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Abstract For an integrand with a 1/r vertex singular-
ity, the Duffy transformation from a triangle (pyramid)

to a square (cube) provides an accurate and efficient

technique to evaluate the integral. In this paper, we gen-
eralize the Duffy transformation to power singularities

of the form p(x)/rα, where p is a trivariate polynomial

and α > 0 is the strength of the singularity. We use the
map (u, v, w) → (x, y, z) : x = uβ , y = xv, z = xw, and

judiciously choose β to accurately estimate the integral.

For α = 1, the Duffy transformation (β = 1) is optimal,

whereas if α 6= 1, we show that there are other values
of β that prove to be substantially better. Numerical

tests in two and three dimensions are presented that re-

veal the improved accuracy of the new transformation.
Higher-order partition of unity finite element solutions

for the Laplace equation with a derivative singularity

at a re-entrant corner are presented to demonstrate the
benefits of using the generalized Duffy transformation.

Keywords weakly singular integrand · numerical
quadrature · partition of unity enrichment · FEM ·
BEM.

1 Introduction

Elliptic boundary-value problems can admit solutions
u ∼ rλ (0 < λ < 1) with derivative singularities—

Laplace equation in a domain with a re-entrant cor-

ner or when there is an abrupt change in the bound-
ary condition (Dirichlet to Neumann) [1,2]; problems in

elasticity such as analysis of plates with sharp notches
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and cracks [3], wedge-shaped bimaterials [4, 5], crack
impinging a bimaterial interface [6], and bimaterial in-

terfacial cracks [7] are well-known examples. In the nu-

merical treatment of such problems with the bound-
ary element and enriched finite element methods, the

numerical integration of weakly singular integrands of

O
(

1/rα
)

arises where 0 < α < n in R
n. The devel-

opment of meshfree [8] and partition of unity finite el-

ement methods [9] for modeling singularities—cracks

in isotropic media (λ = 1/2) [10–13], strong and weak

singularities for a crack perpendicular to a bimaterial
interface [14], complete sliding contact [15], HRR crack-

tip fields with λ = 1/(n+ 1) (n is the hardening expo-

nent) [16], hydraulic fracture (λ = 1/2, 2/3) [17, 18],
and parametric enrichment for singular problems (λ is

itself a parameter, which is obtained through optimiza-

tion in the solution procedure) [19]—underscores the
need to develop accurate numerical integration schemes

to compute weak form integrals, which provides the im-

petus for pursuing this contribution.

The use of standard integration techniques such as

Gauss-Legendre quadrature rules to evaluate singular

integrands has its limitations, both, from the accuracy
and cost perspectives. Extrapolation techniques [20–23]

construct more accurate integration formulae based on

asymptotic error expansions of standard quadratures,

whereas in adaptive subdivision scheme [24,25] the inte-
gration domain is subdivided into uniform/nonuniform

subdomains and well-known integration rules are used

over the subdomains. Klees [26] shows that for weakly
singular integrands, extrapolation and adaptive subdi-

vision techniques behave poorly in terms of both accu-

racy and efficiency.

Variable transformation methods (also referred as

cancelation schemes) to numerically integrate weakly

singular integrands are well-established in the litera-
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Fig. 1 Duffy transformation from (a) the standard triangle to
(b) the unit square.

ture [27–33]. The main idea in this approach is to map

the physical domain to a parent domain so that the

singularity is removed through the introduction of the
Jacobian. Among the transformation techniques, the

so-called Duffy transformation has found wide appeal.

The Duffy transformation [28] from a triangle (pyra-
mid) to a square (cube) is: (u, v, w) → (x, y, z): x = u,

y = xv = uv, z = xw = uw, which eliminates singulari-

ties of the type 1/r (see Fig. 1). The mapped kernel over

the square (cube) is smooth enough and can be inte-
grated within a desired accuracy using a tensor-product

Gauss quadrature rule. When the singularity falls inside

an element, then the element can be divided into trian-
gles in R

2 (pyramids in R
3) with the singularity lying

at a vertex of the subdivisions and the transformation

can be applied to each subdomain separately.

As noted by Monegato and Scuderi [34], though at-
tributed to Duffy, the above transformation in two di-

mensions was proposed earlier by Fairweather et al. [35]

to numerically integrate a 1/r vertex singularity over a

triangle. For the two-dimensional integral considered
by Duffy [28], the integrand had a u−1/2 term and

therefore Gauss-Jacobi quadrature rule was used in the

u-direction, and Gauss quadrature in the v-direction.
However, in most boundary element and finite element

applications, it is more convenient to adopt standard

Gauss quadrature in all directions. The Duffy trans-
formation has been used for the integration of stiffness

matrix entries with singular finite element shape func-

tion derivatives [36–40]. The Duffy transformation has

also been applied within boundary element and finite
element methods: applications in Stokes flow [41], wave

scattering and Helmholtz equation [42–44], and quan-

tum mechanical density-functional calculations [45–48]
to name a few.

Many recent studies have tackled the issue of numer-

ical integration of singularities within partition of unity

finite element methods [49–53]. Laborde et al. [49] tri-

angulate the element with the singularity inside it so

that the source point lies at a vertex of a triangle and
then the Duffy transformation (though not mentioned

in Reference [49]) is applied to integrate singular func-

tions over the triangle. This technique proves to be more

accurate and has a better convergence rate than stan-
dard Gauss quadrature.

Other types of mappings have also been employed

for different classes of functions and singularities. For
example, Nagarajan and Mukherjee [32] use a polar

mapping (ρ, θ) → (x, y): x = ρ cos2 θ, y = ρ sin2 θ,

which transforms a master triangular element to a square
element and as a result the 1/r singularity is removed.

Park et al. [53] generalize this transformation to three-

dimensional tetrahedral elements and use it to integrate

singular enrichment bases for crack problems within the
generalized finite element method. The main advantage

of this mapping is in the integration of terms such as

f(x)/r, where f is a homogeneous function. This per-
mits integration with respect to r to be carried out

algebraically and the multiple integral in two (three)

dimensions is reduced to a line (surface) integral, which
permits machine-precision accuracy to be realized [32].

If f is non-homogeneous, the accuracy and efficiency

of this technique is significantly reduced [53]. Béchet et

al. [50] present a series of transformations in two di-
mensions, which eventually cancels 1/rα singularities,

but as they point out, their mapping does not readily

extend to three dimensional domains.
Even though the Duffy transformation works very

well for 1/r singularity, it is not as efficient for 1/rα

when α 6= 1. For partition of unity finite element ap-
plications with corners or cracks, the integrand in the

stiffness matrix may consist of terms with singularities

α < 1 and α ≥ 1. The aim of this paper is to present

a generalization of the Duffy transformation that can
provide improved accuracy for integrating vertex sin-

gularities within two- and three-dimensional domains.

In Section 2, we introduce the generalized transforma-
tion, and in Section 3, we compare its performance with

the Duffy transformation. Numerical studies on the ac-

curacy and convergence rate of the new transformation
are presented in Sections 3.1–3.3. In Section 3.4, appli-

cation to the Laplace equation with a re-entrant corner

is presented, where the rate of convergence in strain en-

ergy is studied for finite element (FE) and higher-order
partition of unity finite element (PUFE) methods. We

close with the main findings and a few final remarks

in Section 4.

2 Formulation

A generalization of the Duffy transformation is pro-

posed: (u, v, w) → (x, y, z): x = uβ , y = xvγ = uβvγ ,
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z = xwζ = uβwζ , where β, γ and ζ are selected so that
the transformed kernel is as smooth as possible and

can be integrated with the fewest number of evaluation

points. This transformation maps the standard pyra-

mid with vertices at (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1)
and (1, 1, 1) to a unit cube [28]. Equation (1) shows the

calculation of the integral in three dimensions after the

transformation:

I =

∫ 1

0

dx

∫ x

0

dy

∫ x

0

dz
f(x, y, z)

(x2 + y2 + z2)α/2

=

∫ 1

0

∫ 1

0

∫ 1

0

f(uβ , uβvγ , uβwζ)

[u2β(1 + v2γ + w2ζ)]α/2
J dudvdw, (1a)

where J is the Jacobian of the transformation:

J = βγζu3β−1vγ−1wζ−1. (1b)

From the expression for the Jacobian and the denom-

inator in (1a), it is evident that the choice γ = 1 and
ζ = 1 provides the lowest exponents of the variables v

and w in the transformed space. On using γ = ζ = 1,

(1) reduces to

I =

∫ 1

0

∫ 1

0

∫ 1

0

f(uβ , uβv, uβw)

(1 + v2 + w2)α/2
βu3β−1−αβdudvdw,

where β is now selected so that both f(uβ , uβv, uβw)
and u3β−1−αβ have the simplest possible forms that can

be easily integrated. Since in boundary element and fi-

nite element applications, polynomial bases are used

and the integration of polynomials is required, we pick
β so that f remains a polynomial in the transformed

space. This requirement will marginally increase the

polynomial order of f , and therefore require a slight
increase in the order of the quadrature rule to exactly

integrate the polynomial in the u-direction. However, a

fractional exponent in the term u3β−1−αβ needs a much
higher-order quadrature rule to capture the non-linear

behavior of the integrand. Therefore, we select the min-

imum β ∈ Z
+ so that the exponent 3β − 1 − αβ is a

positive integer. For instance, for a 1/
√
r (α = 1/2)

singularity, β = 2 is chosen, which results in the term

u4, whereas in the Duffy transformation (β = 1), the

term u3/2 is present which leads to loss in accuracy.
Similar arguments apply in the two-dimensional case

(Fig. 1); the generalized transformation in two dimen-

sions is provided in Appendix A. We point out that for
singularities α > 2 in three dimensions (α > 1 in two

dimensions), the Duffy transformation does not remove

the singularity since the exponent of u in the trans-

formed kernel is negative.

3 Numerical Examples

We present numerical tests to affirm the improvements

in accuracy that are realized by the generalized trans-

formation vis-à-vis the Duffy transformation. The per-
formance of the proposed transformation in the numer-

ical integration of a vertex singularity in a square and

a cube are presented. Finally, the Laplace problem on
an L-shaped domain with a corner singularity is con-

sidered and the accuracy and rate of convergence of

higher-order FE and PUFE solutions are studied.

3.1 Vertex singularity in two dimensions

To validate the criterion for the selection of β, we ap-

ply the Duffy transformation and the generalized trans-
formation for the integration of functions p(x, y)/rα,

where p(x, y) ∈ Pd(x, y) are bivariate polynomials up

to degree d with respect to x and y and r is the dis-
tance from the origin. The integration is carried out

over a unit square after dividing it into two triangles

(Figures 2a and 2b). Each triangle is mapped to the

standard triangle of Fig. 1 through a shift of the coor-
dinates and an affine mapping (see Appendix A). Differ-

ent values of the singularity-exponent α are considered.

We choose α = {1, 1/2, 1/3, 2/3, 4/3}, which appear in
various applications: α = 1/2, 1 for cracks in isotropic

media [10], α = 1/2, 2/3 in hydraulic fracture [18], and

α = 1/3, 2/3, 4/3 in the solution of Laplace equation in
an L-shaped domain with a re-entrant corner (see Sec-

tion 3.4). For each α, different choices of β are tried.

For example, Fig. 2c shows the convergence curves for

1/r singularity with β varying from 1 to 5. Also, tensor-
product quadrature rules over the triangulated domain

and the unit square are tested (indicated as tensor 1

and tensor 2, respectively). The reported relative er-
rors are the norm of the relative error in the integra-

tion of p(x, y)/rα, where p includes all bivariate poly-

nomials up to order three (ten functions in two dimen-
sions). Figures 2d to 2g show similar results for other

values of α. The reference values are calculated using

very high-order quadrature rules so that sufficient num-

ber of digits are converged. For some of the values of
α, e.g., α = 1 and α = 1/2, the reference integral is

evaluated using symbolic packages such as Maple� and

MATLAB� either exactly or with very high accuracy.
For all values of α and β, the maximum error in the inte-

gration as nsp increases corresponds to
∫

(1/rα) dx dy,

i.e., for a constant in the numerator of the integrand.
This is due to the fact that bivariate polynomials xiyj

for i + j > 0 have a radial dependence and therefore
∫

(xiyj/rα) dx dy has a milder radial singularity than
∫

(1/rα) dx dy. In accordance with our expectations, we
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Fig. 2 Convergence curves for integration of p(x)/rα over a unit square. (a) Unit square and its (b) triangulation. Relative errors for
(c) α = 1; (d) α = 1/2; (e) α = 1/3; (f) α = 2/3; and (g) α = 4/3.
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note from Figure 2 that the choice β = {1, 2, 3, 3, 3}
gives us the most accurate results for the singularities

α = {1, 1/2, 1/3, 2/3, 4/3}, respectively. Moreover, it is

evident from the plots that if α 6= 1, then the optimal β

delivers markedly better accuracy than the Duffy trans-
formation (β = 1). Figures 2c to 2g also reveal that

Gauss-Legendre quadrature has a very low convergence

rate and the errors are O(10−5) for 500 integration
points. A MATLAB code that performs the generalized

Duffy transformation is provided in Appendix B.

To further illustrate the performance of the gener-
alized transformation, we apply it to the integration

of functions with singularities α = p/q when p and

q are moderately large positive integers with no com-

mon divisor. Such values of α arise in re-entrant corner
problems in orthotropic media [54], and in partition-of-

unity enriched finite element methods with paramet-

ric enrichment functions [19]. The rationale provided
in Section 2 for selecting β would lead to the choice

β = q. It should be noted that increasing β has a dual

effect: (1) Improves the accuracy due to the higher ex-
ponent of u in the transformed kernel (the transformed

domain of integration is the unit square and therefore

0 ≤ u ≤ 1); and (2) More integration points are needed

in the unit square due to the increase in the polynomial
order of the transformed kernel. For such α, numerical

tests can guide the choice for β. As an example, for α =

150/311, we consider β = {1, 2, 3, 4, 5, 311, 311/150}.
Fig. 3 shows that an accuracy of O(10−8) is realized on

using the generalized Duffy transformation with β = 4

and a 8 × 8 tensor product over the unit square.
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Fig. 3 Convergence curves for integration of p(x)/rα over the
triangle with vertices (1, 1); (3, 2) and (1.5, 2.3). Singularity is at
(1, 1) and α = 150/311.

3.2 Vertex singularity in three dimensions

We examine the three-dimensional case by integrating

functions of the form p(x, y, z)/rα over a unit cube that

have a singularity at the origin. The function p consists
of trivariate polynomials up to degree three with respect

to x, y, and z (twenty functions in three dimensions).

The unit cube is divided into three pyramids with pla-
nar bases, and each of these pyramids is mapped to the

standard one and then the generalized transformation

is applied. The unit cube is shown in Fig. 4a and one of

its partitions (standard pyramid) is depicted in Fig. 4b.
Similar to the the two-dimensional case, different sin-

gularities α = {1, 1/2, 1/3, 2/3, 4/3} are tested with β

varying from 1 to 5. The results are plotted in Fig-
ures 4c to 4g, and once again, the best choices of β

are identical to those obtained in the two-dimensional

case. The optimal β outperforms all other values of β
and is able to reduce the relative error to close to ma-

chine precision in all cases. For a relative error of 10−8,

the optimal β requires about 1, 000 integration points;

the tensor-product Gauss rule can at best deliver an ac-
curacy of 10−7 with 10, 000 integration points. Similar

to the two-dimensional case, the constant term in the

numerator of the integrand dominates the error in the
numerical integration depicted in Fig. 4.

3.3 Optimization

Careful observation of the behavior of our generalized

transformation shows that by increasing the number of
integration points in each direction, the rate of conver-

gence has a sudden decrease at a point and after that

it converges with a much lower rate (for example, see

the curve for β = 2 in Fig. 2d). A similar behavior
is seen in almost all the convergence curves. Further

inspection reveals that the kernel after transformation

remains a polynomial with respect to u, but is an ir-
rational function with respect to v and w. Hence, one

can determine the number of Gauss points in the u-

direction to obtain exact integration with respect to u,
after which increasing the number of integration points

in the u-direction does not have any effect on the ac-

curacy. Based on this finding, we propose to use the

minimum number of Gauss points in the u-direction
to exactly evaluate the integral with respect to u, and

a higher-order quadrature rule in the other directions.

This idea is made more precise through the following
example.

Consider an integrand of the form p(x, y)/rα, with

p(x, y) consisting of polynomials up to order d. As in-

dicated in Appendix A, the kernel K(u, v) after the
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Fig. 4 Convergence curves for integration of p(x)/rα over a unit cube. (a) Unit cube and one of its partitions, (b) the standard
pyramid. Relative errors for (c) α = 1; (d) α = 1/2; (e) α = 1/3; (f) α = 2/3; and (g) α = 4/3.
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transformation in two dimensions is

K(u, v) =
p(uβ , uβv)

(1 + v2)α/2
βu2β−1−αβ .

Collecting like-terms reveals that the highest exponent

of u is 2β − 1 − αβ + dβ. Thus, it is sufficient to use

nspu = (2β−αβ+dβ)/2 Gauss points in the u-direction
to exactly evaluate the integral with respect to u. To

obtain higher precision one only needs to increase the

number of evaluation points in the other directions. Fig-
ures 5a and 5b show the convergence curves for α = 1/2

over the unit square and α = 4/3 over the unit cube,

respectively. When β = 3 (optimized) is used, the high

convergence rate is maintained and in comparison to
β = 3 (without optimization), fewer number of integra-

tion points are needed to attain higher accuracies.

3.4 L-shaped domain with a re-entrant corner

The L-shaped domain with a corner singularity is a

well-known benchmark problem, which has been con-

sidered in previous studies [12, 55, 56]. The boundary-

value problem is posed as:

−∇2u = 0 in Ω, (2a)

u = 0 on ΓD (2b)

∂u

∂n
= g on ΓN , (2c)

where Ω is the L-shaped domain shown in Fig. 6.

Following Strouboulis et al. [12], we choose bound-
ary conditions that are consistent with the exact solu-

tion:

u = r1/3 sin
θ

3
, ∇u =

r−2/3

3

[

− sin
2θ

3
i + cos

2θ

3
j

]

, (3)

which has a derivative singularity at r = 0. We apply

Dirichlet boundary condition u = 0 on ΓD and Neu-

mann boundary condition ∇u · n = g on ΓN and all

other edges.

The weak form of the problem in (2) is: Find u ∈ U
such that
∫

Ω

∇w · ∇u dV =

∫

ΓN

wg dS ∀w ∈ U , (4a)

U = {w : w ∈ H1(Ω), w = 0 on ΓD}, (4b)

where H1(Ω) is the Sobolev space that consists of func-

tions and their derivatives that are square integrable in

Ω. The PUFE approximation for the trial function u
is [9]:

uh(x)=
∑

i∈I

Ni(x)ui+
∑

j∈J

NPU
j (x)ψ(x)aj ≡

∑

k∈K

Φk(x)dk,

where Ni(x) are FE basis functions, NPU
j (x) are the FE

basis functions used to form the enriched basis func-

tion, ψ(x) is the enrichment function, and ui and aj

are nodal coefficients associated with the finite element

and enriched bases, respectively. On substituting the
above trial function and using Φk as test functions in

the weak form (4), we obtain the following discrete sys-

tem of equations:

Kd = f , d = [u a]T , (5a)

Kij =

∫

Ω

∇Φi · ∇Φj dV, fi =

∫

ΓN

Φig dS, (5b)

where Φi = Ni for a classical degree of freedom and
Φi = NPU

i ψ for an enriched degree of freedom.

In this paper, we use linear (p = 1, Q4), quadratic

(p = 2, Q8) and cubic (p = 3, Q12) serendipity fi-
nite elements, which are shown in Fig. 7. The parti-

tion of unity enriched basis is always constructed as

the product of the bilinear finite element basis func-
tion (NPU

i = NQ4
i ) and the enrichment function. As in

Reference [12], we use ψ(x) = r1/3 sin
(

θ/3
)

as the en-

richment function in the PUFE method. The DECUHR

adaptive algorithm [57] (restricted to hyper-rectangular
regions) was adopted by Strouboulis et al. [12] to com-

pute the enriched contributions in the stiffness matrix,

whereas the generalized Duffy transformation is used in
this study.

In Fig. 8, a sample mesh of the domain with eight

divisions along each coordinate direction is presented.
First, we only enrich the node at the origin (one ad-

ditional degree of freedom), which corresponds to an

enrichment support radius re = ǫ (ǫ is a small num-

ber). The support of the enriched basis function is the
shaded region in Fig. 8. For FE computations, we use 4,

8, 16, 32, 64 and 128 number of divisions along each co-

ordinate direction, and for PUFE computations, meshes
with 4, 8, 16, and 32 divisions are chosen. Table 1

shows the number of degrees of freedom for the differ-

ent meshes and element types. For FE stiffness matrix
calculations and for elements that do not contain an en-

riched node in PUFE calculations, 4×4 tensor-product

Gauss quadrature rule is used. For stiffness matrix cal-

culation of the three elements containing the singularity
(shaded elements in Fig. 8), we use a 10×10 generalized

Duffy quadrature rule (total of 600 evaluation points

over the three elements) in the PUFE computations.
Fig. 9a shows a plot of the solution along the di-

agonal AB (see Fig. 8) for FE with different pth order

elements and Figures 9b and 9c show the results for
PUFE. In the PUFE plots, the contributions due to

the FE basis and the enriched basis are depicted sep-

arately. As seen in these figures, the PUFE solution is

proximal to the exact solution and is able to capture
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Table 1 Number of degrees of freedom for meshes used in FE and PUFE computations.

Divisions
FE PUFE (re = ǫ) PUFE (re = 0.5)

Q4 Q8 Q12 Q4 Q8 Q12 Q4 Q8 Q12

4 21 53 85 22 54 86 26 58 90

8 65 177 289 66 178 290 77 189 301
16 225 641 1057 226 642 1058 266 682 1098

32 833 2433 4033 834 2434 4034 989 2589 4189

64 3201 9473 15745 — — — 3815 10087 16359

128 12545 37377 62209 — — — — — —
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α = 4/3

β = 1

β = 3

β = 3, opt.

(b)

Fig. 5 Effect of optimization. (a) unit square, α = 1/2 (compare
to Fig. 2d); and (b) unit cube, α = 4/3 (compare to Fig. 4g).

the sharp gradients of the solution in the vicinity of the

singular point. As a measure of accuracy of the meth-
ods, convergence in the strain energy is studied. The

relative error in the strain energy is defined as:

E =
a(u, u) − a(uh, uh)

a(u, u)
, a(u, u) =

∫

Ω

∇u · ∇u dV,

where a(u, u)/2 is the exact strain energy. The exact

strain energy for the problem under consideration is:
Eex = 0.423569003301483. Fig. 9d shows the conver-

gence for FE and PUFE with h and p-refinements. For

all FE computations, the relative error remains greater
than O(10−2), whereas even on coarse meshes the accu-

racy of PUFE (one extra degree of freedom in compar-

ison to the corresponding FE problem) is superior and
reaches relative errors of 10−4 on a cubic mesh with 32

divisions along each coordinate direction. Due to the

singularity (λ = 1/3) at the corner, however, the theo-

retical asymptotic rate of convergence in strain energy
for finite elements is min(2p, 2λ) = 2λ = 2/3 [58]. The

rates for all the curves in Fig. 9d for pth order FE and

PUFE are in agreement with theory. This sub-optimal
convergence was also noted in previous studies where

enrichment for crack problems (λ = 1/2) is used [49,50].

We return to a potential remedy for this issue later on.

In Fig. 9e, the relative error in the computation of

k11 (the entry in the global stiffness matrix correspond-
ing to the enriched degree of freedom assigned to the

node at the origin; see Fig. 8) is plotted for a tensor-

product Gauss rule, using Duffy transformation, and by

the generalized Duffy transformation that is proposed
in this paper. The expression for k11 contains terms

with 1/rα singularities, where α = 1/3, 4/3:

k11 =

∫

Ω1

∇(N1ψ) · ∇(N1ψ) dV ≡
∫

Ω1

K(x) dV,

where ψ = r1/3 sin(θ/3), N1 is the bilinear finite el-
ement basis function associated with node 1 and Ω1

is its support (shaded region in Fig. 8). On letting

q = − sin(2θ/3) i + cos(2θ/3) j and using (3), we can
write the integrand K(x) as

K(x) = r2/3 sin2(θ/3)||∇N1||2 +
2 sin(θ/3)N1∇N1 · q

3r1/3

+
N2

1

9r4/3
.

In Fig. 9f, the relative error in the computation of k12

(corresponding to the enriched degree of freedom of

node 1 and the classical degree of freedom of node 2
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(see Fig. 8), is presented. The expression for k12 con-
tains a term with r−2/3 singularity:

k12 =

∫

Ω2

∇(N1ψ) · ∇N2 dV ≡
∫

Ω2

K(x) dV,

where Ni (i = 1, 2) are bilinear finite element basis
functions, Ω2 is the element that contains nodes 1 and

2 in its connectivity, and K(x) in this case is given by

K(x) = r1/3 sin(θ/3)∇N1 · ∇N2 +
N1∇N2 · q

3r2/3
.

A benefit that accrues with the generalized Duffy trans-

formation is that β = 3 can be used to integrate all the
terms in the above integrals. As can be discerned from

Figures 9e and 9f, the generalized transformation in-

tegrates both k11 and k12 to almost machine precision
with about 200 function evaluations per element (k11 is

computed over three elements whereas k12 is evaluated

on one element). For computing k11, 600 function eval-
uations (10× 10 over each triangle after the square ele-

ments are triangulated) are required, whereas the Duffy

transformation (β = 1) minimally improves the tensor

product rule, a consequence that bears out due to the
presence of a rational exponent in the radial term of

the kernel K(u, v). It is noteworthy to point out that

the generalized Duffy transformation outperforms the
adaptive algorithm used in Reference [12]. The relative

error for k11 in Reference [12] is 10−5 for about 400

evaluation points; with the generalized Duffy transfor-
mation the same accuracy is attained with just over 200

evaluation points and more importantly, the error can

be further reduced without significant addition in the

number of evaluation points.
To address the issue of sub-optimality in the rate of

convergence of PUFE with topological enrichment (see

Fig. 9d), Laborde et al. [49] and Béchet et al. [50] sug-
gested the notion of geometric enrichment—all nodes

that are inside a fixed region of the singularity are en-

riched. We choose an enrichment radius re = 0.5 and all
nodes within a distance of re or less from the vertex are

enriched (see Fig. 10a). The number of degrees of free-

dom in the PUFE computations are listed in Table 1.

Fig. 10b shows the convergence curves for the strain en-
ergy using linear, quadratic, and cubic PUFE solutions.

Duffy transformation (β = 1) with a 16 × 16 tensor-

product rule is compared to the generalized transfor-
mation (β = 3) with a 10 × 10 tensor-product rule.

With the generalized Duffy quadrature, we obtain rates

of convergence in strain energy of 1.85, 3.92 and 5.92
(rates are computed for PUFE solutions using 16, 32,

and 64 divisions) for the linear, quadratic and cubic el-

ements, respectively, which indicates that close to the

optimal 2p rate of convergence is recovered. Hence, the

ΓD

ΓN

θr

O x

y
(1,1)

(−1,−1)
Fig. 6 Laplace problem on an L-shaped domain.

21

B

A

h = 0.25

Fig. 8 Sample mesh (8×8 mesh divisions) for L-shaped domain.

generalized Duffy quadrature is accurate and yields the

correct rate of convergence, whereas the Duffy quadra-
ture fails (non-monotonicity and incorrect rate of con-

vergence). To ensure convergence, the quadrature error

must be at least an order smaller than the PUFE ap-
proximation error, which is the case when the general-

ized Duffy transformation is used, but is not so when

the Duffy transformation (see Figures 9e and 9f) or a

tensor-product Gauss rule is applied.
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(a) (b) (c)

Fig. 7 Serendipity elements. (a) Linear (Q4, p = 1); (b) Quadratic (Q8, p = 2); and (c) Cubic (Q12, p = 3).

4 Conclusions

In this paper, we presented a generalization to the well-
known Duffy transformation, which has been widely

used for integration of kernels having 1/r singularity.

We introduced the following generalized Duffy transfor-
mation: (u, v, w) → (x, y, z): x = uβ , y = uβv, z = uβw,

with β as an additional parameter. The choice of β was

guided by the observation that the transformed ker-

nel not have a fractional exponent. For instance, for
α = {1, 1/2, 1/3, 2/3, 4/3}, β = {1, 2, 3, 3, 3} was the

optimal choice, respectively. All cases were tested in two

and three dimensions, and the numerical results clearly
demonstrated the superior accuracy and efficiency of

the generalized transformation over the standard Duffy

transformation. We also showed that the number of
evaluation points can be further reduced by using the

minimum number of Gauss points in u-direction (both

in two- and three-dimensional applications) so that in-

tegration is carried out exactly with respect to u and
higher-order quadrature rules are used in the other di-

rections.

The L-shaped domain with a corner singularity was
considered, and higher-order FE and PUFE computa-

tions were performed. Once again, the merits of the

generalized Duffy transformation were revealed in the

computation of the enriched stiffness matrix entries.
The convergence in strain energy of PUFE was studied:

when only the vertex node was enriched, a convergence

rate of 0.66 was realized, but when a fixed region of
radius 0.5 was enriched, near-optimal 2p rate of con-

vergence was recovered. This was possible due to the

highly accurate integration that the generalized Duffy
transformation afforded; use of the Duffy transforma-

tion or a tensor-product Gauss rule led to inaccuracies

since the quadrature error dominated the approxima-

tion error.

The generalized Duffy transformation can be imple-

mented in boundary element and enriched finite ele-

ment methods for the integration of singular functions
without adding to the complexity of the programming

and at the same time reducing the number of evalua-

tion points with respect to the Duffy transformation.
Furthermore, when there is a need for frequent integra-

tion of the singular kernel over the same domain, the

generalized Duffy transformation can be combined with
the node elimination algorithm presented in Mousavi et

al. [59] to construct a very efficient quadrature rule with

far fewer number of evaluation points. The term 1/rα

containing the singularity is used as the weight func-
tion in these quadrature rules similar to the quadratures

presented by Haegemans [60]. Even though this study

targeted integrands with vertex singularities in PUFE
methods, the stringent demands on accuracy in non-

singular PUFE applications such as acoustics [61] and

Schrödinger and Poisson solutions in quantum mechan-
ics [62] reinforces the need and importance of develop-

ing accurate and efficient quadrature rules for enriched

finite element methods.

Appendix A

Generalized Duffy Transformation in Two Dimensions

The mapping (u, v) → (x, y) : x = uβ , y = uβv trans-
forms the integral from the standard triangle (Fig. 1a)

to the unit square (Fig. 1b):

I =

∫ 1

0

dx

∫ x

0

dy
f(x, y)

(x2 + y2)α/2

=

∫ 1

0

∫ 1

0

f(uβ , uβvγ)

[u2β(1 + v2γ)]α/2
J dudv,

where J is defined as

J = (βuβ−1)(γuβvγ−1) = βγu2β−1vγ−1.
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Fig. 9 Convergence study for FE and PUFE solutions. In the PUFE computations, only the vertex node is enriched (re = ǫ). (a)
Solution along the diagonal AB for FE with different element types; (b),(c) Solution along the diagonal AB for higher-order PUFE;
(d) Convergence of strain energy for FE and PUFE using the generalized Duffy transformation with β = 3; and (e),(f) Convergence

of k11 and k12 for PUFE (8 × 8 mesh divisions) using different integration schemes.
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Fig. 10 Geometric enrichment for Laplace problem on an L-shaped domain. (a) Sample mesh, enriched nodes (re = 0.5) are shown

by open circles; and (b) Convergence in strain energy for PUFE using Duffy transformation (β = 1; 15 × 15 quadrature rule) and
generalized Duffy transformation (β = 3; 10 × 10 quadrature rule).

On setting γ = 1, we obtain

I =

∫ 1

0

∫ 1

0

f(uβ , uβv)

(1 + v2)α/2
βu2β−1−αβdudv.

Any arbitrary triangle with a vertex singularity is first

translated so that the singularity is moved to the ori-

gin and then an affine map to the standard triangle is
used: x = aX + bY and y = cX + dY , where (X,Y ) is

the physical coordinate system containing the arbitrary

triangle and (x, y) is the plane of the standard triangle.

Equivalently, given an arbitrary triangle R having one
vertex at the origin, there exists an affine transforma-

tion A that takes the standard triangle to R [21]. The

transformation A can be used to map the points of a
rule over the standard triangle to R.

Appendix B

MATLAB Code for Construction of Generalized Duffy

Quadrature in Two Dimensions

function [xg,yg,wg] =

getGeneralizedDuffyQuad(coord,beta,nsp)

% External Dependencies (m-files)

% gauss_points(nsp) : 1D Gauss points

% gauss_weights(nsp): 1D Gauss weights

% Input Parameters

% coord : 3 x 2 matrix (triangle coordinates)

% beta : Duffy parameter (positive integer)

% nsp : Number of quadrature points

% location of vertex singularity

a = coord(1, 1);

b = coord(1, 2);

% shift

sh_coord = [coord(:, 1) - a, coord(:, 2) - b];

% affine mapping

a11 = sh_coord(2, 1);

a12 = sh_coord(3, 1) - sh_coord(2, 1);

a21 = sh_coord(2, 2);

a22 = sh_coord(3, 2) - sh_coord(2, 2);

A = [a11, a12; a21, a22];

detA = det(A);

% get a tensor product over unit square

% sq = [0, 0; 1, 0; 1, 1; 0, 1];

x0 = gauss_points(nsp); x0 = (1+x0)/2;

w0 = gauss_weights(nsp); w0 = w0/2;

X = struct(’x’, 0, ’y’, 0, ’w’, 0);

X(1:nsp*nsp) = X;

for i = 1:nsp

for j = 1:nsp

ind = (i-1)*nsp+j;

X(ind).x = x0(i);

X(ind).y = x0(j);

X(ind).w = w0(i)*w0(j);

end

end
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% transformation

Z1 = X; Z2 = X;

for i = 1:length(X)

% generalized transformation

u = X(i).x; v = X(i).y; w = X(i).w;

Z1(i).x = u^beta;

Z1(i).y = u^beta * v;

Z1(i).w = w * beta*u^(2*beta-1);

% reverse affine mapping and shift

u = Z1(i).x; v = Z1(i).y; w = Z1(i).w;

x = a11*u+a12*v+a;

y = a21*u+a22*v+b;

w = detA*w;

Z2(i).x = x; Z2(i).y = y; Z2(i).w = w;

end

% write output

xg = zeros(nsp^2, 1); yg = xg; wg = xg;

for i = 1:nsp*nsp

xg(i) = Z2(i).x;

yg(i) = Z2(i).y;

wg(i) = Z2(i).w;

end
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9. I. Babuška and J. M. Melenk. The partition of unity method.
International Journal for Numerical Methods in Engineer-

ing, 40:727–758, 1997.
10. T. Belytschko and T. Black. Elastic crack growth in finite

elements with minimal remeshing. International Journal for

Numerical Methods in Engineering, 45(5):601–620, 1999.
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