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Abstract

Quantum mechanical calculations require the repeated solution of a Schrödinger equation for the
wavefunctions of the system, from which materials properties follow. Recent work has shown
the effectiveness of enriched finite element type Galerkin methods at significantly reducing the
degrees of freedom required to obtain accurate solutions. However, time to solution has been ad-
versely affected by the need to solve a generalized rather than standard eigenvalue problem and the
ill-conditioning of associated system matrices. In this work, we address both issues by proposing
a stable and efficient orbital-enriched partition of unity method to solve the Schrödinger boundary-
value problem in a parallelepiped unit cell subject to Bloch-periodic boundary conditions. In
the proposed partition of unity method, the three-dimensional domain is covered by overlapping
patches, with a compactly-supported weight function associated with each patch. A key ingredient
in our approach is the use of non-negative weight functions that possess the flat-top property, i.e.,
each weight function is identically equal to unity over some finite subset of its support. This flat-
top property provides a pathway to devise a stable approximation over the whole domain. On each
patch, we use p-th degree orthogonal (Legendre) polynomials that ensure p-th order completeness,
and in addition include eigenfunctions of the radial Schrödinger equation. Furthermore, we adopt
a variational lumping approach to construct a (block-)diagonal overlap matrix that yields a stan-
dard eigenvalue problem for which there exist efficient eigensolvers. The accuracy, stability, and
efficiency of the proposed method is demonstrated for the Schrödinger equation with a harmonic
potential as well as a localized Gaussian potential. We show that the proposed approach delivers
optimal rates of convergence in the energy, and the use of orbital enrichment significantly reduces
the number of degrees of freedom for a given desired accuracy in the energy eigenvalues while the
stability of the enriched approach is fully maintained.
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1. Introduction

The Kohn–Sham (KS) equations of density functional theory (DFT) are the dominant theo-
retical formulation in quantum mechanical simulations of condensed matter (solids and liquids).
The KS equations require the repeated solution of the steady-state Schrödinger and Poisson equa-
tions on a parallelepiped unit cell with Bloch-periodic boundary conditions [1]. The solution of
the Schrödinger equation is the most time-consuming part in KS-DFT calculations. The current
state-of-the-art approach to solve the equations of KS-DFT is the planewave (PW) pseudopotential
method that uses a Fourier basis set, and requires the solution of a discrete standard eigenproblem.
It has been appreciated in recent years that enriched Galerkin methods [2–13] can be very com-
petitive with PW methods in attaining the desired accuracy with comparable or far fewer degrees
of freedom (basis functions). While early formulations [2, 6, 7, 10] employed direct enrichment,
more recent approaches have employed discontinuous Galerkin [3, 4, 11] or partition of unity finite
element [2, 5, 9, 13] formulations in order to strictly localize orbital enrichments, thus facilitating
flexible approximation and efficient parallel implementation. In [5] it was shown that an enriched
partition of unity finite element method (PUFEM) [14, 15] requires an order of magnitude fewer
basis functions than current state-of-the-art PW based methods to attain the desired 1 mHa/atom
accuracy in total energy calculations. However, the ill-conditioning of the resulting system matri-
ces and the need to solve a generalized rather than standard eigenvalue problem were key issues
identified as adversely affecting time to solution in practice. In this work, we use a flat-top partition
of unity method (PUM) [16–18] to address these issues in the approximation of the Schrödinger
equation. Our flat-top PUM produces well-conditioned system (Hamiltonian and overlap) matri-
ces and yields a standard eigenvalue problem via variational lumping. The approximation quality
of our flat-top PUM is comparable to that reported in [2], but it overcomes the two main short-
comings of the PUFEM that arise in the solution of the Schrödinger eigenproblem. In addition to
the electronic Schrödinger equation, the flat-top PUM with Bloch boundary conditions also holds
promise in areas such as acoustic scattering [19], elastodynamics [20] and electromagnetics [21],
where large-scale eigenproblems are solved and useful a priori information is available.

In condensed matter calculations, the Schrödinger equation is solved in a unit cell (paral-
lelepiped domain Ω) subject to Bloch-periodic boundary conditions (see Figure 1). In the flat-top
partition of unity method, the domain Ω is covered by overlapping patches (see Figure 2) and
each patch i is associated with a weight function ϕi(x) with support ωi such that

∑
i ϕi(x) = 1 and

ϕi(x) ≡ 1 on ωFT
i ⊂ ωi (see Figure 3). The local basis set Vi on each patch consists of polynomials

and/or non-polynomial (orbital enrichment) functions, and the global approximation is formed by
linear combinations of the products of ϕi(x) and functions from Vi. We perform local orthogonal-
ization to ensure that all functions on a patch are linearly independent and thereby obtain global
stability [17], and adopt the variational lumping scheme [18] to realize a standard eigenproblem.

The remainder of the paper is organized as follows. In the next section, we state the strong
and weak forms of the Schrödinger eigenproblem. In Section 3, we introduce the partition of
unity method, where we present the proposed flat-top PUM in Section 3.1. The key steps in
the local orthogonalization procedure to construct a stable global approximation are discussed
in Section 3.2, and we describe the variational lumping scheme in Section 3.3. Numerical examples
for the Schrödinger equation are presented in Section 4, where we show that the system matrices
are well-conditioned and that the use of orbital-enrichment provides a very efficient solution vis-
à-vis solely using polynomials over each patch. In addition, we also provide comparisons in the
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eigenspectrum when using the consistent overlap matrix versus the lumped overlap matrix, and
the results reveal that the variational lumping scheme does not adversely affect the accuracy of the
energy eigenvalues. We close with a few concluding remarks in Section 5.

2. The Schrödinger eigenproblem

The stationary Schrödinger equation reads as

Hψ(x) B −
1
2
∇2ψ(x) + Veff(x)ψ(x) = εψ(x) in Ω. (1)

We consider a parallelepiped unit-cell Ω ⊂ R3 with primitive lattice vectors ad (d = 1, 2, 3) to
describe a periodic condensed matter system (see Figure 1). Thus, the effective potential and the
charge density are periodic, i.e., they satisfy

Veff(x + R) = Veff(x), ρ(x + R) = ρ(x), (2)

whereas the solution of Schrödinger’s equation ψ, the so-called wavefunction, satisfies Bloch’s
theorem

ψ(x + R) = ψ(x) exp(ik · R) (3)

for any lattice translation vector R = n1a1 +n2a2 +n3a3 with nd ∈ Z (d = 1, 2, 3) and wavevector k.
Note that for k = 0 (Γ-point) the wavefunction is also periodic whereas for all other wavevectors
there is a phase-shift exp(ik · R) associated with a translation by R. In this situation the general
problem (1) becomes

−1
2∇

2ψ(x) + Veff(x)ψ(x) = εψ(x) in Ω,
ψ(x + ad) = exp(ik · ad)ψ(x) on Γd,

∇ψ(x + ad) · n̂(x) = exp(ik · ad)∇ψ(x) · n̂(x) on Γd,
(4)

where (ψ, ε) denotes an eigenpair consisting of the respective wavefunction ψ and its associated
energy ε, n̂(x) is the outward unit normal at x and Γd are the bounding faces of the domain Ω,
see Figure 1. Even though the boundary conditions and thus the wavefunction are complex-valued,
the eigenvalues ε ∈ R due to the self-adjointness of the HamiltonianH .

In this paper, we are concerned with the numerical approximation of (4) by Galerkin methods
and thus need to rewrite (4) in its respective weak form. To this end, we consider the function
space

V B {v ∈ H1(Ω,C) : v(x + ad) = v(x) exp(ik · ad) on Γd, d = 1, 2, 3} (5)

and test (4) with v ∈ V to obtain

a(v, ψ) = ε〈v, ψ〉L2(Ω,C) for all v ∈ V (6)

with

a(v, ψ) B
∫

Ω

(
1
2
∇v(x) · ∇ψ(x) + v(x)Veff(x)ψ(x)

)
dx (7)

and
〈v, ψ〉L2(Ω,C) B

∫
Ω

v(x)ψ(x) dx (8)
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Figure 1: Sketch of a parallelepiped unit cell Ω spanned by primitive lattice vectors ad with respective boundary
segments Γd (d = 1, 2, 3).

after integration by parts [2]. Thus, choosing a finite-dimensional space VM ⊂ V with basis
functions φi to discretize (6) we obtain the generalized eigenproblem

Hψ̃ = εS ψ̃, (9)

where H = (Hi j) ∈ CM×M denotes the discrete Hamiltonian and S = (S i j) ∈ CM×M is the so-called
overlap (or consistent mass) matrix

Hi j B a(φ j, φi), and S i j B 〈φ j, φi〉L2(Ω,C). (10)

The approximate eigenfunction ψ ∈ VM is given by

ψ(x) B
M∑

i=1

ψiφi(x), (11)

where ψ̃ = (ψi) ∈ CM denotes the associated coefficient vector. Throughout this paper we employ
a particular partition of unity method [16, 22, 23] to construct the respective finite-dimensional
space VM and its basis functions φi.

3. Partition of unity method

The partition of unity method (PUM) is a generalization of the finite element method (FEM)
that is typically employed for the spatial discretization of a partial differential equation (PDE), see
for example [24, 25]. The notion of a PUM was coined in [14, 15] and is based on the special
FEM developed in [26]. The abstract ingredients of a PUM are a partition of unity (PU) {ϕi : i =

1, . . . ,N} and a collection of local approximation spaces Vi(ωi) B span〈ϑm
i 〉

dim(Vi)
m=1 defined on the

patches ωi B supp(ϕi) for i = 1, . . . ,N which overlap and whose union covers the computational
domain Ω ⊂ Rd. With these two ingredients we define the PUM space

VPU B
N∑

i=1

ϕiVi = span〈ϕiϑ
m
i 〉; (12)

that is, the basis functions of a PUM space are simply defined as the products of the PU functions
ϕi and the local approximation functions ϑm

i . The PU functions provide the locality and global
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regularity of the product functions whereas the functions ϑm
i equip VPU with its approximation

power. Note that the local approximation spaces Vi can be chosen in a problem-dependent fashion
and are independent of each other, i.e., any local basis ϑm

i may be employed on any patch ωi. In
general the local approximation space Vi B span〈ϑn

i 〉 associated with a particular patch ωi of a
PUM space VPU consists of two parts: A smooth approximation space, for example polynomials
VPi (ωi) B span〈πs

i 〉, and a problem-dependent enrichment part VEi (ωi) B span〈ψt
i〉, i.e.,

span〈ϑn
i 〉 = Vi(ωi) = VPi (ωi) + VEi (ωi) = span〈πs

i , ψ
t
i〉. (13)

Note that the general convergence theory of the PUM [14, 15], which is also the basis for the
approximation results for the PUFEM, allows one to obtain some straightforward error bounds for
this enriched approach. To this end, let us consider the following estimate from [18].

Theorem 1. Let Ω ⊂ RD be a Lipschitz domain. Let {ϕi : i = 1, . . . ,N} be an admissible non-
negative partition of unity defined on patches ωi := supp(ϕi). Let us further introduce the covering
index λCΩ

: Ω→ N such that

λCΩ
(x) := card({ωi ∈ CΩ : x ∈ ωi}) (14)

and let us assume that
λCΩ

(x) ≤ Λ ∈ N for all x ∈ Ω (15)

with Λ independent of the number of patches N. Let a collection of local approximation spaces
Vi = span〈ϑm

i 〉 ⊂ H1(ωi) be given. Let f ∈ H1(Ω) be the function to be approximated. Assume that
the local approximation spaces Vi have the following approximation properties: On each patch
Ω ∩ ωi, the function f can be approximated by a function vi ∈ Vi such that

‖ f − vi‖L2(Ω∩ωi) ≤ ε̂i, and ‖∇( f − vi)‖L2(Ω∩ωi) ≤ ε̃i (16)

hold for all i = 1, . . . ,N. Then the function

v :=
N∑

i=1

ϕivi ∈ VPU ⊂ H1(Ω)

satisfies the global estimates

‖ f − v‖L2(Ω) ≤

( N∑
i=1

‖ϕi‖L∞(Rd)ε̂
2
i

)1/2

, (17)

‖∇( f − v)‖L2(Ω) ≤
√

2
( N∑

i=1

Λ
(
‖∇ϕi‖L∞(Rd)ε̂i

)2
+ ‖ϕi‖L∞(Rd)ε̃

2
i

)1/2

. (18)

Assuming sufficient (local) regularity of the solution f on a patch ωi and polynomial complete-
ness of at least order p of the spaces Vi, the error bounds (16) take the form

‖ f − vi‖L2(Ω∩ωi) ≤ Chp+1
i , and ‖∇( f − vi)‖L2(Ω∩ωi) ≤ Chp

i (19)
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Figure 2: Schematic of a sequence of uniformly refined covers which come from the scaling of uniform grid cells in
two dimensions. Depicted is a single cover patch ωi =

∏d
l=1(ol

i −αh, ol
i +αh) (gray) with 2h = 1/4, 1/8, 1/16 (left to right)

and its center oi.

with hi � diam(ωi), which corresponds to the classical convergence behavior of higher-order FEM.
When we employ highly suitable enrichment spaces Ei ⊂ Vi, however, the local bounds (16) are
typically of the form

‖ f − vi‖L2(Ω∩ωi) ≤ C exp(− f0(dim(Vi),D)), and ‖∇( f − vi)‖L2(Ω∩ωi) ≤ C exp(− f1(dim(Vi),D)), (20)

which indicate spectral convergence with respect to the number of employed enrichment func-
tions.

For the ease of notation, we make the following conventions. For an arbitrary function u ∈ VPU

with the representation

u(x) =

N∑
i=1

dim(Vi)∑
m=1

um
i ϕi(x)ϑm

i (x) =

N∑
i=1

ϕi(x)
dim(Vi)∑

m=1

um
i ϑ

m
i (x) =:

N∑
i=1

ϕi(x)ui(x)

we denote its associated overall coefficient vector by

ũ = (u(i,m)) ∈ Rdim(VPU) with dim(VPU) B
N∑

i=1

dim(Vi).

3.1. Flat-top partition of unity
The main difference between our PUM approach [22, 27] and most other generalized or ex-

tended FEM techniques, compare [24, 25], is that we employ a so-called flat-top PU instead of
classical linear Lagrange FE functions, compare Figure 3. For the construction of such a flat-top
PU let us first define a cover CΩ B {ωi} of the domain Ω with the help of a uniform regular mesh
of mesh-width 2h by an isotropic scaling of the mesh-cells

Ci =

d∏
l=1

(ol
i − h, ol

i + h),
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Figure 3: Partition of unity comprised of linear FE functions (left) and a flat-top PU (right) in one dimension.
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Figure 4: Comparison of one-dimensional flat-top PU weight functions for Dirichlet or Neumann boundary conditions
(left) and periodic boundary conditions (right). To realize periodic weight functions we copy patchesωi withωi∩∂Ω ,
∅ periodically (see also Figure 5 and [23]).
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Figure 5: Schematic of the implementation of the periodicity of a PU function ϕi (23) associated with a patch ωi (red)
by generalization of the notion of neighboring or overlapping patches ωi ∩ ω j , ∅ (green) at the boundary ∂Ω via
periodic copies of patches ωi ∩ ∂Ω , ∅ (red), see [23] for details.
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i.e., we define the patches ωi as

ωi B
d∏

l=1

(ol
i − αh, ol

i + αh), with α > 1, (21)

see Figure 2. To obtain a PU on a cover CΩ with N B card(CΩ) we define a weight function
Wi : Ω→ R with supp(Wi) = ωi for each cover patch ωi by

Wi(x) =

{
W◦ Ti(x), x ∈ ωi

0, otherwise (22)

with the affine transforms Ti : ωi → [−1, 1]d andW : [−1, 1]d → R any non-negative compactly
supported function, such as a B-spline. By normalizing these weight functions we obtain the
functions

ϕi(x) B
Wi(x)∑

l∈Ci
Wl(x)

, (23)

where we define the local neighborhood Ci B {l : ωl ∩ ωi , ∅} of a patch ωi in a slightly more
general way to account for the required periodicity of the basis functions, see Figures 4 and 5.
To impose Bloch-periodic boundary conditions, we multiply the entries of the resulting system
matrices in matrix blocks that correspond to Bloch-boundary patches with the appropriate Bloch
phase factor. This results in a periodic PU and Bloch-periodic basis, analogous to the procedure
in [2]. Note that the PU (23) is non-negative since the employed weight functions are non-negative
and that the ϕi satisfy the flat-top property for any α ∈ (1, 2), see [28, 29]. Due to this construction
we can easily control the overlap of the patches and thereby the size of the flat-top region by the
parameter α ∈ (1, 2). Note that for α = 1 our PUM degenerates to a discontinuous Galerkin
approach whereas with the choice of α = 2 and linear B-spline weights in (22) our PUM yields the
PUFEM.

3.2. Orbital enrichment and stability
The approximation power of an enriched PUM is mostly obtained by the choice of high quality

enrichment spaces VE (enrichment functions ψt
i) on the patches ωi for the problem at hand. For

instance, generalized harmonic polynomials or local spaces based on planewaves have been em-
ployed successfully for smooth problems in [14, 30, 31], whereas for crack propagation problems
the use of discontinuous and singular enrichment functions is appropriate, see e.g. [25, 32, 33].
In the context of the Schrödinger and Poisson equations of Kohn–Sham density functional theory,
enrichment functions ψt

i constructed from isolated-atom solutions were employed in [5, 9, 10], as
in previous work [2] in the context of model densities and potentials. Our general flat-top PUM
allows for the use of arbitrary problem-dependent enrichment functions and thus we anticipate that
our PUM has essentially the same convergence properties as for example the PUFEM of [2, 5, 10]
when we employ the same enrichment functions, compare Theorem 1. In the case of our eigen-
value problem, this means that we expect an optimal convergence rate of O(h2p) for the energy
eigenvalues, where p is the polynomial degree.

The fundamental difference of our approach from the PUFEM of [2, 5, 10] is that we employ
a flat-top PU [17, 27, 34] to overcome the two major challenges encountered in the PUFEM: ill-
conditioning of the overlap matrix and the need for the solution of a generalized eigenproblem.
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Let us first consider the ill-conditioning of the overlap matrix, i.e., the L2-stability of (12),
which can be encountered in all enriched approximations [24, 25, 35–37]. For the smooth space VPi
in (13) we employ a local basis πs

i on ωi, i.e., πs
i = ps◦Ti and {ps} denotes a stable basis on [−1, 1]d,

for instance Legendre-polynomials. The enrichment functions ψt
i however are often given as global

functions ηt on the computational domain Ω since they are designed to capture special behavior of
the global solution at a particular location. Therefore, the restrictions ψt

i B ηt|ωi of the enrichment
functions ηt to a particular patchωi may be ill-conditioned or even linearly dependent onωi, even if
the enrichment functions ηt are well-conditioned on the global domain. Furthermore, the coupling
between the spaces VPi and VEi on the patch ωi must be considered. The set of functions {πs

i , ψ
t
i}

will degenerate from being a basis of Vi to yielding a generating system if the restricted enrichment
functions ψt

i = ηt|ωi can be well-approximated by polynomials πs
i on the patch ωi. Moreover, in

the general case when (12) employs an arbitrary non-flat-top PU, e.g., a PU built from FE, we
also need to consider the interactions of the overlapping local approximation spaces Vi and V j (13)
on neighboring patches ωi ∩ ω j , ∅ which essentially introduces global constraints and therefore
renders the use of an arbitrary non-flat-top PU computationally infeasible. If we, however, restrict
ourselves to the use of a flat-top PU, all issues that may result in ill-conditioning can be efficiently
resolved solely on the local patches ωi, see [17] for further details.

To obtain a stable basis of VPU for arbitrary local approximation spaces Vi with a flat-top PU
{ϕi}, we essentially need to be able to identify a local enrichment space VDi such that we can
rewrite (13) as

Vi = VPi + VEi = VPi ⊕ VDi .

To this end, we choose an inner product on the patch ωi and construct VDi such that VPi ⊥ VDi
holds. The respective stability transformation

P : VPU =

N∑
i=1

ϕi(VPi + VEi )→
N∑

i=1

ϕi(VPi ⊕ VDi ) (24)

can in fact be computed efficiently on-the-fly by partial orthogonalization with respect to the cho-
sen inner product and only involves local operations on the patches [17]. The particular stability
transformation on a patch ωi depends on the choice of the inner product and works in four steps
starting from a local matrix

Mi =

(
Mi;P,P Mi;P,E

Mi;E,P Mi;E,E

)
arising from Gram matrix of all basis functions πs

i of VPi and ψt
i of VEi in the chosen inner prod-

uct. First, all basis functions of VPi and VEi are scaled appropriately with respect to the employed
inner product, so that the induced norm of all functions is identical. Then, we compute eigen-
value decompositions of Mi;P,P and Mi;E,E individually and use thresholding of small eigenvalues
to eliminate any instabilities within VPi and VEi , so that we can transform Mi to obtain the form

M(1)
i =

(
IP M(1)

i;P,E

M(1)
i;E,P IE

)
.

Then, the overlap of the two spaces VPi and VEi is removed by partial orthogonalization (Schur
complement) which yields

M(2)
i =

(
IP 0
0 M(2)

i;D,D

)
.
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Thus, with the help of an eigenvalue decomposition of M(2)
i;D,D we obtain an orthonormal basis of

Vi with respect to the employed inner product. And so the problem of ill-conditioning which is
encountered in PUFEM can be resolved in a flat-top PUM while fully maintaining the improved
approximation quality due to enrichment.

3.3. Variational mass lumping
The second drawback of the PUFEM identified in [5] is related to the fact that the Galerkin

discretization of (4) yields a Hermitian generalized eigenproblem (9) where H and S are in gen-
eral sparse but not diagonal matrices, which renders the solution of (9) more challenging since the
computation of S −1 is implicitly required, i.e., one effectively needs to solve the standard eigen-
problem

S −1Hũ = εũ.

In the context of classical (linear) FEM one therefore often replaces the overlap (or consistent
mass) matrix S by an approximation S̄ whose inverse S̄ −1 can be computed much more efficiently,
e.g., if S̄ is diagonal, by so-called mass-lumping [38–40]. Various constructions for S̄ exist in the
FEM context [41], yet these approaches are in general not directly applicable to a PUM or any
enriched approximation scheme due to the non-polynomial and non-interpolatory character of the
employed basis functions.

Fortunately, there is a natural and rather simple approach to the construction of an appropriate
approximation of the overlap matrix for the PUM in general [18]. It is applicable to any non-
negative PU {ϕi} and arbitrary local approximation spaces (13) (e.g., higher order polynomials,
discontinuous, and singular enrichments) and utilizes only the special product structure of the
PUM basis functions ϕiϑ

n
i .

To introduce this variational lumping scheme for our PUM, recall that the consistent overlap
matrix is given by

S = (S (i,n),( j,m)), S (i,n),( j,m) = 〈ϕ jϑ
m
j , ϕiϑ

n
i 〉L2(Ω,C), (25)

where our flat-top PU functions ϕi and ϕ j are non-negative. Thus, the entries of the overlap matrix
are given by the inner products in L2(Ω,C) of our PUM basis functions. In [18] it was shown
that the global L2(Ω,C) inner product in (25) can be replaced by local weighted L2(ωi,C;ϕi) inner
products without diminishing the global convergence behavior, since there holds the equivalence

〈 f , ϕiϑ
n
i 〉L2(Ω,C) =

∫
Ω

fϕiϑ
n
i dx =

∫
Ω∩ωi

fϕiϑ
n
i dx =: 〈 f , ϑn

i 〉L2(Ω∩ωi,C;ϕi)

for an arbitrary function f ∈ L2(Ω,C). With the help of these local inner products, we therefore
obtain an approximate overlap matrix

S̄ = (S̄ (i,n),( j,m)), S̄ (i,n),( j,m) =

{
0 i , j

〈ϑm
i , ϑ

n
i 〉L2(Ω∩ωi,C;ϕi) i = j (26)

which is block-diagonal and symmetric positive definite for any choice of the local approximation
spaces Vi, see [18] for further details. Therefore, an approximate solution of (9) can be obtained
very efficiently via

Hũ = εS̄ ũ. (27)

In fact, choosing the local weighted L2(ωi,C;ϕi) inner products also in the stability transforma-
tion (24) yields S̄ = I, so that (27) becomes Hũ = εũ and the expensive solution of the generalized
eigenproblem encountered in the PUFEM can be completely circumvented in our flat-top PUM.
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4. Numerical results

In this section we present some numerical results obtained with our flat-top PUM. We consider
two benchmark problems defined on three-dimensional unit cells [2] to validate our implementa-
tion and assess the accuracy and efficiency in terms of the degrees of freedom (DOFs) of the flat-top
PUM with respect to the Schrödinger eigenproblem with periodic and Bloch-periodic boundary
conditions. The two main objects of interest of our study, however, are the conditioning of the
consistent and lumped overlap matrices (before and after the stabilization (24)) and the effect our
lumping scheme (26) has on the quality of the approximation. Our implementation is parallelized
using MPI, as the flat-top PUM is straightforward to parallelize on distributed memory machines
[22, 27]. However, since absolute runtime is not the focus of this study, we employed a simple
tensor-product 6 × 6 × 6 Gauß integration rule on subdivided cover cells [16, 22].

4.1. Three-dimensional quantum harmonic oscillator
As in [2], the first benchmark problem we consider is the Schrödinger equation (4) with har-

monic potential

V (|x − τ|) =
|x − τ|2

2
, (28)

under periodic boundary conditions (k = 0). Note that this potential itself is not periodic. As our
unit cell Ω, we take a cuboid cell with primitive lattice vectors a1 B a(1, 0, 0), a2 B a(0, 1.1, 0)
and a3 B a(0, 0, 1.2). As lattice parameter we choose a = 5 au and the potential center is given by
τ B a1+a2+a3

2 .
On each patch, the polynomial approximation space VPi contains Legendre polynomials up to

total degree p = 1, 2, 3, while the enrichment space VEi consists of periodic lattice sums of the
infinite box eigenfunctions ψ′nlm(x) = Rnl(r)Ylm(θ, φ),

ψnlm =
∑

R

ψ′nlm(|x − τ − R|), (29)

over lattice translation vectors R = i1a1 + i2a2 + i3a3, to enrich each of the ten lowest states. Here,
Ylm are the analytically given spherical harmonics and Rnl is the radial part of the eigenfunction,
which is obtained by solving the radial Schrödinger equation [2]. Thus, the radial components
are given numerically, i.e., at discrete points. To ensure a compact support of Rnl we multiply its
discrete values by a C3 cut-off function [2]

h(r, r0) B

 1 +
20r7

r7
0

−
70r6

r6
0

+
84r5

r5
0

−
35r4

r4
0

, r ≤ r0

0, r > r0

, (30)

where we choose r0 = 6 au. The resulting product is then interpolated by a quintic spline.
For our numerical experiments, we measure the absolute error of the computed eigenvalues

with respect to a cubic finite element reference solution, computed on a 64 × 64 × 64 mesh which
is accurate to 7 digits (and yields λref

1 = 1.4917524 Ha and
∑10

i=1 λ
ref
i = 29.7715084 Ha).

First, we assess the accuracy of the consistent method. To this end, we first apply our flat-top
PUM with linear, quadratic and cubic polynomial spaces on uniformly refined covers without any
orbital enrichment. As stretch factor (21) we choose α = 1.1. Here, we anticipate that the flat-top
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τ τ τ

Figure 6: Sketch of refinement by increasing the enrichment radius re in two dimensions. We only enrich a patch if
its center point lies within the ball of radius re centered at the potential center τ. Here, this ball and enriched patches
are colored in red. Depicted are three different values for re: 0.0 au (left), 1.0 au (center) and 2.5 au (right) on a 7 × 7
cover.

PUM converges with rates that are comparable to classical finite element methods of the respective
order, compare Theorem 1. Then, we use a fixed uniform cover and use enriched local approxi-
mation spaces, where we increase the enrichment support radius from 0 to 4 au (see Figure 6). In
the first case we do not use any enrichments at all, in the latter we enrich each patch whose center
lies within the support radius of the enrichment center τ. The results are shown in Figure 7. From
the depicted plots we can see that the convergence behavior of the non-enriched method is just
as expected, while it is also evident that using enrichment functions is very beneficial in terms of
accuracy: significantly less than 500 DOFs (e.g., 320 DOFs with linear polynomials on a 4× 4× 4
cover and 297 DOFs with quadratic polynomials on a 3 × 3 × 3 cover) yield an error of less than
10−3 Ha, which is a typical requirement in quantum mechanical calculations. Apart from reducing
DOFs, enrichment also reduces the overall wall clock time of the method: in our experiments, the
computation (including setup, assembling of matrices and solving the EVP) on a 3 × 3 × 3 cover
with quadratic polynomials, a single enrichment function for the lowest eigenvalue and an enrich-
ment support radius of 4 au took 7.03 seconds on 8 cores, while the non-enriched computation
with quadratic polynomials on a 16× 16× 16 cover took 192.67 seconds on 8 cores. Both methods
yield about the same absolute error for the lowest eigenvalue λ1 (see Figure 7), in both cases less
than 10−3 Ha. Note that there is a distinct difference in the PUM functions ϕiϑ

m
i on even (e.g.,

4 × 4 × 4) and odd (e.g., 3 × 3 × 3) covers. In the odd case, the potential center is located within
the flat-top region of a single patch whereas for the even case τ is contained in the overlap of eight
neighboring patches. Thus, the results summarized in Figure 7 show that our approach is also fully
robust with respect to the relative position of τ.

To properly evaluate the benefits of the lumped method, we first conduct the same experiment
as above, only this time using a lumped overlap matrix and summarize the results in Figure 9.
We observe that the convergence behavior is practically identical to that of the consistent method,
however, with a slightly larger absolute error. Apart from being almost as accurate as the con-
sistent method, using the lumped overlap matrix has its own benefits: First of all we can reduce
the generalized eigenproblem (9) to a standard eigenproblem as described in Section 3.3, which
saves a lot of computational time, especially for larger problems (see Figure 8). In the context of
self-consistent Kohn–Sham calculations this is especially important, as it enables the use of highly
efficient algorithms to refine eigenvectors in each self-consistent-field iteration [11, 42]. Compu-
tational time for the overall method is also again saved by using enrichment functions: while the
computation on a 16×16×16 cover using quadratic polynomials without enrichments took 151.78
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Figure 7: Convergence history of the lowest eigenvalue λ1 for the harmonic oscillator potential (28) obtained for dif-
ferent refinement schemes. We consider a purely polynomial approximation (p = 1, 2, 3) on a sequence of uniformly
refined covers, which shows the expected 2p-convergence rates (see Section 3.2). Furthermore, we consider a refine-
ment by increasing the enrichment radius (compare Figure 6) with a single enrichment function on a fixed uniform
cover (top: 3× 3× 3, 7× 7× 7; bottom: 4× 4× 4, 8× 8× 8) that is labeled by p = 1, 2, 3 + e ↑ re and where we observe
spectral convergence. All results were obtained with the consistent overlap matrix.
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Figure 8: Wall clock time measured for the solution of the generalized and standard eigenproblems for the harmonic
oscillator potential (28), using the default SLEPc eigenvalue solver, polynomials of degree p = 1, 2, 3 and ten enrich-
ments on an n× n× n cover. For the smaller problems (left), the data plots are split up by polynomial degree, while for
the larger problems (right) all data points are combined in one plot, sorted by number of DOFs (left: n = 3, 4, 5, 6, 7, 8
on 16 cores; right: n = 4, 8, 16, 32 on 64 cores). The method is parallelized using MPI and the timings were obtained
on Intelr Xeonr CPU E5-2650 v2 @ 2.6GHz nodes with 16 cores each (left: one node, right: four nodes).

seconds on 8 cores, almost the same absolute error for the lowest eigenvalue λ1 was achieved by
using a 3 × 3 × 3 cover with quadratic polynomials, a single enrichment function for the lowest
eigenvalue and an enrichment support radius of 4 au in 5.87 seconds on 8 cores.

Furthermore, we can overcome the problem of large condition numbers that arises in the
PUFEM [5] using the stable transformation introduced in Section 3.2. The measured condition
numbers for both consistent and lumped overlap matrices are displayed before and after applying
the stable transformation (24) in Table 1. Here we see that for both types of overlap matrices,
the condition number deteriorates quickly with increasing enrichment support radius without our

Table 1: Measured condition numbers with and without stabilization (24) with respect to the local weighted L2 inner
product L2(ωi,C;ϕi) for the consistent and the lumped overlap matrix obtained with p = 3 on a 7 × 7 × 7 uniform
cover for increasing enrichment radius re and ten enrichment functions per enriched patch.

consistent overlap matrix lumped overlap matrix

re DOFs without (24) with (24) without (24) with (24)

0.0 6,860 4 · 103 7 · 102 6 · 101 1 · 100

0.5 6,870 2 · 1011 9 · 102 8 · 1010 1 · 100

1.0 6,930 4 · 1011 2 · 103 9 · 1010 1 · 100

1.5 7,150 5 · 1011 3 · 103 9 · 1010 1 · 100

2.0 7,590 6 · 1011 5 · 103 1 · 1011 1 · 100

2.5 8,270 1 · 1012 4 · 103 2 · 1011 1 · 100

3.0 9,090 2 · 1012 5 · 103 4 · 1011 1 · 100

3.5 9,890 6 · 1013 5 · 103 7 · 1012 1 · 100

4.0 10,210 3 · 1014 5 · 103 2 · 1013 1 · 100
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Figure 9: Convergence history of the lowest eigenvalue λ1 for the harmonic oscillator potential (28) obtained for dif-
ferent refinement schemes. We consider a purely polynomial approximation (p = 1, 2, 3) on a sequence of uniformly
refined covers, which shows the expected 2p-convergence rates (see Section 3.2). Furthermore, we consider a refine-
ment by increasing the enrichment radius (compare Figure 6) with a single enrichment function on a fixed uniform
cover (top: 3× 3× 3, 7× 7× 7; bottom: 4× 4× 4, 8× 8× 8) that is labeled by p = 1, 2, 3 + e ↑ re and where we observe
spectral convergence. All results were obtained with the lumped overlap matrix.

15



(a) α = 1.1 (b) α = 1.2 (c) α = 1.3

Figure 10: Convergence history of the sum of the ten lowest eigenvalues for the harmonic oscillator potential (28) ob-
tained for different values of α = 1.1, 1.2, 1.3 (left to right) on uniformly refined covers with ten enrichment functions
employed on every patch ωi with a lumped overlap matrix. The dashed line indicates the accuracy of the employed
reference solution.

stabilization (24). The same observation was made in [5] for the PUFEM. However, after applying
the stable transformation, we can dramatically reduce the condition number to the range of classi-
cal FE overlap matrices for the consistent case. Combining the stabilization (24) with our lumping
approach (26) yields the optimal behavior S̄ = I so that (27) becomes a well-conditioned stan-
dard eigenproblem. Thus, our flat-top PUM overcomes the two main drawbacks of the PUFEM
and enables the stable use of enrichment functions on every patch and arbitrary potentials so that
high-fidelity approximations can be attained with extremely small numbers of DOFs in a robust
fashion. For example, the PUFEM employed in [2] yields an accuracy of 10−3 Ha for this example
with 948 DOFs using enriched cubic FE where the condition number of the overlap matrix is of the
order O(1011) whereas our flat-top PUM with stability transform and lumping using a comparable
setup provides an error of 5 · 10−3 Ha with 810 DOFs and an optimal condition number of 1 for the
lumped overlap matrix.

Lastly, we examine the influence of the flat-top region on the eigenvalue convergence with
the lumped overlap matrix. To this end, we consider various values of the stretch factor (21)
α = 1.1, 1.2, 1.3. Figure 10 shows the convergence of the sum of the ten lowest eigenvalues for
different values of α. For these tests, we enrich each of the ten lowest states on every patch of our
cover and use the stability transform (24). From the depicted plots it becomes clear that lumping
provides better results for smaller stretch factors α. The absolute value of the error grows with
increasing α as well as the pre-asymptotic range of the convergence behavior. For fine enough
covers, i.e., in the asymptotic range, the convergence behavior is very much in agreement with the
consistent scheme. These observations can be explained by the structure of the error introduced by
the lumping scheme [18]. Recall that our PUM degenerates to a DG approach with α = 1 and that
the lumped mass matrix converges to the consistent matrix for α → 1. Thus, it is expected that
the approximation quality of the computed eigenvalues will improve with smaller α. The a priori
determination of an optimal stretch factor α for a particular choice of the cover and employed local
approximation spaces Vi, however, is the subject of current research. Note also that the influence
of α on the results essentially holds only in the pre-asymptotic regime since an approximation
obtained with the lumped mass matrix converges to the same limit as the approximations obtained
via the consistent mass matrix for all values of α [18].
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4.2. Gaussian potential
As our second benchmark problem, we consider a periodic Gaussian potential [2]. This external

potential is defined via
V(x) =

∑
R

Vg(|x − τ − R|), (31)

with

Vg(r) = −10 exp
(
−

r2

2.25

)
, (32)

where we sum over the lattice translation vectors R = i1a1 + i2a2 + i3a3, id = −2, . . . , 2 (d = 1, 2, 3).
The unit cell Ω and the potential center τ are defined as in Section 4.1. For this experiment,
we solve (4) subject to Bloch-periodic boundary conditions and choose k = (0.12, 0.23, 0.34)
in reciprocal lattice coordinates. We choose the same approximation spaces and stretch factor
α = 1.1 as in Section 4.1. The problem-dependent radial part Rnl of the infinite box eigenfunctions
is multiplied by h(r, 10), i.e., r0 = 10 au in (30). Also, as before, we are measuring the absolute
error with respect to a cubic finite element reference solution computed on a 64×64×64 mesh (with
λref

1 = −5.9605494576 Ha and
∑10

i=1 λ
ref
i = −26.309704717 Ha). For this example, we only show the

convergence results using a lumped overlap matrix and increasing the enrichment radius on a fixed
cover (analogous to the situation studied in Figure 9) to validate the method for Bloch-periodic
boundary conditions. The results obtained for the Gaussian potential are shown in Figure 11. As
for the harmonic oscillator example in Section 4.1, we see the expected convergence behavior of
the non-enriched methods and a significant improvement of accuracy when increasing the number
of patches that are enriched. Again, the benefits of enrichment are striking: for this particular
example, we only need as few as 135 DOFs (with linear polynomials on a 3 × 3 × 3 cover) to
achieve the desired accuracy of 10−3 Ha for the lowest state.

5. Concluding remarks

In this paper, we addressed two key issues in quantum mechanical calculations using enriched
partition of unity finite element methods: the need to solve a generalized rather than standard
eigenvalue problem, and the ill-conditioning of the associated system matrices. To address these,
we developed a stable and efficient orbital-enriched flat-top partition of unity method to solve the
required Schrödinger equation subject to Bloch-periodic boundary conditions in a general paral-
lelepiped domain. To this end, we employed a stable transformation and variational mass lumping
in a flat-top partition of unity formulation. Compared to PUFEM approaches used previously,
the present method yields well- (or even optimally-) conditioned system matrices and a standard
eigenvalue problem rather than a generalized one, while maintaining accuracy and systematic con-
vergence to benchmark results.

With the above key issues resolved, future work will focus on the incorporation of nonlocal
pseudopotentials, as occur in practical calculations involving all but the lightest elements, system-
atic determination of maximal α consistent with chemical accuracy with variational mass lumping,
and efficient numerical cubature. A corresponding implementation for the Poisson equation will
then enable full Kohn–Sham calculations.

Finally, while we have focused in the present work on Bloch-periodic boundary conditions as
appropriate for condensed matter systems, by virtue of the compact support of the PUM basis,
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Figure 11: Convergence history of the lowest eigenvalue λ1 for the periodic Gaussian potential (31) using different
refinement schemes. We consider a purely polynomial approximation (p = 1, 2, 3) on a sequence of uniformly refined
covers, which shows the expected 2p-convergence rates (see Section 3.2). Furthermore, we consider a refinement by
increasing the enrichment radius (compare Figure 6) with a single enrichment function on a fixed uniform cover (top:
3 × 3 × 3, 7 × 7 × 7; bottom: 4 × 4 × 4, 8 × 8 × 8) that is labeled by p = 1, 2, 3 + e ↑ re and where we observe spectral
convergence. All results were obtained with the lumped overlap matrix.
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vanishing Dirichlet boundary conditions are straightforward to implement [43, 44], thus opening
the way for application to isolated systems such as molecules and clusters as well.
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