII (in %).

The relative error obtained for both KI and KII (in percent) is plotted in

Fig. 6. As reported in the literature, it can be seen that the error in the SIFs

is in general very low, due to the enrichment with crack-tip functions. As in

previous studies [19,20], the effect of the singularity on the convergence rate is

only removed if geometric enrichment is introduced. It is well-known that the

error in energy norm of a standard FE solution for a singular problem with

uniform mesh refinement is bounded by

‖e‖E ≤ Chmin(p,λ), (11)

where e = u−uh is the error in displacements introduced by the finite element

approximation, C is a constant that depends on the problem, h is the charac-

teristic element size, p is the order of the elements used in the discretization
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(p = 1 in this work) and λ is the order of the singularity (λ = 0.5 in LEFM).

The square of the error in the energy norm is related to the error in strain

energy and therefore to the error in the strain energy release rate G and the

error in the SIFs [36]:

e(K) ≤ C2h2min(p,λ), (12)

where e(K) = Kex − Kh is the error in the SIF. Therefore, if the effect of

the singularity is not removed, the expected convergence rate is 1 (p = 1,

λ = 0.5). If the effect of the singularity is removed with geometric enrichment

then Eq. (12) simply reduces to e(K) ≤ C2h2p and the convergence rate is

increased to 2. The results in Fig. 6 are in good agreement with these a priori

estimates.

4.2 Crack propagation under mixed mode conditions

The following examples reveal the merits of the proposed implementation in

Abaqus to simulate mixed-mode crack growth under quasi-static conditions.

The crack orientation angle is governed by the values of KI and KII and is

computed through Eq. (4). Note that current capabilities for crack growth in

Abaqus (Version 6.7) are limited to propagation between two distinct initially

bonded contact surfaces, which must be defined a priori by the user. Therefore,

the incorporation of X-FEM substantially complements and enhances existing

Abaqus options.
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4.2.1 Eccentric crack in cantilever beam

This problem is considered in References [18,14] and is illustrated in Fig. 7.

It is known that the crack propagation of an initial crack a0 located slightly

off the midplane follows a path that departs away from the initial plane.

The dimensions of the problem are a0 = 2, w = a0 and l = 3a0. Plane

strain condition is assumed with material properties as in Section 4.1 and the

concentrated load is P = 1 (units of force). We have solved for two initial crack

locations whose offset from the midplane is ±0.035w. Eleven crack growth

increments have been considered, with a fixed value of ∆a = 0.05a0. Fig. 7

shows a detailed view of the enriched nodes for the last increment of the

propagation. The Abaqus von Mises plots show the expected crack growth

pattern for the two initial cracks considered, which is in qualitative agreement

with previously reported results [14].

l

w

P

0a

P

1

2

3

(Ave. Crit.: 75%)
S, Mises

+2.85e-03
+1.34e+01
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+6.70e+01
+8.04e+01
+9.38e+01
+1.07e+02
+1.21e+02
+1.34e+02
+1.47e+02
+1.61e+02

+2.85e-23

1

2

3

Fig. 7. Slightly eccentric crack in a cantilever beam. A detailed view of the enriched
nodes for the last crack growth increment is shown.
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4.2.2 Crack in a plate with a hole

The problem shown in Fig. 8 is an adaptation of an example presented in

Reference [10]. The initial crack length is a0 = 10 mm (all dimensions in

the sketch of Fig. 8 are given in mm), the material is aluminum 7075-T6,

with E = 71.7 GPa, ν = 0.33 and a plane strain state is considered. The load

applied for the extended finite element analysis is P = 20 kN, and linear elastic

material behaviour is assumed. The analysis of quasi-static crack propagation

has been carried out with twelve crack increments of ∆a = 3 mm each. Fig. 8

shows the crack propagation path obtained after twelve crack increments and

a plot of the von Mises stress field.

For this problem, we carried out experimental tests with specimens 16 mm

thick in order to compare the crack path to the one predicted numerically.

Fatigue tests were performed to produce a smooth crack growth with a stress

ratio of R = 0.1. The applied alternating load was reduced as the crack grew

to avoid premature rupture. This does not affect the crack propagation path,

since the latter is based on the MTS criterion Eq. (4) that, in turn, depends

on the ratio KII/KI only. The applied load yields proportional values of KI

and KII, and therefore the predicted orientation angle is independent of the

applied load. It can be seen that the crack trajectory obtained experimentally

is in good agreement with the numerically predicted path.

4.2.3 Growth of multiple cracks

Fig. 9 shows the application of the present implementation to a specially

devised problem with multiple cracks. The crack growth modelling of both
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Fig. 8. Crack in a plate with a hole. The crack growth path predicted using X-FEM
agrees well with experimental observations.

internal cracks and surface cracks emanating from stress raisers is considered.

An initial crack length of a0 = 4 is assumed for all surface cracks (cracks

denoted from C to I). The initial crack length for the internal cracks (cracks

A and B) is 2a0 and their location is given by the coordinates (−20.5,−16.5)

for the lower tip of crack A and (35, 5) for the upper tip of crack B. The initial

orientations of cracks A to I measured from the x1-axis are 40o, −165o, 10o,

−45o, 180o, 35o, −145o, 165o and 25o respectively. Plane stress condition is

assumed with material properties as in Section 4.1. The applied tractions are
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σ1 = 500 and σ2 = 300 (units of pressure).

Five quasi-static crack growth increments have been considered, with ∆a = 3.5.

Of course, both tips of internal cracks A, B are allowed to grow at each incre-

ment. The final configuration is shown in Fig. 9 (bottom right). Although no

quantitative results for this configuration are available for the purpose of com-

parison, a qualitative assessment can be made. For instance, for the crack A,

it can be seen that the crack orientation starting from both tips is normal to

the maximum principal stress direction (in this zone, close to the x2-direction

due to the near influence of boundary conditions). This is in accordance with

expectations, since the MTS criterion is applied to predict the crack orienta-

tion.
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Fig. 9. Crack growth modelling of multiple cracks (internal and surface cracks).
Plots on the right hand side show the initial crack locations and the corresponding
crack paths after five quasi-static growth increments.
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4.2.4 Application to fretting fatigue

One of the applications of the present implementation of the X-FEM is to

fretting-fatigue problems [6]. This phenomenon is characterized by the pres-

ence of two or more contacting bodies, subjected to relative displacements

of small amplitude. The stresses exhibit steep gradients in the vicinity of the

contact zone and the combination of such a high stress gradient with the cyclic

nature of the loading leads to the nucleation of small cracks and their even-

tual propagation. The modelling of the crack propagation stage with X-FEM

and the Abaqus implementation greatly simplifies these analyses, in which

there are interactions between the stress contact field and the crack. Note

that previous work in the literature introduce simplifications in the model to

be solved [6]. Some of the studies assume a fixed analytical distribution of the

contact stresses, which can not take into account the effect of the crack pres-

ence on the contact distribution. Others consider analytical models assume

that the boundary borders are remote. There are also standard FE models

that simplify the crack growth to a normal straight crack to avoid the com-

plications associated with remeshing. All these limitations are overcome with

the proposed X-FEM implementation in Abaqus.

Fig. 10 shows a fretting example of a cylindrical (Hertzian) contact on a flat

specimen under the action of a normal distributed load p. The specimen is

subjected to a fatigue load σB (bulk stress). An initial crack a0 is located at

the end of the contact zone of width 2aH. The radius of the contacting cylinder

is rpad = 25 mm, the specimen half-thickness is w = 20 mm and the normal

distributed load is equivalent to a vertical constant force of 40 kN. This load
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produces a contact region of semi-width aH = 177.9 µm, having assumed the

same material as in Section 4.2.2. The maximum value of the bulk stress is

σB,max = 90 MPa and the crack is slanted –105o with respect to the x1-axis

with a length of a0 = 200 µm.

As explained above, the contact between the indenter and the enriched ele-

ments that enter into contact is carried out by means of the overlay elements.

The von Mises contour plot reveals the strong crack-contact interaction that

exists at the first stages of the crack growth. It is verified that the interaction

effect can modify the SIF values. As the SIF range is raised to a power (greater

than 3 for aluminum 7075-T6) in the typical crack growth models (Paris law

and similar), an accurate SIF estimation is desirable in order to minimize the

error in the estimated life. For further details, we refer to Reference [6] where

a specific study on the fretting application is presented. The contact proce-

dures and non-linear solver capabilities of Abaqus are thus combined with the

advantages of X-FEM for crack modelling.

5 CONCLUDING REMARKS

In this paper, we presented a procedure for the implementation of the X-

FEM within the commercial FE code Abaqus for two-dimensional fracture

problems. The implementation was based on the user element subroutine UEL

and enables the modelling of different crack locations and orientations using

a single mesh that is easily generated. In addition, use of the crack-tip enrich-

ment significantly improved the accuracy of the computed SIFs. We focused
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Fig. 10. Application to fretting fatigue. Enlarged view of the von Mises contour plot
of a cylindrical indenter contacting a cracked specimen.

on the main procedures that interact with Abaqus: the structure of the in-

put file, the user subroutine for the enriched elements, the element stiffness

matrix computation and the outputs for further post-processing. These rou-

tines are in the open-source, and therefore fracture mechanics analysts can

use and adapt these procedures. Various numerical examples in fracture me-

chanics were solved to demonstrate the accuracy and reveal the merits of

the implementation. Through these examples, different issues were addressed,

such as the convergence rates using topological versus geometric enrichment,

crack propagation path under mixed-mode conditions, ability to analyze multi-

cracked components, and application to cracks emanating from contact stress

raisers under fretting-fatigue conditions.
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A Template of the input file .inp

*Heading
TEMPLATE FOR X-FEM WITH ABAQUS
**
** =====================================================
** #1. USER ELEMENT DEFINITION (CALLED U12, 12 DOF/NODE)
** =====================================================
*User element, nodes=4, type=U12, properties=2, iproperties=5, coordinates=2, variables=9000
1,2,3,4,5,6,7,11,12,13,14,15
**
** =====================================================
** #2. NODES & STANDARD ELEMENTS
** =====================================================
** -- ALL NODES
*Node, input=.\files\m0XY.prn
** -- ONLY THE NON-ENRICHED ELEMENTS (STANDARD ELEMENTS)
*Element, type=CPS4, input=.\files\TopNoX, elset=ELEMTOPNOX
*Nset, nset=ELEMTOPNOX, elset=ELEMTOPNOX
*Solid Section, elset=ELEMTOPNOX, material=Material-1
1.
**
** =====================================================
** #3. ENRICHED ELEMENTS (USER ELEMENTS)
** =====================================================
*Element, type=U12, input=.\files\TopX, elset=ELEMTOPXU12
*Nset, nset=ELEMTOPXU12, elset=ELEMTOPXU12
**
** =====================================================
** #4. NSETS & ELSETS INCLUSION
** =====================================================
** -- NODE SETS BELONGING TO ENRICHED ELEMENTS
*Nset, nset=NodeX2dof
*include,input=.\files\SETNodeX2dof
*Nset, nset=NodeX4dof
*include,input=.\files\SETNodeX4dof
*Nset, nset=NodeX10dof
*include,input=.\files\SETNodeX10dof
**
** -- TO INCLUDE OTHER SETS (SPECIFIC TO THE PROBLEM)
*include,input=.\files\m0sets.prn
**
** =====================================================
** #5. OVERLAY ELEMENTS (if desired)
** =====================================================
*Element, type=CPS4, input=.\files\TopXoverlay, elset=ElemTopXoverlay
*Solid Section, elset=ElemTopXoverlay, material=MaterOverlay
1.
**
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** =====================================================
** #6. MATERIALS DEFINITION
** =====================================================
*Material, name=Material-1
*Elastic
1e7, 0.333
*Material, name=MaterOverlay
*Elastic
1e-14, 0.333
** (negligible stiffness)
**
** -- USER DEFINED PROPERTIES FOR USER ELEMENTS. Keys:
** 1st Parameter: E (Young’s modulus)
** 2nd Parameter: nu (Poisson’s ratio)
** 3rd Parameter: plane stress = 1; plane strain = 2
** 4th Parameter: orderC(1) = Quadrature order for quadrilaterals (in each direction)
** NOTE: only for enriched elements no subdivided (quadrilaterals)
** 5th Parameter: orderC(2) = Quadrature order for triangles (total points)
** NOTE: only for enriched elements subdivided into triangles
** 6th Parameter: orderC(3) = Quadrature order for quadrilaterals (in each direction)
** NOTE: only for enriched elements subdivided into 2 quadrilaterals (elemX = type 4)
** 7th Parameter: Dimension of the physical domain of the problem: 2=2D
*Uel property, elset=ELEMTOPXU12
1.0e7, 0.333,1,5,7,5,2
**
** =====================================================
** #7. BOUNDARY CONDITIONS
** =====================================================
** -- BC (USED IN X-FEM TO CONSTRAIN THE NON-USED EXTRA DOF)
*Boundary, OP=MOD
NodeX2dof, 3, 15, 0.0
NodeX4dof, 5, 15, 0.0
NodeX10dof, 3, 4, 0.0
**
** -- OTHER BC (SPECIFIC TO THE PROBLEM)
** ... etc ...
**
** =====================================================
** #8. LOAD STEPS
** =====================================================
*Step
Step-1-: load application
** -- WE DON’T USE *Static. WE USE THE FOLLOWING TO INVOLVE DOFS 1-7 & 11-15
*coupled temperature-displacement, steady state
1., 1., 1e-05, 1.
**
** -- LOADS (SPECIFIC TO THE PROBLEM)
** ... etc ...
**
** =====================================================
** #9. OUTPUT FILES
** =====================================================
** -- OUTPUT FIELD TO .odb
*Output, field, op=NEW, frequency=1
*Node Output
U
*Element Output
S, E
** -- OUTPUT PRINT TO .dat (not necessary)
** -- ’U’ TO LIST DOFS 1-7 & ’NT’ TO LIST TEMP. ASSOCIATED DOFS 11-...
*Node print, nset=ELEMTOPXU12,frequency=1
U
*Node print, nset=ELEMTOPXU12,frequency=1
NT
** -- OUTPUT WRITE TO .fil
*Node file, nset=ELEMTOPNOX
COORD,U
*El file, elset=ELEMTOPNOX, POSITION=INTEGRATION POINT
S,E,ENER,IVOL
** -- TO WRITE USER DEFINED OUTPUT VARIABLES FOR POST-PROCESSING
** -- (INFORMATION AT GAUSS POINTS OF ENRICHED ELEMENTS)
*El file, elset=ELEMTOPXU12
SDV
**
*End Step

B User subroutine UEL XFEM

SUBROUTINE UEL(RHS,AMATRX,SVARS,ENERGY,NDOFEL,NRHS,NSVARS,
* PROPS,NPROPS,COORDS,MCRD,NNODE,U,DU,V,A,JTYPE,TIME,DTIME,
* KSTEP,KINC,JELEM,PARAMS,NDLOAD,JDLTYP,ADLMAG,PREDEF,NPREDF,
* LFLAGS,MLVARX,DDLMAG,MDLOAD,PNEWDT,JPROPS,NJPROP,PERIOD)

c

35



INCLUDE ’ABA_PARAM.INC’
c
c User subroutine for computation of element stiffness matrix and
c the element force vector

c ABAQUS defined variables:
DIMENSION RHS(MLVARX,*), AMATRX(NDOFEL,NDOFEL), PROPS(*),

* SVARS(NSVARS), ENERGY(8), COORDS(MCRD,NNODE), U(NDOFEL),
* DU(MLVARX,*), V(NDOFEL), A(NDOFEL), TIME(2), PARAMS(*),
* JDLTYP(MDLOAD,*), ADLMAG(MDLOAD,*), DDLMAG(MDLOAD,*),
* PREDEF(2,NPREDF,NNODE), LFLAGS(*), JPROPS(*)

c
c Important variables (list not exhaustive)
c JELEM Current element number
c AMATRX Element stiffness matrix (element contribution to the stiffness
c matrix of the overall system of equations)
c RHS Element residual force vector (element contribution to the right-hand-side
c vector of the overall system of equations)
c F Element force vector (AMATRX times the updated solution for nodal dofs)
c E Young’s modulus
c Nu Poisson’s ratio
c PSS 1 - Plane stress
c 2 - Plane strain
c orderQ Vector that stores the following quadrature orders:
c orderQ(1) = Quadrature order for quadrilaterals (in each direction)
c NOTE: only for non-subdivided enriched elements (quadrilaterals)
c orderQ(2) = Quadrature order for triangles (total points)
c NOTE: only for enriched elements subdivided into triangles
c orderQ(3) = Quadrature order for quadrilaterals (in each direction)
c NOTE: only for enriched elements subdivided into 2 quadrilaterals (elemX = type 4)
c dimens Dimension of the physical domain: 2=2D
c Actually, it should suffice with the ABAQUS variable MCRD, but ABAQUS automatically
c sets MCRD=3, even though for a 2D problem, since we are using the third and further
c available dof for the enriched nodes.
c NNODE Number of nodes per element
c NelmX Number of enriched elements
c NnodX Number of nodes that belong to enriched elements
c TypeX Matrix that stores the key number to the type of node in an enriched element:
c 0 - Non-enriched (2 dof)
c 1 - Heaviside enrichment (4 dof)
c 2 - Crack tip enrichment (10 dof)
c TypeXe Vector that stores the key in TypeX for the nodes of the current element
c ix Vector that stores the node numbers of the current element (connectivity)
c Xe(8) X nodal coordinates of the current element
c (it is duplicated to ease the counting from the 4th to the 1st node)
c Ye(8) Y nodal coordinates of the current element
c NCracks Number of cracks
c NCP Number of crack path points (vertices)
c maxNCP Maximum number of crack path points (vertices)
c XYC Matrix that stores the coordinates of crack path points
c XYC0 Crack tip coordinates associated with the crack tip enriched element
c XYCPrev Crack tip coordinates associated with the previous crack path point
c gint Total number of integration points (either with or without subdivision)
c flag Subdivision indicator (1 for subdivision)
c mpg Maximum expected number of integration points for an enriched element
c sg Matrix that stores the coordinates and weights of the integration points
c xypg Matrix that stores the coordinates of the integration points
c Dist Matrix that stores distances to crack from nodes of enriched elements
c (this information is previously preprocessed, for example in Matlab)
c ElemGG Matrix that stores information about the elements to be enriched, type of
c crack intersection and points of interesection
c (this information is previously preprocessed, for example in Matlab)
c BatG Matrix that stores the [B] matrix for each enriched element at Gauss points
c DBatG Matrix that stores the [D][B] matrix for each enriched element at Gauss points
c JatG Vector that stores the Jacobian = det([J]) for each enriched element at Gauss points
c

Declaration of variables for XFEM user element
CHARACTER*256 OUTDIR ! to read the working directory
INTEGER LENOUTDIR ! working directory string length
INTEGER i,j,k,PSS,orderQ(3),gint,flag,dimens
INTEGER NCracks,maxNCP,NelmX,NnodX,TypeXe(NNODE),ix(NNODE)
INTEGER,PARAMETER :: mpg=1650 ! up to more than 40x40 Gauss integration points per element
INTEGER,ALLOCATABLE:: TypeX(:,:),NCP(:)
REAL*8 E, Nu
REAL*8 F(NDOFEL)
REAL*8 sg(3,mpg),xypg(2,mpg),Xe(8),Ye(8),XYC0(2),XYCPrev(2)
REAL*8, ALLOCATABLE:: XYC(:,:,:),Dist(:,:),ElemGG(:,:)
REAL*8, ALLOCATABLE:: BatG(:,:),DBatG(:,:),JatG(:)

c &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
c &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
c
c Read real and integer properties set at the ABAQUS input file

E = PROPS(1)
Nu = PROPS(2)
PSS = JPROPS(1)
orderQ(1) = JPROPS(2)
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orderQ(2) = JPROPS(3)
orderQ(3) = JPROPS(4)
dimens = JPROPS(5)

c Read the working directory
CALL GETOUTDIR(OUTDIR,LENOUTDIR)

c *************************************************************************
c **** Read information previously preprocessed, for example in Matlab ****
c *************************************************************************
c Read number of cracks, max number of crack path points,
c number of enriched elements and enriched nodes.

OPEN(68,FILE=OUTDIR(1:LENOUTDIR)//’\files\GGInfoX’)
READ(68,*) NCracks,maxNCP,NelmX,NnodX
CLOSE(68)

c Allocate dimensions
ALLOCATE (TypeX(NnodX,2), NCP(NCracks))
ALLOCATE (XYC(NCracks,maxNCP,2), Dist(NnodX,3), ElemGG(NelmX,10))

c Read coordinates of path points for each crack
OPEN(68,FILE=OUTDIR(1:LENOUTDIR)//’\files\GGXYC’)
DO i=1,NCracks

READ(68,*) NCP(i)
DO j=1,NCP(i)

READ(68,*) (XYC(i,j,k),k=1,2)
END DO

END DO
CLOSE(68)

c Read list of enriched nodes, type of enrichment and distances
OPEN(68,FILE=OUTDIR(1:LENOUTDIR)//’\files\GGnodeX’)
DO i=1,NnodX

READ(68,*) (TypeX(i,j),j=1,2),(Dist(i,j),j=2,3)
Dist(i,1)=TypeX(i,1)

END DO
CLOSE(68)

c Read list of enriched elements, type of enrichment and intersection points
OPEN(68,FILE=OUTDIR(1:LENOUTDIR)//’\files\GGelemX’)
DO i=1,NelmX

READ(68,*) (ElemGG(i,j),j=1,10)
END DO
CLOSE(68)

c Call initializing routines for matrix and vectors
CALL initializeM(RHS,NDOFEL,NRHS)
CALL initializeM(AMATRX,NDOFEL,NDOFEL)
CALL initializeV(ENERGY,8)
CALL initializeV(SVARS,NSVARS)

c Verification of element type (type=12 for enriched element)
IF (JTYPE.EQ.12) THEN

c **************************************
c * 4 NODE ENRICHED ELEMENT WITH *
c * UP TO 12 DOF/NODE FOR X-FEM *
c **************************************

IF (LFLAGS(1).EQ.71) THEN
c Coupled thermal-stress, steady state analysis

IF (LFLAGS(3).EQ.1) THEN
c Normal implicit time incrementation procedure.
c User subroutine UEL must define the residual vector in RHS
c and the stiffness matrix in AMATRX

c Routine that defines the location of integration points according to
c the appropriate subdivision. This enables to know the total number of
c integration points for the current element, stored in gint, and whether
c the element is subdivided for integration (flag=1) or not.

CALL int2d_X(JELEM,NelmX,ElemGG,MCRD,NNODE,COORDS,orderQ,
* NCracks,maxNCP,NCP,XYC,gint,sg,Xe,Ye,flag,mpg,xypg,
* XYC0,XYCPrev)

c Allocate dimensions once the total number of integration points gint is known
ALLOCATE(BatG(3*gint,NDOFEL),DBatG(3*gint,NDOFEL),JatG(gint))
CALL initializeM(BatG,3*gint,NDOFEL)
CALL initializeM(DBatG,3*gint,NDOFEL)
CALL initializeV(JatG,gint)

c Search of the enrichment type for the nodes of the current element.
c The keys to the enrichment types are stored in the element vector TypeXe

CALL TypeXelement(OUTDIR,LENOUTDIR,JELEM,NNODE,NelmX,
* ix,TypeXe)

c Element stiffness matrix computation, stored in AMATRX
CALL K_U12(E,Nu,AMATRX,NDOFEL,NNODE,dimens,MCRD,

* COORDS,PSS,NnodX,ix,TypeXe,Dist,XYC0,XYCPrev,
* gint,sg,Xe,Ye,flag,BatG,DBatG,JatG)

c Routine that multiplies AMATRX times U to obtain the force vector F
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c at the end of the current increment
CALL MULT_V(AMATRX,NDOFEL,NDOFEL,U,F,NDOFEL)

c Compute the residual force vector
DO I=1,NDOFEL

RHS(I,1) = RHS(I,1) - F(I)
END DO

c Compute stresses at Gauss points for post-processing purposes
c Store them as SVARS for output to the results file (.fil)

CALL SVARS_U12(JTYPE,JELEM,SVARS,NSVARS,U,NDOFEL,BatG,
* DBatG,JatG,gint,mpg,xypg)

END IF
END IF

END IF
RETURN
END

C Element stiffness matrix. Subroutine: K U12

SUBROUTINE K_U12(E,Nu,AMATRX,NDOFEL,NNODE,dimens,MCRD,
* COORDS,PSS,NnodX,ix,TypeXe,Dist,XYC0,XYCPrev,
* gint,sg,Xe,Ye,flag,BatG,DBatG,JatG)

IMPLICIT NONE
INTEGER NDOFEL,NNODE,dimens,MCRD,PSS,NnodX,gint,flag,pos
INTEGER l,i,j,kk,TypeXe(NNODE),ix(NNODE)
REAL*8 E,Nu,Dist(NnodX,3),sg(3,*)
REAL*8 AMATRX(NDOFEL,NDOFEL),XYC0(2),XYCPrev(2)
REAL*8 Xe(2*NNODE),Ye(2*NNODE),COORDS(MCRD,NNODE),xl(dimens,NNODE)
REAL*8 xsj(gint),shp(3,4)
REAL*8 dNF(NNODE,2,4),Fnode(NNODE,4),H,Hnode(NNODE)
REAL*8 B(3,NDOFEL), DB(3,NDOFEL), BT(NDOFEL,3), D(3,3)
REAL*8 BatG(3*gint,NDOFEL),DBatG(3*gint,NDOFEL),JatG(gint)
LOGICAL NodeType1,NodeType2

c NOTES:
c Routine shapef2D is called to compute standard shape functions,
c derivatives and jacobian at integration points. This routine outputs:
c shp(3,*) - Shape functions and derivatives at point
c shp(1,i) = dN_i/dx = dN_i/dx1
c shp(2,i) = dN_i/dy = dN_i/dx2
c shp(3,i) = N_i
c xsj - Jacobian determinant at point
c Local coordinates of integration points are passed in sg(1,*), sg(2,*)
c Integration weights are passed in sg(3,*)
c &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
c &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

c Initialize AMATRX and logical variables
CALL initializeM(AMATRX,NDOFEL,NDOFEL)
NodeType1=.false.
NodeType2=.false.

c Reduce info passed thru COORDS (3D) to xl (2D)
DO i=1,dimens

DO j=1,NNODE
xl(i,j)=COORDS(i,j)

END DO
END DO

c Define constitutive stress-strain elastic matrix
CALL CALC_D(PSS,D,E,Nu)

c Specify the type of nodal enrichment
DO i=1,NNODE

IF (TypeXe(i).eq.1) THEN
NodeType1=.true.

ELSEIF (TypeXe(i).eq.2) THEN
NodeType2=.true.

END IF
END DO

c Numerical integration loop over gint integration points
DO l = 1,gint

c Compute shape functions, derivatives and jacobian at integration point
CALL shapef2D(sg(1,l),xl,shp,xsj(l),dimens,NNODE,ix,.false.)
IF (flag.eq.1) THEN !Element is subdivided for integration

xsj(l) = sg(3,l) !The integration weight includes the jacobian
ELSE !Element is not subdivided. Standard integration
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xsj(l) = xsj(l)*sg(3,l)
ENDIF

c Value of the Heaviside function at integration point
c (This call is also used to store the values of H
c at nodes of the element for modified enrichment)

IF (NodeType1) THEN
CALL heaviside(NnodX,Dist,NNODE,ix,shp,H,Hnode)

ENDIF

c Derivatives of shape functions Ni times enrichment functions Fj at integration point
c (This call is also used to compute the derivatives of shape functions Ni times
c enrichment functions Fj at nodes of the element for modified enrichment)

IF (NodeType2) THEN
CALL fCrackTip(XYC0,XYCPrev,shp,Xe,Ye,dNF,Fnode)

ENDIF

c STIFFNESS MATRIX COMPUTATION:
c Assembly of element matrix B (denoted as B) at integration point

CALL initializeM(B,3,NDOFEL)
Pos=1

c Loop over nodes
DO i= 1,NNODE

c Contribution to B of derivatives of standard shape functions
B(1,Pos) = shp(1,i)
B(2,Pos+1)= shp(2,i)
B(3,Pos) = shp(2,i)
B(3,Pos+1)= shp(1,i)

c Contribution to B of derivatives of shape functions times Heaviside function
IF (TypeXe(i).eq.1) THEN
B(1,2+Pos) = shp(1,i)*(H-Hnode(i))
B(2,3+Pos) = shp(2,i)*(H-Hnode(i))
B(3,2+Pos) = shp(2,i)*(H-Hnode(i))
B(3,3+Pos) = shp(1,i)*(H-Hnode(i))

c Contribution to B of derivatives of shape functions times crack tip functions
ELSEIF(TypeXe(i).eq.2) THEN
DO kk= 1,4

B(1,2*kk+2+Pos)= dNF(i,1,kk)-shp(1,i)*Fnode(i,kk)
B(2,2*kk+3+Pos)= dNF(i,2,kk)-shp(2,i)*Fnode(i,kk)
B(3,2*kk+2+Pos)= dNF(i,2,kk)-shp(2,i)*Fnode(i,kk)
B(3,2*kk+3+Pos)= dNF(i,1,kk)-shp(1,i)*Fnode(i,kk)

END DO
END IF
Pos=Pos+12 !Each node has 12 dof

END DO ! i = End loop over element nodes

DB=matmul(D,B) ! Matrix D*B
BT=transpose(B) ! B transpose

c Integration of BT*D*B
AMATRX= AMATRX + matmul(BT,DB)*xsj(l)

c Store information at each integration point for further post-processing
DO i=1,3

DO j=1,NDOFEL
BatG(3*(l-1)+i,j)=B(i,j)
DBatG(3*(l-1)+i,j)=DB(i,j)

END DO
END DO
JatG(l)=xsj(l)

END DO ! l = End loop for each integration point
RETURN
END

D Output at integration points. Subroutine SVARS U12

SUBROUTINE SVARS_U12(JTYPE,JELEM,SVARS,NSVARS,U,Dof,BatG,DBatG,
* JatG,gint,mpg,xypg)

c Calculates and/or stores the following magnitudes at the element integration points,
c storing them in SVARS: strains, stresses, strain energy density, dv/dx, du/dy, jacobian,
c dNi/dx, dNi/dy, global coordinates of integration points.

IMPLICIT NONE
INTEGER i,j,k,NSVARS, Dof, gint, JTYPE,JELEM,mpg
REAL*8 SVARS(NSVARS), U(Dof),BatG(3*gint,Dof),DBatG(3*gint,Dof)
REAL*8 JatG(gint),B(3,Dof),DB(3,Dof),Bdvdx(3,Dof),Bdudy(3,Dof)
REAL*8 EPS(3),SIG(3),W,dvdx(3),dudy(3),JAC,xypg(2,mpg)

c &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

39



c &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

c First value stored in SVARS is the total number of integration points
c of the enriched element

SVARS(1)=gint
DO i=1,gint

JAC=JatG(i)
DO k=1,3

DO j=1,Dof
B(k,j)=BatG(3*(i-1)+k,j)
Bdvdx(k,j)=B(k,j) ! For computation of dv/dx
Bdudy(k,j)=B(k,j) ! For computation of du/dy
DB(k,j)=DBatG(3*(i-1)+k,j)

END DO
END DO
CALL MULT_V(B,3,Dof,U,EPS,3) ! Compute strains EPS
CALL MULT_V(DB,3,Dof,U,SIG,3) ! Compute stresses SIG
W=0.5d0*(EPS(1)*SIG(1)+EPS(2)*SIG(2)+EPS(3)*SIG(3))

c Computation of dv/dx & du/dy
c Set to zero positions in the 3rd row of B associated with dN/dy

DO j=1,Dof,2
Bdvdx(3,j)=0.0d0

END DO
CALL MULT_V(Bdvdx,3,Dof,U,dvdx,3) !compute dv/dx, stored in dvdx(3)

c Set to zero positions in the 3rd row of B associated with dN/dx
DO j=2,Dof,2

Bdudy(3,j)=0.0d0
END DO
CALL MULT_V(Bdudy,3,Dof,U,dudy,3) !compute du/dy, stored in dudy(3)

c Store in SVARS the following information at integration points
SVARS(1+20*(i-1)+1)=EPS(1)
SVARS(1+20*(i-1)+2)=EPS(2)
SVARS(1+20*(i-1)+3)=EPS(3)
SVARS(1+20*(i-1)+4)=SIG(1)
SVARS(1+20*(i-1)+5)=SIG(2)
SVARS(1+20*(i-1)+6)=SIG(3)
SVARS(1+20*(i-1)+7)=W
SVARS(1+20*(i-1)+8)=dvdx(3)
SVARS(1+20*(i-1)+9)=dudy(3)
SVARS(1+20*(i-1)+10)=JAC ! Jacobian includes integration weight

c Store in SVARS the shape functions derivatives dNi/dx, dNi/dy for external computation
c of dq/dx, dq/dy (used in domain interaction integrals).
c (we take them from the positions associated with the standard dofs)

SVARS(1+20*(i-1)+11)=B(1,1)
SVARS(1+20*(i-1)+12)=B(1,13)
SVARS(1+20*(i-1)+13)=B(1,25)
SVARS(1+20*(i-1)+14)=B(1,37)
SVARS(1+20*(i-1)+15)=B(2,2)
SVARS(1+20*(i-1)+16)=B(2,14)
SVARS(1+20*(i-1)+17)=B(2,26)
SVARS(1+20*(i-1)+18)=B(2,38)
Store in SVARS the global coordinates of integration points
SVARS(1+20*(i-1)+19)=xypg(1,i)
SVARS(1+20*(i-1)+20)=xypg(2,i)

END DO !i loop over all integration points of the element
RETURN
END
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