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SUMMARY

In this paper, we present a numerical algorithm based on group theory and numerical optimization

to compute efficient quadrature rules for integration of bivariate polynomials over arbitrary polygons.

These quadratures have desirable properties such as positivity of weights and interiority of nodes

and can readily be used as software libraries where numerical integration within planar polygons

is required. We have used this algorithm for the construction of symmetric and non-symmetric

quadrature rules over convex and concave polygons. While in the case of symmetric quadratures

our results are comparable to available rules, the proposed algorithm has the advantage of being

flexible enough so that it can be applied to arbitrary planar regions for the integration of generalized

classes of functions. To demonstrate the efficiency of the new quadrature rules, we have tested them

for the integration of rational polygonal shape functions over a regular hexagon. For a relative error

of 10−8 in the computation of stiffness matrix entries, one needs at least 198 evaluation points when

the region is partitioned, whereas 85 points suffice with our quadrature rule. Copyright c© 2009 John

Wiley & Sons, Ltd.
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1. INTRODUCTION

With the development of increasingly more sophisticated mathematical models and

computational algorithms, numerical integration of functions in general domains in two and

higher dimensions is commonly required in fields such as engineering and the applied sciences.

Gaussian quadratures have been extensively used for numerical integration of functions where

exact integration is not possible.

Quadrature theory in one dimension is relatively complete, with Gaussian quadratures being

optimal for integration of polynomials, and their construction well understood (for example,

see References [1–3] for construction of generalized Gaussian quadratures on the interval). In

higher dimensions, however, the situation is considerably more complex. While the interval is

the only connected compact subset of R, regions of R
2 come in an infinite variety of shapes, each

with its own topological features [4]. As would be expected, one might attempt to generalize

one-dimensional quadrature rules to higher dimensions using tensor product. However, this

approach is far from optimal in terms of the number of quadrature nodes needed for achieving

a pre-selected desirable precision. It seems likely that generalized Gaussian quadratures in

higher dimensions have to be studied separately for different geometries of integration regions,

and that each region should require a different set of rules, corresponding to its own symmetry

features.

The geometry that has been studied the most extensively in two dimensions is the triangle,
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GENERALIZED GAUSSIAN QUADRATURE RULES ON ARBITRARY POLYGONS 3

since it is a standard tool for representing higher dimensional regions and surfaces. Moderate- to

high-order efficient quadrature rules have been developed for polynomials on the triangle [4–12].

However, when elements with five vertices or more are used in polygonal finite element

applications [13–16] one has to partition the element into triangular elements for the sake of

numerical integration. The partitioning of the element and use of adaptive integration schemes

increases programming complexity and computational cost.

Different techniques have been employed for the computation of quadrature rules on

polygons. For instance, moment fitting equations that contain integration of the basis functions

over the region, have been used to find quadrature rules over the triangle [7, 10]. Lyness

and Monegato [17] have used a polar variation of moment fitting equations to construct

quadrature rules over regions having the same symmetry as the regular hexagon (D6 regions).

By expressing the basis functions in polar coordinates and taking advantage of the symmetry

properties of the region, many of the moment equations are automatically satisfied and it

is possible to solve the non-linear set of equations for moderate degree quadrature rules.

They find proper quadrature rules with points inside the hexagon and positive weights for

polynomials up to order 13. This approach can be extended to other regular polygons with

different number of edges and also regions with different types of symmetry. Nooijen et al. [18]

have proposed a method in which the points of a quadrature rule are found as the common

zeros of two polynomials that satisfy certain symmetry and orthogonality requirements over

regular polygons and the corresponding weights are the solution of a linear system of equations.

The aforementioned techniques are powerful when the goal is to find symmetric quadratures,

but in the case of non-symmetric quadrature rules over non-symmetric regions, they are not

easy to implement.
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Xiao and Gimbutas [19] presented a numerical algorithm for the construction of efficient

quadrature rules that is a combination of a new point-elimination scheme with Newton’s

method. These quadratures have many desirable properties such as positivity of weights,

interiority of nodes, and different symmetry features. This algorithm was successfully applied

to the triangle and square [19]. In this paper, we use the same algorithm to construct efficient

quadrature rules for bivariate polynomials over convex and concave polygons. In case of

regular polygons, quadrature rules with different symmetry features are discussed. Although

the comparison of our results with the best available symmetric quadrature rules shows the

same or fewer number of nodes for a prescribed accuracy, the main contribution of this paper

is to introduce a flexible and general algorithm that can be used for arbitrary polygons with

generalized classes of functions that arise in meshfree, isogeometric, and enriched finite element

methods, while being efficient with respect to the number of nodes required.

The outline of the remainder of this paper is as follows. Section 2 summarizes the

mathematical preliminaries that are used in the construction of generalized Gaussian

quadratures. The algorithm for the construction of efficient quadratures is discussed in

Section 3. In Section 4.1, we present symmetric and non-symmetric quadrature rules over

regular polygons with five to eight vertices that are constructed using our algorithm. Tabulated

results for the locations and weights of the Gauss points are only provided for a regular hexagon

for orders 1 to 5. Tables showing the number of evaluation points for the obtained quadrature

rules for these regular polygons are included and comparison is made whenever a similar

quadrature is available. Section 4.2 contains some examples of moderate degree quadrature

rules over arbitrary convex and concave polygons. In Section 4.3, the computed quadrature

rules are used to integrate mass and stiffness matrix entries that arise in polygonal finite
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GENERALIZED GAUSSIAN QUADRATURE RULES ON ARBITRARY POLYGONS 5

element method with Laplace shape functions and the results are compared to numerical

integration by partitioning the polygon. Finally, a few concluding remarks are made in

Section 5.

2. MATHEMATICAL PRELIMINARIES

2.1. Quadrature rules

A quadrature is a formula of the form

∫

Ω

ω(x)f(x) dx ≈
n

∑

i=1

wif(xi), (1)

where Ω is the designated integration region, f is an integrand defined on Ω and ω is the

weight function. ω(x) = 1 is used for the quadratures designed in this paper. The points xi

are called quadrature nodes, and wi are the quadrature weights. Typically, quadratures are

designed so that (1) is exact for all functions in a pre-selected set (see (2)). Classical choices

of the pre-selected set of functions include polynomials up to a certain degree, trigonometric

functions, and basis functions of a particular function space defined on Ω. Once (2) is solved,

the resulting {xi, wi}n
i=1 form a quadrature rule for that specific domain of integration and

class of basis functions.
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Figure 1. Symmetric generators of the regular hexagon on a unit circle. (a) Identity (no symmetry)

(b) Rotational symmetry (c) Mid-edge reflection symmetry and (d) Vertex reflection symmetry.

2.2. Symmetry groups, symmetry operations and symmetric basis functions

The symmetry group G of a region Ω is the set of orthogonal linear transformations that

map Ω onto itself. For example, the regular hexagon is invariant under rotations by π
3

radians

about its center and is also invariant under a reflection about a diameter connecting two

opposite vertices. A two-dimensional region having these characteristics is sometimes known

as a D6-region [17].

Two points x1 and x2 are S-symmetrically related if there is an element s ∈ S (S ⊆ G is a

symmetry subgroup of Ω) such that x2 = sx1. The set of all points that are S-symmetrically

related with x is called the orbit of x. If a set of points contains one and only one point from

each orbit of Ω with respect to each member of symmetry subgroup S, then the set is called an

S-generator of Ω. For example, Figure 1 shows some of the S-generators of a regular hexagon.

The concept of symmetry can also be applied to function spaces and function sets. The

operation of s ∈ S on a function φ is defined as sφ(x) = φ(s−1x). For basis functions {φi}m
i=1

over a region Ω, the functions Φi defined by the formula

Φi =
∑

s∈S

sφi (3)
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GENERALIZED GAUSSIAN QUADRATURE RULES ON ARBITRARY POLYGONS 7

are S-invariant [4], i.e., invariant under all operations s ∈ S. Furthermore, Φi either vanishes

or is a non-zero basis function over the S-generator. The following example illustrates the

application of (3) for construction of basis functions over the S-generators.

Example of a symmetric basis function: Consider the monomial φ = x2, which can be used as

one of the basis functions over the regular hexagon. Also consider S, a symmetry subgroup

of regular hexagon consisting of rotations about the origin by {kπ/3}5
k=0. The S-generator of

this symmetry subgroup is shown in Figure 1b. Each element s ∈ S can be represented by the

transformation








x

y









→









cos(kπ
3

) − sin(kπ
3

)

sin(kπ
3

) cos(kπ
3

)

















x
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.

Application of (3) to φ produces Φ = 3(x2 + y2). Φ is S-invariant and can be used as a basis

function for calculation of quadrature rules on the S-generator.

The set of S-invariant orthogonal basis functions can be constructed recursively via a

Gram-Schmidt procedure starting from the set of S-invariant basis functions or be drawn

from classical results [20]. If the former method is used, symbolic software packages such as

MathematicaTM and MapleTM are well-suited to obtain the basis functions analytically. It is

noteworthy that while the total number of orthogonal bivariate basis functions up to order

d over a regular polygon is (d + 1)(d + 2)/2, one ends up with considerably fewer number of

orthogonal basis functions when rotational or reflection symmetry subgroups are used.

With the above concepts in mind, one can define a symmetric quadrature as follows. Given

the geometric region Ω and a symmetry subgroup S, the quadrature with nodes {xi}p
i=1 and

corresponding weights {wi}p
i=1 is S-symmetric if the set of the nodes is S-symmetric and all

nodes that are S-symmetrically related have the same weight. It is obvious that finding the

nodes of an S-symmetric quadrature and the corresponding weights over the S-generator is
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8 S. E. MOUSAVI, H. XIAO AND N. SUKUMAR

enough for the construction of the quadrature over the entire region.

Different symmetry operations can be imposed on the basis functions which are used to

construct the quadrature rule in order to reduce the number of moment equations that need

to be solved. However, symmetry of the quadratures is not a requirement of the algorithm

presented in this paper and it can be applied to non-symmetric regions as well.

2.3. Newton’s method

Having the orthonormal basis functions over the requisite domain of integration, (2) is a non-

linear equation that can be solved to get n nodes xi and the corresponding weights wi. Let the

vector X = (x1
1, x

2
1, ..., x

d
1, w1, ..., x

1
n, x2

n, ..., xd
n, wn)T , which contains n′ = n(d + 1) unknowns

in R
d, and {xj

i}d
j=1 are the coordinates of the i-th node. Newton’s method is a classical tool

for solving non-linear equations with the limitation that it converges quadratically only locally

for an initial guess close enough to the final solution. Once we have an appropriate initial

guess Xk, (4) is used to get a better solution Xk+1 until convergence is attained within the

acceptable error range:

Xk+1 = Xk − J†(Xk)F(Xk), (4)

where J†(Xk) is the pseudo-inverse [21] of the Jacobian J : R
n′ → R

m defined by (5) for m

basis functions and n′ degrees of freedom:

J(X) =

















∂f1

∂X1

(X) ... ∂f1

∂X
n
′

(X)

...
...

∂fm

∂X1

(X) ... ∂fm

∂X
n
′

(X)

















. (5)
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GENERALIZED GAUSSIAN QUADRATURE RULES ON ARBITRARY POLYGONS 9

For our specific case of finding quadrature rules, F is a non-linear function of the coordinates

of quadrature nodes and the corresponding weights:

F(X) =

















f1(X)

...

fm(X)

















, (6)

where each of the functions fi is defined using (2) by moving one side over and setting the

rows to zero.

3. ALGORITHM FOR CONSTRUCTION OF EFFICIENT QUADRATURES

The algorithm used in this paper is based on the observation that an n-point generalized

Gaussian quadrature may be approximated by deleting an appropriate point in an (n + 1)-

point quadrature. To be more specific, suppose that the quadrature {xi, wi}n+1
i=1 has one weight

wk = 0, then we have also obtained an n-point quadrature x1, . . . ,xk−1,xk+1, . . . ,xn+1 and

w1, . . . , wk−1, wk+1, . . . , wn+1. If none of the weights are zero, deleting any one node, which

is equivalent to setting the corresponding weight to zero, will make the quadrature only an

approximation to an accurate quadrature. However, if the approximation is close enough to a

true quadrature configuration, Newton’s method can be used to obtain an n-point quadrature.

One advantage of this method is that, with each successful convergence of Newton’s method,

a new quadrature can be found with one fewer point with respect to the previous one.

To begin this process, one has to find an initial quadrature that will integrate exactly all

polynomials up to order d on Ω. For triangles or squares, the most straightforward quadrature

can be obtained from the tensor product of one-dimensional Gaussian quadratures for the

interval. For polygons of edges greater than four, the initial quadrature may be built similarly,
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10 S. E. MOUSAVI, H. XIAO AND N. SUKUMAR

or can be built on split pieces of the integration domain. In addition, suppose that Pd denotes

all polynomials of degree up to d on Ω, it has been shown that any n = dim(Pd) nodes xi in

Ω can serve as a set of quadrature nodes if there exists a linearly independent set of bounded

functions gj , j = 1, . . . , n defined on Ω and that the matrix T = (tij) with tij = gj(xi) is

non-singular. Furthermore, quadrature weights wi can be determined by solving (2) with wi

not assuming large negative values [22].

In our study, we start with the tensor product of a one-dimensional n-point Gauss quadrature

rule and solve (2) iteratively for the orthonormal basis functions until we get a desirable result,

referred to as the corrected tensor product, which can serve as an initial quadrature. Since

n is chosen large enough so that we have a large number of redundant degrees of freedom,

Newton’s method converges in a few iterations. After computing the initial quadrature, the

following matrix is formed:

Aj,k =
√

wkφj(xk), j = 1, ...,m and k = 1, ..., nd (7)

with {xk, wk} being the quadrature nodes and weights and φj are the orthonormal basis

functions. The inner product of rows i and j of A (∀i, j = 1, ..., m) gives the inner product

of the corresponding orthonormal basis functions over the prescribed configurations. Knowing

that the basis functions are already orthogonalized with respect to each other, one finds that

A has orthonormal rows. Since there are m linearly independent basis functions, there are at

least m columns that are linearly independent and correspond to the selection of m nodes in

Ω. We start our node elimination process with only m nodes of the quadrature whose related

columns are the most orthogonal with each other instead of the whole initial rule, thereby

reducing the required computational effort.
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GENERALIZED GAUSSIAN QUADRATURE RULES ON ARBITRARY POLYGONS 11

What remains is to generate quadratures with reduced number of nodes one by one, until

Newton’s method does not converge anymore. The efficiency of a quadrature rule can be

evaluated considering the lower bound on the number of points required by a quadrature rule

of polynomial degree d for any two dimensional region given by (d/2 + 1)(d/2 + 2)/2 [23]

for even d. It is also proved that for odd degrees of polynomials d = 2k + 1, the number of

evaluation points are more than or equal to the rule for degree d = 2k.

We tend to eliminate the nodes that are outside the domain or have negative weights first so

that the resulting quadrature is proper, namely all nodes are inside the domain and all weights

are positive. Non-negative weights lend stability to the quadrature rule by preventing round-off

errors [24]. Xiao and Gimbutas [19] introduce a significance index for each quadrature node

(see (8)) that can be considered as a measure of contribution of the node in the evaluation of

the integral over the domain. If there are no nodes outside the domain, then the one with the

least significance is eliminated. The significance index of node j is defined as

sj = wj

n
∑

i=1

φ2
i (xj). (8)

In our algorithm negative weights are not allowed; however if negative weights are permitted,

then it’s conceivable that a different node elimination criteria can be used.

The numerical algorithm can be summarized as follows:

1. Find an initial quadrature {xi, wi} for the region of integration Ω, the class of basis

functions φj and the appropriate weight function ω(x) that satisfies (2).

2. Eliminate one of the nodes (e.g., the one with the minimum significance factor).

3. Solve (2) iteratively until convergence is attained. The resulting quadrature now has

one fewer node than the initial one. Continue the above elimination procedure until no
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12 S. E. MOUSAVI, H. XIAO AND N. SUKUMAR

additional node can be removed (i.e., Newton iterations do not converge). This is the

final quadrature rule.

4. NUMERICAL RESULTS

4.1. Moderate degree quadratures over regular polygons

We limit the numerical results to the construction of generalized Gaussian quadrature rules

on two-dimensional planar polygons, but the numerical algorithm presented in Section 3 is

general and can be applied to polytopes in higher dimensions as well.

Since the geometry of regular polygons is known beforehand, we broke down the process of

computing efficient quadrature rules over regular polygons into two stages: first, finding the

orthonormal basis functions over different symmetric generators and then implementing node

elimination algorithm using the appropriate set of basis functions and a proper choice of initial

quadrature. The accuracy of orthogonality of the basis functions has a significant effect on the

stability of the node elimination algorithm and the accuracy of the resulting quadratures. The

first stage is implemented in Maple, which is capable of carrying out symbolic calculations

exactly for a configuration like hexagon. The numerical algorithm for computing quadratures

and the node elimination process is implemented in MATLABTM. The entire node elimination

process for quadratures with orders lower than five takes a few seconds and for order five and

higher, takes a few minutes on a Linux workstation.

The node elimination algorithm discussed in Section 3 proves to be very heuristic in the

sense that the choice of initial quadrature and manipulation of initial and intermediate ones

can result in very distinct final quadratures with different number of nodes, nodal coordinates
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GENERALIZED GAUSSIAN QUADRATURE RULES ON ARBITRARY POLYGONS 13

and weights. Some choices of initial quadratures may end up with quadrature nodes outside the

domain or with negative weights. In some cases we managed to perturb an improper quadrature

by changing the coordinates and weights of some of its nodes and obtain a proper rule by

solving (4) again. In cases where such a remedy could not be found, the best intermediate

quadrature with the fewest number of nodes was chosen as the final rule. At the end, a final

tuning of the obtained quadratures is performed in Maple with higher precision arithmetic to

ensure the correctness of all the digits of the quadrature rules that are reported herein.

Table I shows the obtained number of nodes for the quadratures up to order 10 over regular

polygons with five, six, seven and eight edges (non-symmetric quadratures). The lower bound

of numx is also provided. In all cases the number of evaluation points are equal or very

close to the lower bound. Symmetric quadratures tend to need more evaluation points for a

specific geometry and polynomial degree than non-symmetric ones. Unfortunately the authors

could not find similar non-symmetric rules to compare with. Table II shows similar results

for the hexagon for different symmetric generators for bivariate polynomials up to order

20. A comparison is made with the best available symmetric quadrature rules (Lyness and

Monegato [17]) over the hexagon, which reveals that our algorithm is capable of producing

the same quadrature rules. However, our symmetric quadrature rules over the hexagon have

fewer number of evaluation points compared to those obtained by Nooijen et al. [18] for the

same kind of symmetry. Table III shows quadrature rules for the entire hexagon (no symmetry)

that can integrate polynomials up to order d (d = 1, 2, ...5). All the nodes are inside the domain

and all the weights are positive. As a measure of accuracy of the obtained quadratures, we

have tested them on all monomials of type xiyj , where i + j ≤ d and exact integration is

also available. The error reported in Table III is the maximum absolute error of integration of
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14 S. E. MOUSAVI, H. XIAO AND N. SUKUMAR

all the binomials with the given quadrature rule. Although the quadratures reported here are

accurate only up to 16 decimal places, more accurate quadratures (with 32 correct digits or

more) are also computed and available. Figures 2a and 2b show the choice of initial quadrature

and the final quadrature on the hexagon for polynomials of order 10. The initial quadrature

is a 11 × 11 tensor product and the final quadrature has 23 nodes. Figures 2c to 2h show

quadrature rules of order 10 for different symmetric generators of the hexagon and Figures 3a

to 3f show non-symmetric quadrature rules of order 10 for polygons with five, seven and eight

edges, respectively. All quadrature rules of order up to 10 over regular polygons with five to

eight number of edges (in case of hexagon, with the mentioned symmetry types) are computed

and available upon request, but not included in this paper for brevity.

4.2. Lower degree quadrature rules over convex and concave polygons

Sommariva and Vianello [25] have used Green’s integral formula to produce Gauss-like

quadrature rules that can integrate high-order bivariate polynomials exactly. These quadrature

rules can be used for convex and concave polygons, but it is not guaranteed that the integration

points always fall inside the polygon, and furthermore the resulting quadrature rules require a

relatively large number of nodes (e.g., hundreds of integration points for an accuracy of order

ten) to compensate for the arbitrariness of the integration domain. The algorithm that we

present in this paper has the flexibility of being applicable to arbitrary polygons, while at the

same time achieves near minimal number of integration points.

Since symmetry of the integration domain is not a requirement of the node elimination

algorithm, we illustrate its versatility by constructing quadrature rules on convex and concave

polygons. In Figure 4, we present quadrature rules over sample convex polygons with five to
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GENERALIZED GAUSSIAN QUADRATURE RULES ON ARBITRARY POLYGONS 15

eight number of edges and for polynomial degrees 3, 5, and 7. We also constructed quadrature

rules of orders 3, 5 and 7 over concave polygons, and the quadrature rules on a concave hexagon

are shown in Figure 5.

4.3. Application in polygonal finite element methods

Laplace shape functions are used in polygonal finite element methods and have many desirable

properties such as partition of unity, linear completeness and compact support [14]. Figure 6

shows Laplace shape function plots for a node of a regular hexagon. To compute the mass

and stiffness matrix entries in Galerkin finite element methods, the product of these shape

functions or their derivatives must be integrated over the element. Since these shape functions

are non-polynomial, higher-order quadrature rules are needed to obtain sufficient accuracy.

Traditionally, one partitions the element and applies quadrature rules over each triangle to

carry out the integration [14]. Application of quadrature rules over the polygonal element

allows us to use a simple quadrature rule over the entire domain and hence significantly

reduces the number of evaluation points.

In Figure 7, convergence curves for computing some of the mass and stiffness matrix entries

over the regular hexagon (Ω0) are presented. Shape functions φ1 and φ2 correspond to adjacent

nodes of the hexagon. The exact (reference) values are calculated by partitioning the hexagon

and using a very high-order quadrature rule (1600 evaluation points) over each triangle. The

accuracy of our quadrature rules on Ω0 are compared to those obtained by partitioning Ω0 into

triangles and using quadrature rules within each triangle [10]. In Reference [14], 150 evaluation

points are used over the hexagon to compute stiffness matrix entries. As seen in Figure 7,

for a relative error of 10−8 one needs 150 evaluation points for mass matrix entries and 198
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16 S. E. MOUSAVI, H. XIAO AND N. SUKUMAR

points for stiffness matrix entries when integration is done by partitioning, with quadrature

rules of orders 10 and 12 being used over each triangle, respectively. On using our symmetric

quadrature rules over the hexagon, only 72 and 85 points are needed for the mass and stiffness

matrix entries, respectively, to realize the same accuracy.

5. CONCLUSIONS

We presented an algorithm based on numerical optimization for construction of efficient

quadrature rules in 2D. This algorithm was combined with group theory to produce symmetric

quadrature rules. The resulting quadratures have the desirable properties of interiority of

nodes and positivity of weights. The algorithm was successfully applied to regular polygons

with five to eight number of edges for bivariate polynomials of order up to ten. Efficient

symmetric quadrature rules of higher-orders such as 15, 18 and 20 were also constructed.

These quadrature rules were used to compute mass and stiffness matrix entries in polygonal

finite element methods—for a relative error of 10−8 in the computation of stiffness matrix

entries, at least 198 evaluation points are needed when the region is partitioned, whereas with

our quadrature rules 85 points suffice.

Quadrature rules on regular polygons can be presented as software libraries and readily used

in codes where integration over polygons is needed [13–16,26]. The node elimination algorithm

is very flexible, and to illustrate its benefits, quadrature rules on convex and concave polygons

were also presented. Even though the numerical tests that we have conducted have led to

convergence to proper quadratures, it is noteworthy to point out that the node elimination

algorithm is heuristic, and we do not have a formal proof for the existence of quadrature rules

with nodes that lie within the polygon and have positive weights. Our results motivate further
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studies in this direction, and more broadly on generalized quadrature rules for non-polynomial

basis functions on triangles [27] and other polygons.
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Table I. Total number of nodes for quadratures up to degree d on polygons with five, six, seven and

eight edges (no symmetry). S5: pentagon, S6: hexagon, S7: heptagon and S8: octagon.

d
Lower bound Obtained numx

of numx [23] S5 S6 S7 S8

1 1 1 1 1 1

2 3 3 3 3 3

3 3 4 4 4 4

4 6 6 6 6 6

5 6 7 7 7 7

6 10 11 11 11 11

7 10 13 12 13 12

8 15 16 16 16 17

9 15 19 19 19 19

10 21 23 23 23 24
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Table II. Total number of nodes for quadratures up to degree d on the hexagon with different symmetric

generators. S6: no symmetry, S1

6 : rotational symmetry, S2

6 : reflective symmetry with symmetry line

passing through mid-edges and S3

6 : reflective symmetry with symmetry line passing through vertices.

d
Lower bound Obtained numx Lyness and Monegato [17]

of numx [23] S6 S1
6 S2

6 S3
6 S1

6

1 1 1 1 1 1 1

2 3 3 6a 3 3 6

3 3 4 6 4 4 6

4 6 6 7 6 6 7

5 6 7 7 7 7 7

6 10 11 13 11 11 13

7 10 12 13 12 12 13

8 15 16 19 17 17 19

9 15 19 19 18 18 19

10 21 23 25 23 23 25

15 36 NAb 48 NA NA 48

18 55 NA 72 NA NA NA

20 66 NA 85 NA NA NA

a A quadrature rule of an even order d = 2k over the region S1
6 can be used for integration

of all polynomials up to order d = 2k + 1, because when the rotational symmetric operator is

applied to basis functions of odd degrees over the hexagon, they all vanish.

b Not attempted/available.
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Table III: Quadrature rules for the hexagon (no symmetry).

x-coordinate y-coordinate weight

order = 1, numx = 1, error = 5.97e-17

1 0.0000000000000000 0.0000000000000000 2.5980762113533159

order = 2, numx = 3, error = 1.59e-16

1 0.2686575045336940 -0.3589294778141325 1.3222874367783018

2 0.1779347781296624 0.7136132934950594 0.7224217676333652

3 -0.8742595671808975 -0.0739506280226420 0.5533670069416488

order = 3, numx = 4, error = 7.99e-17

1 -0.4562707436715773 -0.4567445192965681 0.6493135361102734

2 0.4562707436715773 0.4567445192965681 0.6493135361102734

3 -0.4566000219291868 0.4561263961895862 0.6497245695663845

4 0.4566000219291868 -0.4561263961895862 0.6497245695663845

order = 4, numx = 6, error = 6.10e-17

1 0.1717991689435392 0.6956751460412101 0.4417308013268524

2 -0.5190713023807637 -0.4865907901660747 0.4510230266576520

3 0.3397944106084456 -0.7780183709464641 0.2483537023160909

4 0.2109699927914922 -0.1105536634395474 0.7489043557284364

5 -0.6031425679675883 0.3543492206502724 0.4732558293048105

6 0.8572062700472260 0.0872308295970980 0.2348084960194733

order = 5, numx = 7, error = 2.40e-16

Continued on next page
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Table III – continued from previous page

x-coordinate y-coordinate weight

1 0.0000000000000000 0.0000000000000000 0.6649837921916225

2 -0.7363417206023289 -0.1334199029395605 0.3221820698602822

3 0.2526258349850509 0.7044005873777404 0.3221820698602822

4 0.4837158856172780 -0.5709806844381799 0.3221820698602822

5 -0.4837158856172780 0.5709806844381799 0.3221820698602822

6 -0.2526258349850509 -0.7044005873777404 0.3221820698602822

7 0.7363417206023289 0.1334199029395605 0.3221820698602822
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Figure 2. Quadrature rules of degree 10 over the hexagon. Left: Corrected tensor product; and right:

final quadrature rule. (a) and (b) No symmetry; (c) and (d) Rotational symmetry; (e) and (f) Mid-edge

reflection symmetry; and (g) and (h) Vertex-reflection symmetry.
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Figure 3. Quadrature rules of degree 10, no symmetry. Left: Corrected tensor product; and right: final

quadrature rule. (a) and (b) Regular pentagon; (c) and (d) Regular heptagon; and (e) and (f) Regular

octagon.
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Figure 4. Quadrature rules for convex polygons with five to eight edges. (a-d) Degree three, (e-h)

Degree five and (i-l) Degree seven.
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Figure 5. Quadrature rules for a concave hexagon. (a) Degree three, (b) Degree five and (c) Degree

seven.
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1
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Figure 6. Laplace shape functions on a regular hexagon. (a) φ1 (contour plot); and (b) φ1 (3D plot).
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Figure 7. Relative error curves for integration using symmetric quadrature rules on hexagon and

partitioning. (a) and (b) Mass matrix entries; and (c) and (d) Stiffness matrix entries.
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