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1 Omne-Dimensional Problems

1.1 Problem Statement

Consider the following one-dimensional Dirichlet boundary-value problem (strong

d <Ed—u) =b in ),

form):

dx dz
U(O) = ﬂl 5
_ (1)
u(L) = uy,
du ) ”»
[[E—H =0 onI (jump condition)
dn

where @ = {z | z € (0,L)}, @ = Q1 UQy. The elastic constant £ is smooth in 4
and €y, but is discontinuous at the interface I' between Q; and €2,.
We seek trial functions u"(z) € H!(Q) such that (weak/variational form)

du” dv"
FE——dz= | b"d g h(HE ! 2
/Q L /Qv r, Vo"eH" (H"CH,) (2)

1.2 Bi-Material Bar

Consider a bi-material bar of length L (Figure 1) with material moduli £y in 4 and F;
in 5. The interface I' is located at x = x,. The domain is discretized by F FE- as well
as K FG-nodes. Kinematic admissibility is met by choosing F'E nodes at x = 0 and
x = L;in addition, an F'F node at the interface point ensures displacement continuity
and the approximate satisfaction of the natural boundary (jump) condition (in the
“weak” sense). All the other nodes have EF(G-character! The nodal discretization
for L =1 using 17 equi-spaced nodes (18 cells) is shown in Figure 2 (z, = 0.25).
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Figure 1: One-dimensional bi-material bar

A linear basis function (p = {1,z}), quartic polynomial weight function, and a
linear ramp are used to construct the shape functions (£ F G and interface). Numerical
integration is carried out using four-point Gauss quadrature. The support for the
weight function is: d,,; = dpaxc, where ¢ = acy. In the analysis, dyax = 3.2 and
a = 1.001. The parameter c; is the distance to the 2°¢ nearest neighbor from node 1.
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Figure 2: Nodal discretization

1.3 Numerical Solution
1.3.1 Example 1

Consider a bi-material patch test: uq = 0, u3 = 1 and b(z) = 0. The exact solution
in terms of Ky, £y and z is:

E
Tt it 0<z<ux,
(B2—E1)zs+Er (ZC - ) + y Ls ST >

In Figures 3a and 3b, the numerical and exact (displacement and strain) solutions
are presented for two cases: (a) £y = 10*, Fy = 10° and (b) £y = 10*, Fy = 10%. The

nodal discretization shown in Figure 2 is used (z, = 0.25).
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Figure 3: Comparison of numerical and exact solution (Example 1). (a) F; = 10%,

By =10% (b) By = 10, By = 102

1.3.2 Example 2

Let w3 =0, uz = 0 and b(x) = —2. The exact solution is now a quadratic in z:
93251(9@ \ 0 S T S T
u(z) = (4)
T —I—E‘z(r—l) .z <r<1
where
Ey— F K
a:TS(Q 1) + 1 (5)
zs(Fy — F1) + E1

The nodal discretization shown in Figure 2 is used. In Figures 4a and 4b, the numer-
ical and exact (displacement and strain) solutions are illustrated for £y = 10, Ey =
10% and zs = 0.25. In Figure 5, the £5- and H'-error norms (F; = 10*, Fy = 10° z, =
0.25) are shown as a function of the nodal spacing on a log-log plot. The error norm
results are computed for four different nodal spacings: h = h/16, h/8, h/4 and h,
where h = 0.125. The £,- and H'-error norms are given by:

lello =/ [ 2o el = \//Q<e2+e'2>d:c , (6)

where e = u — u". It is observed that the convergence rates for the displacement and
strains are 2.39 and 0.95, respectively.
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Figure 4: Comparison of numerical and exact solution for F; = 10%, E, = 107,

zs = 0.25 (Example 2). (a) Displacement; (b) Strain
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Figure 5: Rate of convergence for £; and H' error norms



1.3.3 Example 3

The Dirichlet boundary data are chosen as: u; = 0, uy = 0, while the body force
b(z) = —4e~*" (Mackinnon and Carey, [JNME, 1987). The analytic solution is:

e 2% _14ax
w(a) =4 P, 0sosa (7)
e 2T —e 2 fa(z—1) < <1
Es ; LTs T >

where o g P P
o — e (Ey — F1) 4+ Eie™* — F, . (8)
il?s(El - Ez) — I

Let the location of the interface z; = 0.5. The domain is discretized by 17 nodes: 3
FE nodes and the rest are FF'G nodes. In Figures 6a and 6b, the numerical and exact
solutions are compared for F; = 10* and E, = 10°. In Figure 7, the £3- and H!-error

norms are plotted as a function of h (h = h/8, h/4, h/2 and h, where h = 0.125) on
a log-log plot. The convergence rates for u and ¢ are 2.51 and 0.96, respectively.
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Figure 6: Comparison of numerical and exact solution for F; = 10%, E, = 107,

zs = 0.5 (Example 3). (a) Displacement; (b) Strain
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Figure 7: Rate of convergence for £; and H' error norms



2 Two-Dimensional Problem

2.1 Bi-material Boundary-Value Problem

In Figure 8a, a body (x € R?) composed of two different materials (bi-material) is
shown. The material properties are constants in £; and 5, but there is a disconti-
nuity in the material constants across the interface I'y (r = r;). The Lame constants
in )y are chosen as: Ay = 497.16, p; = 390.63, while those in £, are: Ay = 656.79,
po2 = 338.35. These correspond to £; = 1000, v; = 0.28, and Ky = 900, v, = 0.33.

2.2 Boundary Conditions and Exact Solution

We impose the linear displacement field: w; = zy, up = 23 (u, = r, upg = 0 in polar
coordinates) on the boundary I';. The Navier’s equation in polar coordinates reduces
to (u, = u,(r), ug = 0):

dr

By considering displacement and traction continuity across the interface, the exact

L [ )] =0, 9)

displacement solution can be written as

{( —f—;>a—|—R—;}r, 0<r<m

(T_R72>Q+RT27 ri<r<R (10)
Uy =
where
(M 4+ + ,UQ)RQ
(A2 + p2)ri + (M 4 pa)(R? = rf) + pa R?

The radial (¢,,) and hoop (eg4g) strains are given by

(11)

o =

1-E)a+ B, 0<r <y

s
e l—l—f—;2 a—f—j, rin<r<R
(12)
(1—15—?2)@%—];—;, 0<r<r
s (1—T—22>0z—|—]§—;, ri<r<R
The radial (o,,) and hoop (ogg) stresses are:
Orr = 208 + MErr + €06) 5 (13)

oog = 2pea9 + AErr + €06)

where the appropriate Lame constants are to be used in the evaluation of the stresses.
The shear components of the stress and strain tensors are zero.
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2.3 Numerical Solution

Due to symmetry, one-quarter of the domain is modeled. The domain is discretized
using 257 nodes: 67 F'E nodes (on the boundary and along the interface r = r;)
and 190 FF(G nodes (Figure 8b). Numerical integration is carried out using 4 x 4
Gauss quadrature; quartic polynomial weight function with d,,,, = 4.0 is used. Due
to axi-symmetry, results are presented as a function of r along § = 0°. In Figure 9,
the exact and numerical solutions for u, and ugs are shown. The comparisons for the
radial strain ¢,, and hoop strain gy are presented in Figures 10a and 10b, while those
for the radial stress o,, and hoop stress ogg are shown in Figures 11a and 11b.
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Figure 8: Bimaterial boundary-value problem. (a) Domain and BCs; (b) Nodal
discretization
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Figure 11: Radial and hoop stresses. (a) o,,; (b) ogg
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