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1 Modeling Crack Singularities in FEM/X-FEM

In this section, we first present a brief overview of the different approaches used to
model stress singularities in finite elements, with particular attention to cracks in
isotropic and bimaterial media. Then, we indicate the enrichment functions to be
used in the X-FEM to model an interface crack. These enrichment functions span the
asymptotic crack-tip fields (see the Appendix) for a crack at the interface between
two isotropic linear elastic materials.

1.1 Crack-tip elements in FEM

1.1.1 Isotropic media

In linear elastic fracture mechanics (LEFM), the stresses and strains are inverse
square-root singular at the crack-tip. In other words, the stresses and strains vary as
r−1/2 in the vicinity of the crack-tip, where r is the radial distance from the crack-tip,
i.e. σij ∼ r−λ, where λ = 1/2 is the exponent. In order to accurately compute fracture
parameters such as the stress intensity factor, the eight-node quarter-point element as
well as the six-node (collapsed quadrilateral) quarter-point element were introduced
(Henshell and Shaw 1975; Barsoum 1976; Barsoum 1977). The quarter-point element
introduces the r−1/2 behavior in the strains and stresses in the crack-tip element.
Efforts have also been made to embed arbitrary-order singularities (r−λ, 0 < λ < 1)
in the vicinity of the crack-tip (Akin 1976; Benzley 1974; Tracey and Cook 1977;
Gifford and Hilton 1978; Stern 1979; Hughes and Stern 1980). We now introduce
some preliminaries regarding differential geometric considerations and then present
the conditions under which singularities in the displacement-derivatives may arise
within the finite element method.

Typically, in Galerkin finite elements, the concept of isoparametric mapping is
used—both the geometry and the dependent variable u are mapped via the same
interpolation (shape) functions from the reference (parent) space ξ to the physical
space x. Consider the mapping x : ¤ → Ω shown in Figure 1 for an isoparametric
eight-node quadrilateral element:

x = x(ξ) =
8∑

i=1

Ni(ξ)xi , (1)

where x ≡ (x, y), ξ ≡ (ξ, η), and the shape functions Ni(ξ, η) for the eight-node
serendipity element are given in Barsoum (1976).

By virtue of the isoparametric assumption, we can represent the displacement
(dependent variable) u, where u ≡ (u, v), by a similar equation to that given in
Eq. (1):

u(ξ) =
8∑

i=1

Ni(ξ)ui . (2)
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Now, by the chain rule of differentiation, we can relate the derivatives of u (similar
expressions for v too) in the parent element to that in the physical element by

∂u

∂ξ
=

∂u

∂x

∂x

∂ξ
+
∂u

∂y

∂y

∂ξ
, (3)

which can be written in compact form as
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where [J] is the Jacobian of the transformation given in Eq. (1). Since we need the
Cartesian derivatives of u, on inverting the above equation, we obtain
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. (5)

From Eq. (5), it is evident that the singularity in the displacement derivatives at
the crack-tip may be introduced in one of three ways:

1. [J] is singular at the crack-tip. This implies a singularity in the Jacobian of
the geometric transformation x = x(ξ) given in Eq. (1), i.e., det J = 0 at
the crack-tip. This approach is used in the quarter-point element (Henshell
and Shaw 1975; Barsoum 1976), in which the mid-side node in a eight-node
quadrilateral (or six-noded triangular) element is moved to the quarter-position
(Figure 2).

2. The partial derivatives ∂u
∂ξ

and ∂u
∂η

are singular. This corresponds to the intro-

duction of shape functions Ni(ξ, η) that have singular derivatives with respect
to (ξ, η) (Akin 1976; Tracey and Cook 1977; Benzley 1974; Stern 1979).

3. Both [J] as well as ∂u
∂ξ
, ∂u

∂η
are singular.

It should be borne in mind that the element shape functions derived for any of the
above cases must satisfy the following properties:

• Inter-element (geometric) compatibility.

• Displacement continuity, and

• Ability to represent rigid-body and constant strain modes.

A particularly attractive feature of standard eight-node isoparametric (non-singular)
elements is that they satisfy the above convergence criteria, and in addition also pass
the patch test (Zienkiewicz 1971). Thus, the quarter-point element is widely used in
linear elastic fracture computations with the finite element method.
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1.1.2 Bimaterial media

For cracks in bimaterial media, the problem of a crack normal (and impinging) to
a bimaterial interface and that of an interface crack are of particular importance.
For a bimaterial with a crack perpendicular to the interface, the near-tip stress field
is of the form σij ∼ r−λ (0 < λ < 1) (Zak and Williams 1963; Cook and Erdogan
1972), where the exponent λ is given by the solution of a transcendental equation
(Zak and Williams 1963) and is dependent on the Dundurs parameters α and β (see
the Appendix). To model this behavior within finite elements, special singular finite
elements have been proposed (Akin 1976; Tracey and Cook 1977; Stern 1979; Hughes
and Stern 1980); however, these approaches require significant changes in existing
finite element codes. Abdi and Valentin (1989) generalized the idea of quarter-point
elements for modeling a r−λ stress-singularity, and improvements on this technique
with respect to the optimal positioning of nodes have been recently proposed (Lim
and Lee 1995; Yavari et al. 1999).

As opposed to the bimaterial crack that is normal to the interface, the inter-
face crack between two elastic layers is of greater technological relevance—stemming
from its significance in failure (debonding) along interfaces in bimaterial systems.
The stress singularity in the vicinity of the crack-tip of a bimaterial interface crack
is oscillatory in nature, along with the presence of an inverse

√
r-singularity, i.e,

σ22 + iσ11 ∼ r−1/2eiε log r (Rice 1988) (see the Appendix too). The oscillatory com-
ponent introduces significant complexity in an element formulation, and hence the
incorporation of the full radial dependence of the crack-tip displacement field has not
been pursued within a classical finite element framework. Typically, for bimaterial
interface crack problems, non-singular or quarter-point isoparametric elements are
adopted in fracture computations (Shih and Asaro 1988; Matos et al. 1989; Nahta
and Moran 1993).

1.2 Bimaterial interface cracks in the X-FEM

In the extended finite element method (X-FEM) (Moës et al. 1999; Daux et al. 2000),
special functions are added to the finite element approximation using the notion
of partition of unity (Melenk and Babuška 1996). For crack modeling in isotropic
linear elasticity, a discontinuous function and the two-dimensional asymptotic crack-
tip displacement fields are used to account for the crack. This enables the domain
to be modeled by finite elements without explicitly meshing the crack surfaces, and
hence quasi-static or fatigue crack propagation simulations can be carried out without
remeshing.

The partition of unity framework satisfies two important properties which renders
it as a powerful tool for local enrichment within a finite element setting:

1. means to include basis functions to better approximate the solution; and

2. automatic enforcement of continuity (conforming trial and test approximations)
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The above properties provide a means to include and represent any function through
the finite element approximation. Hence the relative ease by which different types
of singularities (cracks in isotropic and bimaterial media) can be modeled. For in-
stance, the modeling of a crack normal to a bimaterial interface using the X-FEM
was introduced in Huang et al. (2002).

Consider a single crack in 2-dimensions. Let Γc be the crack surface (interior) and
Λc the crack tip—the closure Γ̄c = Γc∪Λc. The enriched displacement (trial and test)
approximation for 2-d crack modeling is of the form (Moës et al. 1999):

uh(x) =
∑

I∈N

NI(x)









uI +H(x)aI
︸ ︷︷ ︸

I ∈NΓ

+
4∑

α=1

Φα(x)b
α
I

︸ ︷︷ ︸

I ∈NΛ









, (6)

where uI is the nodal displacement vector associated with the continuous part of the
finite element solution, aI is the nodal enriched degree of freedom vector associated
with the Heaviside (discontinuous) function, and bα

I is the nodal enriched degree
of freedom vector associated with the asymptotic crack-tip functions. In the above
equation, N is the set of all nodes in the mesh; NΓ is the set of nodes whose shape
function support is cut by the crack interior Γc; and NΛ is the set of nodes whose
shape function support is cut by the crack tip Λc (NΓ ∩NΛ = ∅):

NΛ = {nK : nK ∈ N , ω̄K ∩ Λc 6= ∅}, (7)

NΓ = {nJ : nJ ∈ N , ωJ ∩ Γc 6= ∅, nJ 6∈ NΛ}. (8)

For further details on the parameters and nodal sets that appear in the above equa-
tion, see Sukumar and Prévost (2002).

1.2.1 Bimaterial interface crack

The bimaterial interface crack problem is illustrated in Figure 3. The Cartesian com-
ponents of the near-tip asymptotic displacement fields are indicated in the Appendix.
In order to model the interface crack within the X-FEM setting, we propose to use
the generalized Heaviside functions H(x) to model the crack interior (Γc), and the
asymptotic crack-tip functions [Φα(x), α = 1–12] to model the crack-tip (Λc) for an
interface crack. These functions must span the near-tip displacement field given in



N. Sukumar: 09/20/02 5

Eq. (11). From Eq. (11), we can write the near-tip crack enrichment functions as:

[Φα(x), α = 1–12] = {√r cos(ε log r)e−2εθ sin θ
2
,
√
r cos(ε log r)e−2εθ cos

θ

2
,

√
r cos(ε log r) sin

θ

2
,
√
r cos(ε log r) cos

θ

2
,

√
r cos(ε log r) sin

θ

2
sin θ,

√
r cos(ε log r) cos

θ

2
sin θ, (9)

√
r sin(ε log r)e−2εθ sin

θ

2
,
√
r sin(ε log r)e−2εθ cos

θ

2
,

√
r sin(ε log r) sin

θ

2
,
√
r sin(ε log r) cos

θ

2
,

√
r sin(ε log r) sin

θ

2
sin θ,

√
r sin(ε log r) cos

θ

2
sin θ},

where r and θ are polar coordinates in the local crack-tip coordinate system. The
above functions span the displacement field given in the Appendix.

If the bimaterial constant ε = 0 (isotropic material), the enrichment function
reduces to

[Φα(x), α = 1–4] =

[√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

]

(10)

which is the near-tip enrichment function used in the X-FEM to model a crack in
isotropic media (Moës et al. 1999).

The complexity and nonlinear nature of the enrichment functions in Eq. (9) require
additional care in the X-FEM implementation. Notably, the following issues might
need to be addressed:

• Linear independence of the enrichment functions (locally within an element) so
that a well-conditioned and non-singular stiffness matrix is obtained.

• Order of quadrature required to carry out the accurate numerical integration of
the bilinear form.

• Solving some benchmark interface crack problems to ascertain if these enrich-
ment functions do provide a substantial improvement over classical FEM to
compute K∗

I and K∗
II .
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Figure 2: Quadrilateral quarter-point element.
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APPENDIX

The crack-tip displacement fields in the upper-half plane (replace επ by −επ for the
lower-half plane) for a bimaterial interface crack (Figure 3) are given in Rice (1988):

ui =
1

2µi

√
r

2π

{
Re[Kriε]ũI

i (θ, ε, ν1) + Im[Kriε]ũII
i (θ, ε, ν1)

}
(i = x, y), (11)

where the universal angular functions are indicated below (derived by Dr. Zhenyu

Huang):
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In the equations for the displacement field, α and β are the Dundurs parameters
(Dundurs 1969) and ε is the bimaterial constant:

α =
µ1(κ2 + 1)− µ2(κ1 + 1)

µ1(κ2 + 1) + µ2(κ1 + 1)
, β =

µ1(κ2 − 1)− µ2(κ1 − 1)

µ1(κ2 + 1) + µ2(κ1 + 1)
, (12a)

ε =
1

2π
log

(
1− β

1 + β

)

, (12b)

κi =







3− νi
1 + νi

(plane stress)

3− 4νi (plane strain)
, (12c)

where µi and νi are the shear modulus and the Poisson’s ratio, respectively, of material
i (i = 1, 2).
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Figure 3: Bimaterial interface crack.


