

# Application of the Coupled FE-EFG Method to Material Discontinuities in 1D and 2D

N. Sukumar

May 27, 1996

## 1 One-Dimensional Problems

### 1.1 Problem Statement

Consider the following one-dimensional Dirichlet boundary-value problem (strong form):

$$\begin{aligned} -\frac{d}{dx} \left( E \frac{du}{dx} \right) &= b \quad \text{in } \Omega, \\ u(0) &= \bar{u}_1, \\ u(L) &= \bar{u}_2, \\ \left[ E \frac{du}{dn} \right] &= 0 \quad \text{on } \Gamma \quad (\text{jump condition}) \end{aligned} \tag{1}$$

where  $\Omega = \{x \mid x \in (0, L)\}$ ,  $\Omega = \Omega_1 \cup \Omega_2$ . The elastic constant  $E$  is smooth in  $\Omega_1$  and  $\Omega_2$ , but is discontinuous at the interface  $\Gamma$  between  $\Omega_1$  and  $\Omega_2$ .

We seek trial functions  $u^h(x) \in \mathcal{H}^1(\Omega)$  such that (weak/variational form)

$$\int_{\Omega} E \frac{du^h}{dx} \frac{dv^h}{dx} dx = \int_{\Omega} b v^h dx, \quad \forall v^h \in \mathcal{H}^h \quad (\mathcal{H}^h \subset \mathcal{H}_0^1) \tag{2}$$

### 1.2 Bi-Material Bar

Consider a bi-material bar of length  $L$  (Figure 1) with material moduli  $E_1$  in  $\Omega_1$  and  $E_2$  in  $\Omega_2$ . The interface  $\Gamma$  is located at  $x = x_s$ . The domain is discretized by *FE*- as well as *EFG*-nodes. Kinematic admissibility is met by choosing *FE* nodes at  $x = 0$  and  $x = L$ ; in addition, an *FE* node at the interface point ensures displacement continuity and the approximate satisfaction of the natural boundary (jump) condition (in the “weak” sense). All the other nodes have *EFG*-character! The nodal discretization for  $L = 1$  using 17 equi-spaced nodes (18 cells) is shown in Figure 2 ( $x_s = 0.25$ ).

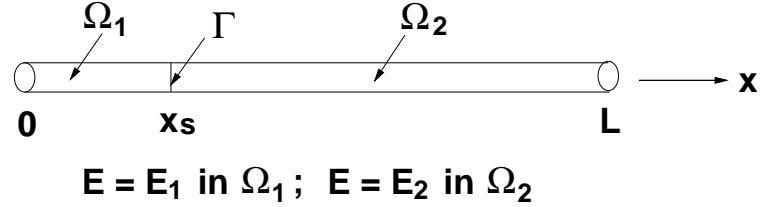


Figure 1: One-dimensional bi-material bar

A linear basis function ( $p = \{1, x\}$ ), quartic polynomial weight function, and a linear ramp are used to construct the shape functions ( $EFG$  and interface). Numerical integration is carried out using four-point Gauss quadrature. The support for the weight function is:  $d_{mI} = d_{\max}c$ , where  $c = \alpha c_I$ . In the analysis,  $d_{\max} = 3.2$  and  $\alpha = 1.001$ . The parameter  $c_I$  is the distance to the 2<sup>nd</sup> nearest neighbor from node  $I$ .

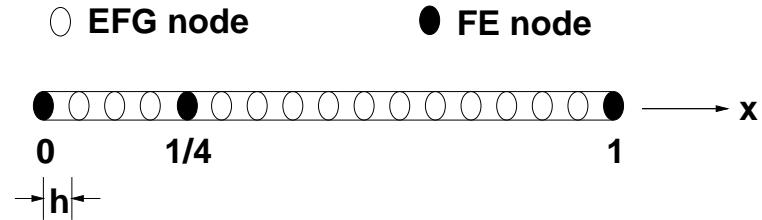


Figure 2: Nodal discretization

### 1.3 Numerical Solution

#### 1.3.1 Example 1

Consider a bi-material patch test:  $\bar{u}_1 = 0$ ,  $\bar{u}_2 = 1$  and  $b(x) = 0$ . The exact solution in terms of  $E_1$ ,  $E_2$  and  $x_s$  is:

$$u(x) = \begin{cases} \frac{E_2}{(E_2 - E_1)x_s + E_1}x, & 0 \leq x \leq x_s \\ \frac{E_1}{(E_2 - E_1)x_s + E_1}(x - 1) + 1, & x_s \leq x \leq 1 \end{cases} \quad (3)$$

In Figures 3a and 3b, the numerical and exact (displacement and strain) solutions are presented for two cases: (a)  $E_1 = 10^4$ ,  $E_2 = 10^3$  and (b)  $E_1 = 10^4$ ,  $E_2 = 10^2$ . The nodal discretization shown in Figure 2 is used ( $x_s = 0.25$ ).

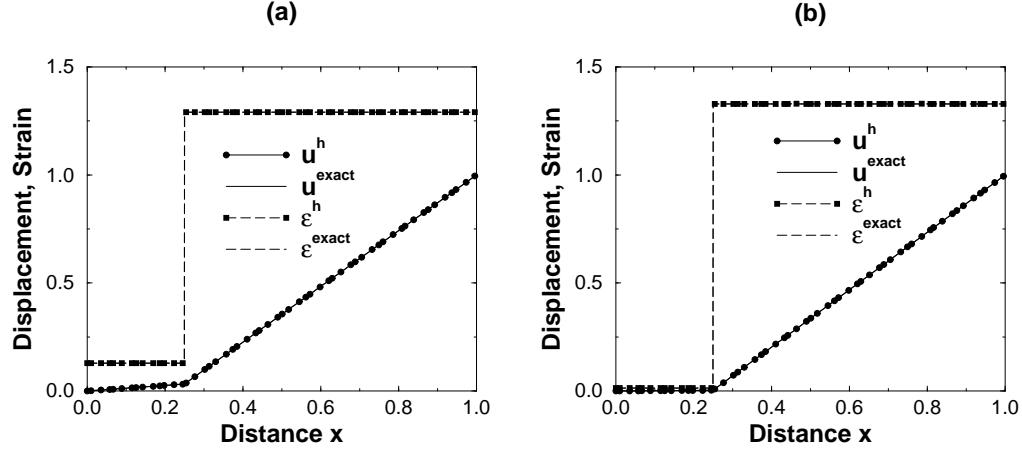


Figure 3: Comparison of numerical and exact solution (Example 1). (a)  $E_1 = 10^4$ ,  $E_2 = 10^3$ ; (b)  $E_1 = 10^4$ ,  $E_2 = 10^2$

### 1.3.2 Example 2

Let  $\bar{u}_1 = 0$ ,  $\bar{u}_2 = 0$  and  $b(x) = -2$ . The exact solution is now a quadratic in  $x$ :

$$u(x) = \begin{cases} \frac{x^2 - \alpha x}{E_1}, & 0 \leq x \leq x_s \\ \frac{x^2 - 1 - \alpha(x-1)}{E_2}, & x_s \leq x \leq 1 \end{cases} \quad (4)$$

where

$$\alpha = \frac{x_s^2(E_2 - E_1) + E_1}{x_s(E_2 - E_1) + E_1}. \quad (5)$$

The nodal discretization shown in Figure 2 is used. In Figures 4a and 4b, the numerical and exact (displacement and strain) solutions are illustrated for  $E_1 = 10^4$ ,  $E_2 = 10^3$  and  $x_s = 0.25$ . In Figure 5, the  $\mathcal{L}_2$ - and  $\mathcal{H}^1$ -error norms ( $E_1 = 10^4$ ,  $E_2 = 10^3$ ,  $x_s = 0.25$ ) are shown as a function of the nodal spacing on a log-log plot. The error norm results are computed for four different nodal spacings:  $h = \bar{h}/16$ ,  $\bar{h}/8$ ,  $\bar{h}/4$  and  $\bar{h}$ , where  $\bar{h} = 0.125$ . The  $\mathcal{L}_2$ - and  $\mathcal{H}^1$ -error norms are given by:

$$\|e\|_0 = \sqrt{\int_{\Omega} e^2 dx}, \quad \|e\|_1 = \sqrt{\int_{\Omega} (e^2 + e'^2) dx}, \quad (6)$$

where  $e = u - u^h$ . It is observed that the convergence rates for the displacement and strains are 2.39 and 0.95, respectively.

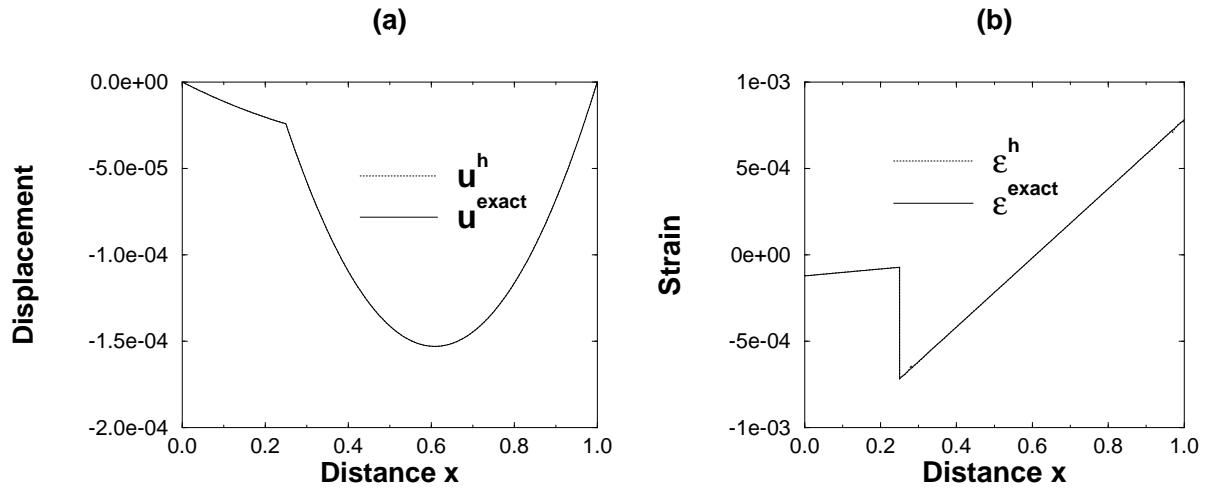


Figure 4: Comparison of numerical and exact solution for  $E_1 = 10^4$ ,  $E_2 = 10^3$ ,  $x_s = 0.25$  (Example 2). (a) Displacement; (b) Strain

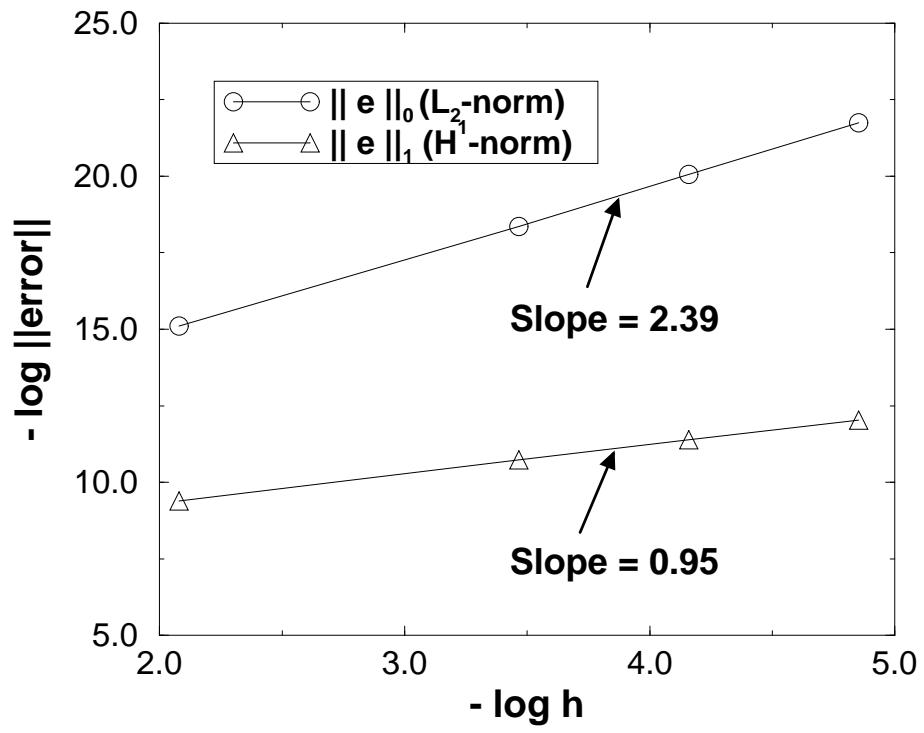


Figure 5: Rate of convergence for  $\mathcal{L}_2$  and  $\mathcal{H}^1$  error norms

### 1.3.3 Example 3

The Dirichlet boundary data are chosen as:  $\bar{u}_1 = 0$ ,  $\bar{u}_2 = 0$ , while the body force  $b(x) = -4e^{-2x}$  (Mackinnon and Carey, IJNME, 1987). The analytic solution is:

$$u(x) = \begin{cases} \frac{e^{-2x} - 1 + \alpha x}{E_1}, & 0 \leq x \leq x_s \\ \frac{e^{-2x} - e^{-2} + \alpha(x-1)}{E_2}, & x_s \leq x \leq 1 \end{cases} \quad (7)$$

where

$$\alpha = \frac{e^{-2x_s}(E_2 - E_1) + E_1 e^{-2} - E_2}{x_s(E_1 - E_2) - E_1}. \quad (8)$$

Let the location of the interface  $x_s = 0.5$ . The domain is discretized by 17 nodes: 3 FE nodes and the rest are  $EFG$  nodes. In Figures 6a and 6b, the numerical and exact solutions are compared for  $E_1 = 10^4$  and  $E_2 = 10^3$ . In Figure 7, the  $\mathcal{L}_2$ - and  $\mathcal{H}^1$ -error norms are plotted as a function of  $h$  ( $h = \bar{h}/8$ ,  $\bar{h}/4$ ,  $\bar{h}/2$  and  $\bar{h}$ , where  $\bar{h} = 0.125$ ) on a log-log plot. The convergence rates for  $u$  and  $\varepsilon$  are 2.51 and 0.96, respectively.

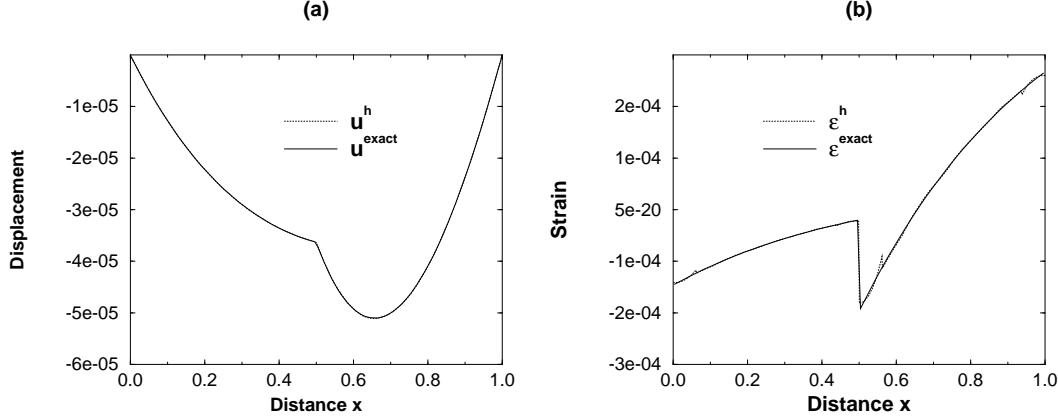


Figure 6: Comparison of numerical and exact solution for  $E_1 = 10^4$ ,  $E_2 = 10^3$ ,  $x_s = 0.5$  (Example 3). (a) Displacement; (b) Strain

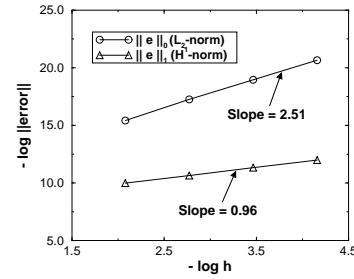


Figure 7: Rate of convergence for  $\mathcal{L}_2$  and  $\mathcal{H}^1$  error norms

## 2 Two-Dimensional Problem

### 2.1 Bi-material Boundary-Value Problem

In Figure 8a, a body ( $\mathbf{x} \in \mathcal{R}^2$ ) composed of two different materials (bi-material) is shown. The material properties are constants in  $\Omega_1$  and  $\Omega_2$ , but there is a discontinuity in the material constants across the interface  $\Gamma_1$  ( $r = r_i$ ). The Lamè constants in  $\Omega_1$  are chosen as:  $\lambda_1 = 497.16$ ,  $\mu_1 = 390.63$ , while those in  $\Omega_2$  are:  $\lambda_2 = 656.79$ ,  $\mu_2 = 338.35$ . These correspond to  $E_1 = 1000$ ,  $\nu_1 = 0.28$ , and  $E_2 = 900$ ,  $\nu_2 = 0.33$ .

### 2.2 Boundary Conditions and Exact Solution

We impose the linear displacement field:  $u_1 = x_1$ ,  $u_2 = x_2$  ( $u_r = r$ ,  $u_\theta = 0$  in polar coordinates) on the boundary  $\Gamma_2$ . The Navier's equation in polar coordinates reduces to ( $u_r = u_r(r)$ ,  $u_\theta = 0$ ):

$$\frac{1}{r} \frac{d}{dr} \left[ \frac{d}{dr} (r u_r) \right] = 0. \quad (9)$$

By considering displacement and traction continuity across the interface, the exact displacement solution can be written as

$$u_r = \begin{cases} \left[ \left( 1 - \frac{R^2}{r_i^2} \right) \alpha + \frac{R^2}{r_i^2} \right] r, & 0 \leq r \leq r_i \\ \left( r - \frac{R^2}{r} \right) \alpha + \frac{R^2}{r}, & r_i \leq r \leq R \end{cases} \quad (10)$$

$$u_\theta = 0$$

where

$$\alpha = \frac{(\lambda_1 + \mu_1 + \mu_2)R^2}{(\lambda_2 + \mu_2)r_i^2 + (\lambda_1 + \mu_1)(R^2 - r_i^2) + \mu_2 R^2} \quad (11)$$

The radial ( $\varepsilon_{rr}$ ) and hoop ( $\varepsilon_{\theta\theta}$ ) strains are given by

$$\varepsilon_{rr} = \begin{cases} \left( 1 - \frac{R^2}{r_i^2} \right) \alpha + \frac{R^2}{r_i^2}, & 0 \leq r \leq r_i \\ \left( 1 + \frac{R^2}{r^2} \right) \alpha - \frac{R^2}{r^2}, & r_i \leq r \leq R \end{cases} \quad (12)$$

$$\varepsilon_{\theta\theta} = \begin{cases} \left( 1 - \frac{R^2}{r_i^2} \right) \alpha + \frac{R^2}{r_i^2}, & 0 \leq r \leq r_i \\ \left( 1 - \frac{R^2}{r^2} \right) \alpha + \frac{R^2}{r^2}, & r_i \leq r \leq R \end{cases}$$

The radial ( $\sigma_{rr}$ ) and hoop ( $\sigma_{\theta\theta}$ ) stresses are:

$$\sigma_{rr} = 2\mu\varepsilon_{rr} + \lambda(\varepsilon_{rr} + \varepsilon_{\theta\theta}), \quad (13)$$

$$\sigma_{\theta\theta} = 2\mu\varepsilon_{\theta\theta} + \lambda(\varepsilon_{rr} + \varepsilon_{\theta\theta}),$$

where the appropriate Lamè constants are to be used in the evaluation of the stresses. The shear components of the stress and strain tensors are zero.

## 2.3 Numerical Solution

Due to symmetry, one-quarter of the domain is modeled. The domain is discretized using 257 nodes: 67 *FE* nodes (on the boundary and along the interface  $r = r_i$ ) and 190 *EFG* nodes (Figure 8b). Numerical integration is carried out using  $4 \times 4$  Gauss quadrature; quartic polynomial weight function with  $d_{max} = 4.0$  is used. Due to axi-symmetry, results are presented as a function of  $r$  along  $\theta = 0^\circ$ . In Figure 9, the exact and numerical solutions for  $u_r$  and  $u_\theta$  are shown. The comparisons for the radial strain  $\varepsilon_{rr}$  and hoop strain  $\varepsilon_{\theta\theta}$  are presented in Figures 10a and 10b, while those for the radial stress  $\sigma_{rr}$  and hoop stress  $\sigma_{\theta\theta}$  are shown in Figures 11a and 11b.

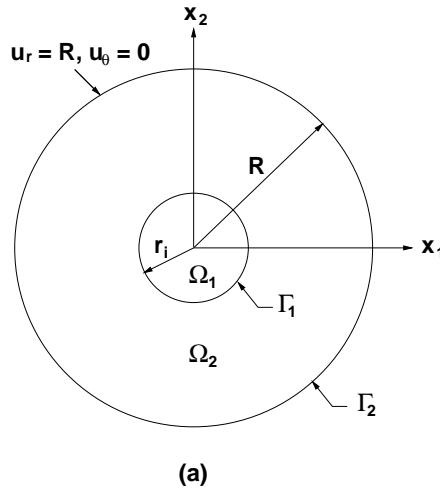
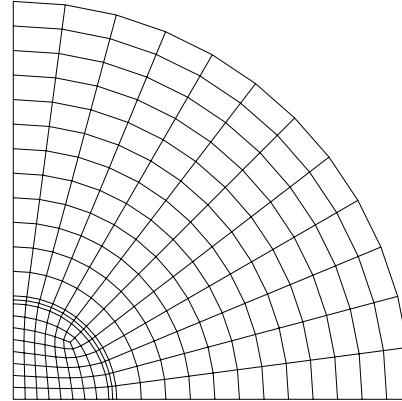


Figure 8: Bimaterial boundary-value problem. (a) Domain and BCs; (b) Nodal discretization

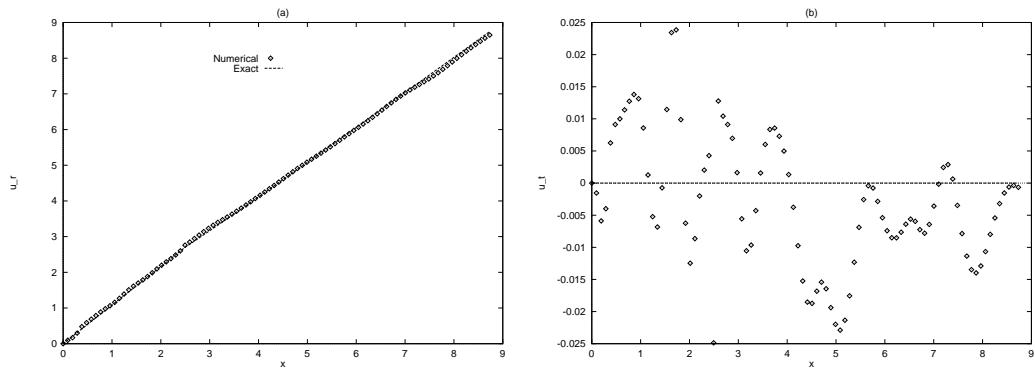


Figure 9: Radial and tangential displacements. (a)  $u_r$ ; (b)  $u_\theta$

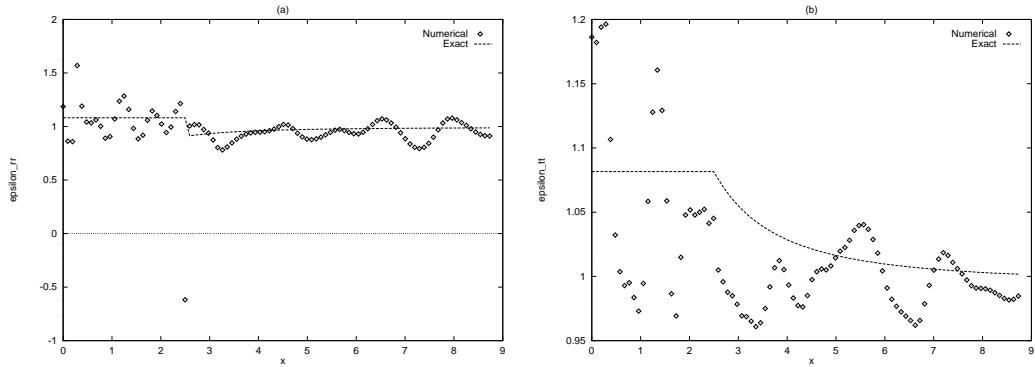


Figure 10: Radial and hoop strains. (a)  $\epsilon_{rr}$ ; (b)  $\epsilon_{\theta\theta}$

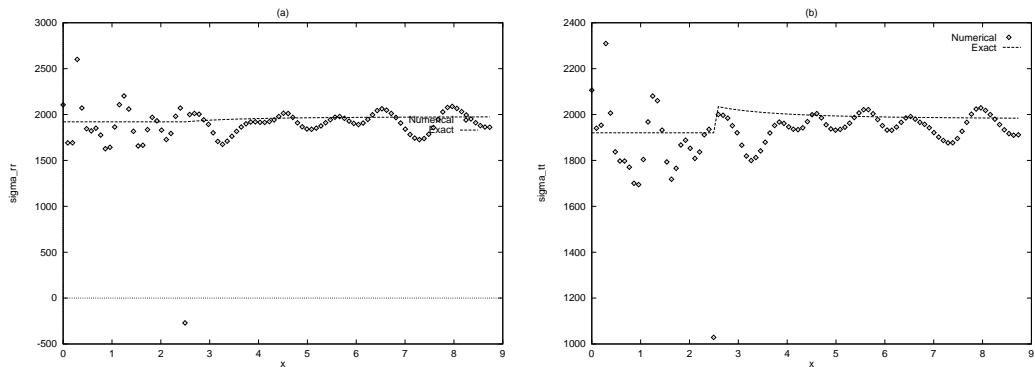


Figure 11: Radial and hoop stresses. (a)  $\sigma_{rr}$ ; (b)  $\sigma_{\theta\theta}$