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In this paper, we construct new high-order numerical integration schemes for tetra-
hedra, with positive weights and integration points that are in the interior of the
domain. The construction of cubature rules is a challenging problem, which requires
the solution of strongly nonlinear algebraic (moment) equations with side condi-
tions given by affine inequality constraints. We present a robust algorithm based on
a sequence of three modified Newton procedures to solve the constrained minimiza-
tion problem. In the literature, numerical integration rules for the tetrahedron are
available up to order p = 15. We obtain integration rules for the tetrahedron from
p = 2 to p = 20, which are computed using multi-precision arithmetic. For p ≤ 15,
our approach provides integration rules that have the same or fewer number of inte-
gration points than existing rules; for p = 16 to p = 20, our rules are new. Numerical
tests are presented that verify the polynomial-precision of the cubature rules. Con-
vergence studies are performed for the integration of exponential, rational, weakly
singular and trigonometric test functions over tetrahedra with flat and curved faces.
In all tests, improvements in accuracy is realized as p is increased, though in some
cases nonmonotonic convergence is observed.
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1 INTRODUCTION

Numerical integration using univariate Gaussian quadrature rules and their extensions to cubature rules in higher dimensions

are widely adopted in computational methods to solve problems in engineering and the applied sciences. One-dimensional

quadrature (d = 1) and multi-dimensional cubature (d > 1) rules in a domain Ω ⊂ ℝd consist of a set of integration points

and scalar weights. An n-point cubature rule is represented as {xi, wi}ni=1, where xi ∈ ℝd is the i-th integration point and

wi is the corresponding weight. In one dimension, an n-point Gaussian quadrature rule can exactly integrate a polynomial of

degree 2n−1 and is optimal. No such optimality exists for integration schemes on domains in higher dimensions. Finite element
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methods that are based on quadrilateral and hexahedral elements use tensor-product univariate Gaussian quadrature rules on

the reference square and cube, respectively. For simplices and hypercubes, generalized Gaussian quadrature schemes have been

developed, which solve the moment equations using least squares and a node elimination technique.1,2 In such generalized

Gaussian integration schemes, it is desirable that all integration points (nodes) are located within the domain (xi ∈ Ω) and have

positive weights (wi > 0). These attributes for a cubature rule are known by the acronym PI, which stems from ‘Positive weights

and Inside nodes.’3,4

Simplices are preferred in finite element and boundary element analysis due to the ease of Delaunay mesh generation for

complex geometries. Triangles are also used to represent surfaces in three dimension for applications in geometric design and

computer graphics. Numerical integration schemes on triangles have been the subject of significant research, with many early

contributions in the latter part of the last century.5,6,7,8,9,10,11 This effort has sustained over the past two decades with greater

emphasis on constructing high-order integration rules on triangles.1,2,12,13 With an eye on polygonal finite element methods,

generalized Gaussian cubature rules have also been constructed for convex and nonconvex polygons.14 A different approach

to constructing cubature schemes is pursued by Bucero et al,15 who interpret the moment matrix in terms of the computation

of truncated Hankel operators with flat extensions, and obtain cubature rules by solving a hierarchy of convex optimization

problems. They obtain minimal number of integration points for low-order schemes on the square and construct an integration

rule for Wachspress basis functions16 on the pentagon. In comparison to the triangle, less effort has been placed on developing

integration rules for tetrahedra. Early contributions in this area have been on low-order integration rules.17,18,19,20 Besides tetra-

hedra in 3D, cubature rules have also been proposed for prisms, pyramids, as well as hexahedra.21,22,23,24 For a comprehensive

listing of some of the early studies on cubature rules for domains in 2D and 3D, the interested reader can refer to Cools and

Rabinowitz25 and Cools.26

High-order cubature rules on tetrahedral elements are used in the p-version of the finite element method.27,28,29,30 Such inte-

gration schemes are also pertinent in high-order discontinuous Galerkin methods on curvilinear meshes.31 Grundmann and

Möller32 proposed a general formula for integration rules over n-simplex domains. However, the cubatures generated by this

rule have negative weights and the number of integration points for higher orders are not optimal. Over the past decade, only

a few contributions have appeared that have produced cubature rules on a tetrahedron,2,3,33,34,35 with integration rules of order

p = 15 being the maximum that is currently available.2 The presence of only a handful of studies in this important topic in

computational mathematics is due to the fact that with increasing p in 3D, constructing cubature rules is a notoriously difficult

problem. When p is greater than 10, convergence of most algorithms slows down and for p > 15 often nonconvergence occurs—

this is due to the fact that one must solve strongly nonlinear equations with inequality constraints that result in an ill-conditioned

Jacobian matrix when using high-order basis functions, and truncation errors occur due to computations in finite-precision arith-

metic. In Zhang et al,33 two symmetric integration rules for the tetrahedron of orders 9 and 14 are generated with 48 and 236
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points, respectively. Barycentric coordinates are applied so that the tetrahedron is divided into four symmetric orbits so that the

cubature rule is constructed on a smaller domain. A set of new and efficient tetrahedral cubature rules are proposed in Xiao and

Gimbutas.2 They realize rules up to p = 15 with fewer number of integration points in comparison to earlier schemes. The least

squares Newton methods with orthogonal polynomial basis functions is utilized with symmetric partitioning of the domain.

The relatively fewer number of integration points is achieved due to use of the node elimination procedure. Shunn and Ham34

describe a family of symmetric integration rules for tetrahedra. The distribution of points in each cubature rule is based on an

underlying so-called cubic close-packed grid, and the precise point locations and weights are optimized to reduce the trunca-

tion error in the cubature approximation. This approach results in a family of symmetric rules up to p = 7 for a tetrahedron.

In William et al,35 a sphere close-packed lattice arrangement of points is utilized for formulating symmetric quadrature rules

on simplices, including the tetrahedron. Witherden and Vincent3 use the refinement approach of Zhang et al33 to generate new

symmetric schemes for tetrahedron and other 3D elements. Yacobi29 compares the efficiency and performance of some of the

well-known tetrahedral cubature rules.3,12,18,33

In this paper, a new approach is presented to solve the nonlinear constrained problem, which delivers an integration rule with

minimal number of integration points and meets the PI criteria. Unlike existing methods in the literature, we do not directly

construct orthogonal basis functions nor use symmetric partitioning of the domain. In addition, we begin the search for a cubature

rule using a lower bound estimate for the number of integration points, which is in contrast to most cubature algorithms in the

literature. We also choose monomials as basis function, which are easy to integrate and furthermore their derivatives are simple

to evaluate to form the Jacobian matrix. Since with a power basis, the Jacobian matrix become ill-conditioned for high-order

problems, we resolve this issue via use of a preconditioning procedure at each iteration step of the algorithm. This ensures that

the modified Jacobian matrix is always well-conditioned throughout the computations. A sequence of three modified Newton

procedures is adopted to construct high-order rules. Even though the overall algorithmmay require user-intervention, it is robust

and efficient for the generation of high-order cubature rules. We point out that the use of monomial basis functions is particularly

attractive to devise cubature rule on arbitrarily-shaped convex domains in 2D and 3D since the integrals of monomials can be

readily computed.36 For p ≤ 15, we present integration rules that have the same or fewer number of integration points than

those available in the literature. Furthermore, for p = 16 to p = 20, we obtain new integration rules for the tetrahedron.

The structure of the remainder of this paper follows. The algorithmic details for constructing integration scheme for tetrahedra

are presented in Section 2. The description of the cubatures obtained in this paper are presented in Section 3, with specifics on

the use of multi-precision arithmetic in the computations. The main results of this paper are cubature schemes from p = 2 up to

p = 20, which are provided in the supplementary materials. Two verification tests are performed in Section 4, one on a single

tetrahedron and the second one on an unstructured tetrahedral mesh. In addition, the sound accuracy of the cubature rules is
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demonstrated for integrating exponential, rational, weakly singular and trigonometric test functions over tetrahedra with flat and

curved faces. Finally, the main findings from this work are provided in Section 5.

2 ALGORITHM FOR INTEGRATION SCHEMES

In this section, the algorithm is presented to generate cubature schemes over a tetrahedron, though the same approach is also

applicable to any other 2D or 3D convex domain. We consider the standard tetrahedral domain that is given by

T = {(x, y, z) ∶ 0 ≤ x ≤ 1, 0 ≤ x + y ≤ 1, 0 ≤ x + y + z ≤ 1}. (1)

The integration of an arbitrary function f (x) over the domain T is given by a cubature formula of the form

∫
T

f (x) dx ≈ |T |
n
∑

i=1
f (xi)wi, (2)

where the pair {xi, wi}ni=1 represents the cubature rule with xi the i-th integration point, wi the i-th weight, n is the number of

integration points, and |T | = 1∕6 is the volume of the reference tetrahedron. Note that for any p-order cubature scheme, the

weights must sum to unity.

Since any smooth function f (x) can be well-approximated by a polynomial (and so is its integral), we require the above

integration scheme to be exact for all polynomials up to order p. Such a scheme is called a p-order scheme. Let ℙ = {Φi(x)}li=1

be a set of basis (polynomial) functions that span any p-th order polynomial. In 1D, l = p+1; in 2D, l = (p+1)(p+2)∕2; and

in 3D, l = (p + 1)(p + 2)(p + 3)∕6. The objective is to determine the integration points and weights that can exactly integrate

all functions in ℙ. Note that a p-order integration scheme is nonunique, and hence for the same n various different schemes are

possible. In this paper, we assume the PI criteria is met—all integration points are located inside the tetrahedron and the weights

are positive. For efficiency in computational methods such as finite elements, discontinuous Galerkin, and others, it is desirable

that the number of integration point is as small as possible.

For a cubature scheme of order p to exactly integrate all functions in ℙ, we let f (x) ∶= Φi(x) (i = 1, 2,… ,l) in (2), which

leads us to the moment equations:

Mw = p, (3a)
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where

M = |T |
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The moment equations are nonlinear algebraic equations where the location of the cubature points, weights, and n are unknown.

A lower bound estimate for n in ℝd is nlb = ⌈l∕(d + 1)⌉, and therefore nlb = ⌈l∕4⌉ in 3D. Define the error vector

f ∶=Mw − p. (4)

To determine the unknowns in the cubature scheme, the following nonlinear system of equations are solved:

f (z) = 0, (5a)

with additional inequality constraints to meet the PI rules:
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wi > 0 (i = 1, 2, … , n), (5c)

where z = [w1 x1 y1 z1 w2 x2 y2 z2 …wn xn yn zn]T is the extended vector that consists of the unknowns to be found. The

inequality constraint in (5b) ensures that xi ∈ T and (5c) is the positivity constraint on the weights.

To compute p, the integrals of all polynomial basis functions over T have to be computed. The integral of a monomial over

T is given by33

∫
T

xryszt dx = r! s! t!
(r + s + t + 3)!

. (6)
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The problem in (5) is strongly nonlinear, and an iterative procedure based on Newton’s method is applied. Equation (6) is used

to precompute the integrals of monomials in multi-precision (128 digits) to form p in (3b), and the results are stored in a data

file. To enhance robustness and accelerate convergence, a sequence of three stages of modified Newton procedures are adopted.

In the first stage, instead of a standard Newton procedure we solve a minimization problem with inequality constraints using a

fixed step size for the update; in the second stage, a quadratic minimization problem with equality and inequality constraints is

considered using step size control to accelerate convergence; and finally in the third stage a unit step size is used with the search

direction given as the solution of a quadratic minimization problem with equality constraints. In the second stage, second-order

Newton update is used for p > 13. The computations in the first and second stages are always carried out using double precision.

The initial iterations of the third stage are performed in double precision to obtain a solution for z, and the latter iterations are

carried out in multi-precision arithmetic (128 digits) to obtain the solution z with high-precision. For moderate p, the second

stage can be omitted, whereas for p > 8 all three stages are required to construct a cubature rule. Specific details on all three

stages of the algorithm follows in Sections 2.1–2.3.

2.1 Stage 1

In the first stage of the algorithm, we start with nlb = ⌈(p + 1)(p + 2)(p + 3)∕24⌉ randomly generated points in the interior of

the tetrahedron. The Newton equations to solve f (z) = 0 in (5a) are:

zk+1 = zk + �Δz, (7a)

J̄ kΔz + f̄ k = 0, (7b)

where

J̄ k = BkJ k, f̄ k = Bkf k, (7c)

f k = f
(

zk
)

, J k =
)f k
)z

. (7d)

In (7), zk and J k are the solution vector and Jacobian matrix, respectively, at the k-th iteration step, Δz is the increment in z,

� is the step size, and Bk is a preconditioning matrix that is used to construct the modified Jacobian matrix J̄ k. The details on

forming the preconditioning matrix is given in Section 2.4. At each iteration step, the vector zk has to meet the PI rules in (5b)

and (5c). However, for randomly generated points, it is highly unlikely that both (7b) and the PI rules are satisfied. Hence, instead

of solving the Newton update equations in (7), we formulate a constrained minimization problem with inequality constraints to

ensure that the integration points are in interior of the tetrahedron and the integration weights are positive at each iteration step.
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To this end, we seek to find Δz that solves the following constrained least squares minimization problem:

min
�z

1
2
‖J̄ k�z + f̄ k‖2, (8a)

subject to the inequality constraints

C�z < d, (8b)

where (8b) uses the inequality constraints in (5b) and (5c). In order to solve (8), the Matlab optimization package lsqlin is

used, which solves box-constrained linear least-squares problems.37 At this stage, a fixed step size � is used. For p < 15, � is

set to 0.1, whereas for higher orders it is set to 0.01 (to avoid divergence) for the first hundred iterations and then to 0.1 for the

subsequent iterations. The search direction vector Δz that is obtained in each iteration step is used to update z via (7a). The

stopping criterion is: ‖f (zk+1)‖ < �1, where �1 is a user-specified tolerance. As a guideline, we use �1 = 10−8 for p < 12 and

�1 = 10−3 for p = 20.

2.2 Stage 2

We use the output z from the previous stage as the input in this stage. Note that the solution from stage 1 does not satisfy (5a)

to sufficient accuracy, even though the right-hand side of (7b) is close to the zero vector. To find a better approximation to

f (z) = 0, we use a second-order Taylor expansion of f :

f (z + Δz) ≈ f (z) + J (z)Δz + 1
2
ΔzTH(z)Δz = 0, (9)

whereH is the third order Hessian tensor,Hijk =
)2fi
)zj)zk

. Since a quadratic term in Δz appears in (9), we determine Δz through

an inner iteration procedure:

Δzj+1 = Δzj + ΔΔz. (10)

The quadratic term in (9) is linearized to first order to yield:

1
2
Δzj+1THΔzj+1 ≈

1
2
ΔzjTHΔzj + ΔzjTHΔΔz

= 1
2
ΔzjTHΔzj + ΔzjTH

(

Δzj+1 − Δzj
)

= −1
2
ΔzjTHΔzj + ΔzjTHΔzj+1,

(11)

where (10) is used in the second line of the above equation. On using (9), the inner iterative procedure to obtain Δzj+1 can be

developed using the preconditioning matrix to give

B
(

J + ΔzjTH
)

Δzj+1 + B
(

f − 1
2
ΔzjTHΔzj

)

= 0. (12)
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For the second-order Newton update, the problem is formulated as: findΔzj+1 that solves the following constrained quadratic

minimization problem:

min
Δzj+1

1
2
‖Δzj+1‖2, (13a)

subject to the equality and inequality constraints that are given by

Bk
(

J k + ΔzjTHk
)

Δzj+1 + Bk

(

f k −
1
2
ΔzjTHkΔzj

)

= 0, (13b)

CΔzj+1 < d. (13c)

The problem in (13) is solved using the Matlab package lsqlin. At each outer step k, fewer than 5 inner iterations are needed

for convergence. The step size � is determined by a one-dimensional Newton scheme, which is presented in Section 2.2.1. Once

� and Δz are known, they are used to form zk+1 via (7a), and the process is repeated until the stopping criterion ‖f (zk+1)‖ < �2

is met, where �2 is a user-specified tolerance. As a guideline, we use �2 = 10−12 for p < 12 and �2 = 10−5 for p = 20.

2.2.1 Computing the step size

In (7a), � is the step size in the direction given by the vectorΔz. In a full Newton method � = 1, whereas in a guarded or damped

Newton method with step size control, 0 < � < 1. Given zk and Δz, consider the scalar error function

r(�) = 1
2
f (zk + �Δz) ⋅ f (zk + �Δz). (14)

To find the optimal step size, we consider the following box-constrained one-dimensional minimization problem:

min
�
r(�), � < � < 1, (15)

where � = 10−3 is used in the computations. Since a stationary point of r(�) satisfies r′(�) = 0, we perform a Taylor series

expansion of r(�) to first order to obtain:

r′(� + Δ�) ≈ r′(�) + r′′(�)Δ� = 0. (16)

From (14), we can write the first and second derivatives of r(�) as:

r′(�) = Δz ⋅ J (zk + �Δz) ⋅ f (zk + �Δz), (17a)

r′′(�) = Δz ⋅ J (zk + �Δz) ⋅ J (zk + �Δz) ⋅ Δz + Δz ⋅H(zk + �Δz) ⋅ f (zk + �Δz) ⋅ Δz. (17b)
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Now, we seek to find Δ� that solves the following box-constrained least squares minimization problem:

min
Δ�

1
2
[

r′(�j) + r′′(�j)Δ�
]2, (18a)

� − �j < Δ� < 1 − �j . (18b)

Once Δ� is found, then �j+1 = �j + Δ�. The problem in (18) is solved using the Matlab package lsqlin. Usually two to four

iterations are required to converge Δ� to machine precision.

2.3 Stage 3

We use the output z from the previous stage as the input in this stage. In this final stage, we use double precision for the first few

iterations and then multi-precision (128 digits) to obtain z with high-precision. On referring to (7), we seek the Δz that solves

the following constrained quadratic minimization problem:

min
Δz

1
2
‖Δz‖2, (19a)

subject to the equality constraint

J̄ kΔz + f̄ k = 0, (19b)

where � = 1 is used in (7a).

Since in general J̄ k is a rectangular matrix, we solve the problem posed in (19) using a constrained least square approach.

The Lagrangian associated with the problem in (19) is:

min
Δz
max
�
L(Δz,�) = 1

2
Δz ⋅ Δz − � ⋅

(

J̄ k ⋅ Δz + f̄ k
)

, (20)

where � is the vector of Lagrange multipliers. On setting the first variation �L = 0 and using the arbitrariness of the first

variations of Δz and �, we obtain the following linear system of equations:

J̄ kJ̄
T
k� = −f k, Δz = J̄ Tk�, (21)

which on solving provides � and then Δz.

Having foundΔz, zk+1 is obtained using (7a), and then the process is repeated. Computations are done in double precision for

the first 5 to 10 iterations, and the last 5 iterations are done in high-precision without use of the preconditioning matrix Bk. The

VPA (Variable-Precision Arithmetic) package in Matlab with 128 digits is used. Since the incremental PI rules, CΔz < d, are

not considered, we explicitly check if they are satisfied after each iteration. If they are not met, then we restart from the beginning

by adding one more random integration point. If CΔz < d is satisfied and in addition ‖Δz‖ < � (� is machine precision),
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then the cubature rule is obtained. The final cubature schemes are stored with 64 decimal digits of precision. A flowchart that

summarizes the main components of the cubature algorithm is presented in Fig. 1.

Start with nlb
number of points

Generate random
points in T

Algorithm, stage 1

Error < �1

Add one point

Algorithm, stage 2

Error < �2

Algorithm, stage 3

CΔz < d and
‖Δz‖ < �

Cubature
achieved

no

yes

no

yes

no (CΔz ≥ d) yes

FIGURE 1 Flowchart of the cubature algorithm.

2.4 Preconditioning

The basic Newton set of equations is constructed using the monomials as basis functions. The monomial basis functions are

simple to generate and also easy to integrate over the tetrahedron using (6). On the other hand, for p ≥ 10, the Jacobian matrix

becomes ill-conditioned and then truncation errors can significantly affect the results during the iteration process, and may even

cause divergence of the solution. Hence, a preconditioner is applied to the Newton equations at every iteration step.

The preconditioningmatrix operatorBk at the k-th iteration step is used tomodify the system of equations into the numerically

stable form, see (7). ThematrixBk is updated after each iteration, since the Jacobianmatrix depends on zk. The use ofBk ensures
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that the nonlinear Newton equations are well-conditioned during all stages when calculations are done in double precision. The

algorithm for constructing the Bk matrix is based on Gauss-Jordan elimination procedure that is performed on the selected

columns of the Jacobian matrix. The algorithm starts with locating the maximum absolute value in the Jacobian matrix. Let the

maximum value be located at the (i, j) position in the matrix. Then the standard Gauss elimination procedure on the entire j-th

column is performed using the leading i-th row. After this, all entries in the j-th column are zero except at the (i, j) position,

which is one. This procedure is repeated until l columns (recall that l is the number of basis functions) in the Jacobian matrix

have the zero-one construction. With this transformation, the modified Jacobian matrix becomes well-conditioned.

The effectiveness of the preconditioning can be measured by checking the condition number of the Jacobian matrix before

and after applying the transformation. The condition number � for a matrix A is defined as:

�(A) = ‖A‖‖A†‖, (22)

where A† is the pseudo-inverse of A. The condition number measures how sensitive the solution is to changes in the input data

and to round-off errors in the computations. For a well-conditioned matrix, � is close to one, whereas for an ill-conditioned

matrix � is large (infinity for a singular matrix).

We compute the Jacobian matrix for different p and by varying the choice of the polynomial basis. The condition number

of the Jacobian matrices are listed in Table 1 for Chebyshev, Legendre, orthonormal, and monomial basis before and after

applying the transformation. The orthonormal basis are generated using the classical Gram-Schmidt algorithm for up to p = 10.

With increasing p, the condition number increases, though to a lesser extent for the orthonormal basis. It can be noticed that

the condition number of the Jacobian matrix for p = 2 are small for all bases. The condition number of the preconditioned

Jacobian using the monomial basis is the smallest and is (1), while � is significantly larger for the other basis functions. The

preconditioning procedure is applied at each iteration step to ensure that the algorithm remains stable during the construction

of higher order cubature rules.

3 CUBATURE SCHEMES

The proposed cubature algorithm is implemented to generate p-order cubature schemes (p = 2 to p = 20) on a tetrahedron.

The computations are done using double precision and also high-precision (128 digits). Double precision is used in the first and

second stages of the algorithm as well as in the initial iterations of stage 3 as described in Section 2. High-precision calculations

are applied only in the last few iterations of stage 3 of the algorithm, but without use of the preconditioning procedure.

The algorithm starts with nlb randomly scattered points in the interior of the tetrahedron. For moderate p, convergence is fast,

but for p > 15, the algorithm becomes sensitive to the location of the integration points. Thus, for higher orders the initial points
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TABLE 1 Condition number � of the Jacobian matrix for varying order of Chebyshev polynomials JC , Legendre polynomials
JL, orthonormal polynomials JR, monomials Jm and monomials after transformation J̄m.

p JC JL JR Jm J̄m

2 713 486 23.1 422 2

5 7 × 107 4 × 107 9 × 103 3 × 107 3

8 7 × 1011 2 × 1011 3 × 105 2 × 1011 6

10 2 × 1015 3 × 1014 8 × 107 3 × 1014 7

15 8 × 1018 2 × 1019 – 2 × 1021 7

20 4 × 1020 1 × 1021 – 8 × 1025 9

TABLE 2Number of integration points for various order of tetrahedral cubature rules. Results are compared to the lower bound
estimate, nlb = ⌈(p + 1)(p + 2)(p + 3)∕24⌉, and to the rules presented in Xiao and Gimbutas2 and Witherden and Vincent.3

p 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n 4 6 11 14 23 31 44 57 74 94 117 144 175 207 247 288 338 390 448

nlb 3 5 9 14 21 30 41 55 72 91 114 140 170 204 242 285 333 385 443

n2 4 6 11 14 23 31 44 57 74 95 122 146 177 214 – – – – –

n3 4 8 – 14 24 35 46 59 81 – – – – – – – – – –

are selected using the integration points from two previously generated lower order cubature schemes. It takes about 30 minutes

to obtain the cubature rule for p = 10 using double-precision calculations, whereas it takes about 2 days to generate the cubature

rule for p = 20. For the high-precision calculations using VPA (128 decimal digits) in Matlab, it is sufficient to perform about

5 iterations. However, these calculations are time-consuming. For example, an iteration for p = 10 takes 30 minutes, whereas

for p = 20, one iteration takes about 9 hours on a multiprocessor server.

In Table 2, the number of cubature points for different p are listed using our scheme and those presented in Xiao andGimbutas2

and Witherden and Vincent.3 Up to p = 10, the number of integration points are the same for our scheme and that of Xiao and

Gimbutas.2 However, for p > 10, our scheme provides fewer number of integration points than the other scheme. Furthermore,

we have generated rules for p = 16 to p = 20, which are new. The reader can find the listing of the cubature points and weights

in the supplementary materials, where the data are given in the column-format x y z w with 64 digits of precision.
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4 NUMERICAL TESTS

We conduct the verification tests and assessment of the accuracy of the cubature rules in double-precision arithmetic (16 digits

of precision) since use of double precision is common in scientific computing. The tests are divided into two parts. In the first

part the verification of the integration schemes is assessed for a polynomial function f that is a random linear combination of

polynomial basis functions:

f (x) =
m
∑

i=1
Ψi(x)fi, I = ∫

Ω

f (x) dx, (23)

where fi are randomly generated coefficients and {Ψi}mi=1 are the polynomial basis functions, which are monomials, Chebyshev

or Legendre functions. Any cubature rule of order p should integrate any polynomial up to order p over the domain Ω (meshed

with tetrahedral elements) with machine-precision accuracy. In the second part, we first consider the integration of exponential

and rational functions over the reference tetrahedron (Ω = T ) and the biunit cube (Ω = [−1, 1]3) that is meshed using tetrahedral

elements. Then, we consider the integration of weakly singular functions over T and the integration of a trigonometric function

over a semi-cylindrical domain that is meshed using tetrahedral elements with curved faces. In all these tests, the convergence

and accuracy of the cubature rules are assessed.

The relative error is defined as

R =
|I − Iq|
|I|

, (24)

where I is the exact integration of the function in (23), and Iq is the numerically computed value of the integral using the cubature

rule. We skip cases for which the random coefficients lead to |I| being very small. For comparison purposes, the same tests are

carried out for the cubatures proposed in Xiao and Gimbutas2 (up to p = 15) and Witherden and Vincent3 (up to p = 10). The

cubature rules from these papers have been taken from the ‘quadpy’ project.38

4.1 Verification tests

Verification tests of the cubature rules are conducted on the references tetrahedron T given in (1) and the biunit cube that is

meshed with tetrahedral elements.

4.1.1 Reference tetrahedron

The reference tetrahedron is shown in Fig. 2a, and two other possible permutations of the numbering of the vertices is depicted

in Figures 2b and 2c. Altogether there are 24 possible permutations of the numbering. Each permutation is connected with
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an affine transformation of the integration points from the reference tetrahedron to the one with the current permutation. Any

cubature rule should be invariant to such transformations, which is checked by this test.

y

z

x

1 3

4

2

(a)

y

z

x

3 4

2

1

(b)

y

z

x

2 1

3

4

(c)

FIGURE 2 Three permutations in the numbering of the vertices for a tetrahedron used in the verification test. Reference
tetrahedron is shown in (a), and two possible permutations appear in (b) and (c).

Equation (23) with p-th order monomial basis functions is used to test the p-th order cubature rule. The numerical integration

of the function is performed for all 24 possible permutations of the numbering of the vertices of the tetrahedron. We performed

1000 such tests, and hence a total of 24,000 integrals are computed on the tetrahedron for each p ∈ [2, 20]. From all these results,

we report the maximum and mean values of the relative errors in Table 3. The aim of this test is to check the sensitivity of the

cubatures on the permutation in the numbering of the vertices of the tetrahedron. On applying the cubature rules generated in

this paper as well as those obtained in Xiao and Gimbutas2 and Witherden and Vincent3 result in relative errors of the same

order. These tests verify the accuracy of the cubature rules for integration over tetrahedra.

We repeat the same tests for Chebyshev basis functions in (23). The 3D Chebyshev basis functions are constructed using the

tensor product of 1D Chebyshev functions, which are generated by the standard recurrence scheme. On the other hand, the exact

integrals of the Chebyshev basis functions are obtained from their representation in terms of monomial basis functions:

pT = Dp, (25)

where pT is the vector of integrated Chebyshev basis functions and D is the transformation matrix from the monomial basis

functions to the Chebyshev basis functions. It is known that the transformation matrix D consists of integers, and hence the

computations are performed without significant truncation errors.

The results of the test with the Chebyshev basis functions are listed in Table 4. Also in this case one thousand tests for each

p are performed where in each test all 24 possible numbering of vertices are considered. It turns out that the use of Chebyshev

functions leads to increase in the maximum integration error by about one order, while the mean error stays at the same level
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TABLE 3 Integration errors for test on a single tetrahedron using monomials as basis functions. Comparisons are made to results
obtained using the schemes presented in Xiao and Gimbutas2 and Witherden and Vincent.3 The maximum and mean values of
the error from thousand permutation tests for each p are listed.

This work Xiao and Gimbutas2 Witherden and Vincent3

p R × 1016 R × 1016 R × 1016

n max mean n max mean n max mean

2 4 9 2 4 13 2 4 9 2

3 6 18 3 6 20 3 8 15 3

4 11 47 4 11 44 4 – – –

5 14 40 5 14 41 5 14 40 6

6 23 62 6 23 67 8 24 45 6

7 31 117 8 31 119 10 35 106 8

8 44 127 10 44 133 12 46 122 10

9 57 143 11 57 145 11 59 117 11

10 74 164 14 74 166 14 81 150 14

11 94 178 17 95 191 17 – – –

12 117 331 19 122 329 19 – – –

13 144 365 23 146 361 24 – – –

14 175 344 23 177 335 23 – – –

15 207 365 27 214 365 28 – – –

16 247 598 35 – – – – – –

17 288 307 18 – – – – – –

18 338 239 25 – – – – – –

19 392 497 21 – – – – – –

20 448 494 25 – – – – – –

as for the monomial basis. We can infer that using Chebyshev basis functions does not significantly degrade the accuracy of the

numerical integration.
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TABLE 4 Integration errors for test on a single tetrahedron using Chebyshev basis functions. Comparisons are made to results
obtained using the schemes presented in Xiao and Gimbutas2 and Witherden and Vincent.3 The maximum and mean values of
the error from thousand permutation tests for each p are listed.

This work Xiao and Gimbutas2 Witherden and Vincent3

p R × 1016 R × 1016 R × 1016

n max mean n max mean n max mean

2 4 18 2 4 19 2 4 15 2

3 6 42 3 6 38 4 6 36 3

4 11 50 4 11 54 4 – – –

5 14 102 6 14 111 7 14 87 7

6 23 144 8 23 175 10 23 156 9

7 31 267 10 31 336 12 31 249 10

8 44 333 13 44 360 16 44 258 13

9 57 499 16 57 583 18 57 402 17

10 74 450 17 74 470 18 74 463 17

11 94 699 24 95 738 25 – – –

12 117 765 21 122 814 22 – – –

13 144 1076 29 146 1345 32 – – –

14 175 1158 30 177 1259 33 – – –

15 207 1430 32 214 1396 36 – – –

16 247 2481 44 – – – – – –

17 288 593 11 – – – – – –

18 338 792 13 – – – – – –

19 392 939 18 – – – – – –

20 448 975 15 – – – – – –

4.1.2 Biunit cube

In this test, for each p, 100 random polynomials are generated and then integrated over the biunit cube, [−1, 1]3. The cube

is meshed by 162 nonuniform tetrahedra (see Fig. 3). The basis functions are randomly chosen to be complete monomials,

Chebyshev or Legendre polynomials.
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FIGURE 3 Tetrahedral mesh of the biunit cube, Ω = [−1, 1]3, with 162 nonuniform tetrahedra of various sizes. The mesh
vertices (left) and element faces on the boundary surfaces (right) are shown.

In the tests, we choose the order of f (x) to be the same as the order of the cubature to be checked. The exact integral of

f over the cube is readily computed. For the numerical value of the integral, we use the cubature rule on each tetrahedron of

the mesh and sum the results. The results of the numerical tests are presented in Table 5. In the table, the maximum as well as

the algebraic mean values of the relative integration errors from a set of 100 tests for each p are presented. It can be noticed in

Table 5 that the errors for the integration schemes of order p ≤ 15 generated from this study and those from Xiao and Gimbutas2

and Witherden and Vincent3 are of the same magnitude and oscillate about machine precision. For all the integration schemes,

the maximum error is (10−14), but their mean values are (10−15). For p ≥ 16, which are the new rules from this work, the

relative errors are also close to machine precision.

4.2 Convergence tests

We assess the accuracy of the p-order cubature rules for the integration of an exponential function, a rational function, weakly

singular functions and a trigonometric function over tetrahedral elements. In the last example, the tetrahedra have curved faces.

4.2.1 Exponential test function

In this test, we consider the exponential function

f (x) = exp(�x + �y + 
z), (26)

where �, � and 
 are real numbers. For this test, we set � = 9, � = 12, and 
 = 4. When � ≠ � ≠ 
 , the integral of the test

function over the reference tetrahedron is given by

I = ∫
T

f (x) dx =
exp(�) − 1

��

−
exp(�) − exp(
)

(� − 
)(� − 
)

−
exp(�) − exp(�)
�
(� − �)

−
exp(�) − exp(�)

(� − �)(� − 
)

, (27)
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TABLE 5 Integration errors for test on biunit cube with tetrahedral mesh, Fig. 3. Comparisons are made to results obtained
using the schemes presented in Xiao and Gimbutas2 and Witherden and Vincent.3 The listing is the maximum and mean values
of the error from hundred tests for each p.

,
This work Xiao and Gimbutas2 Witherden and Vincent3

p R × 1016 R × 1016 R × 1016

n max mean n max mean n max mean

2 4 68 5.4 4 43 6 4 74 5

3 6 109 5 6 146 7 8 183 7

4 11 36 6 11 54 7 – – –

5 14 237 10 14 171 10 14 65 7

6 23 120 10 23 119 10 24 150 9

7 31 314 17 31 259 18 35 38 6

8 44 202 10 44 184 11 46 200 10

9 57 167 12 57 260 14 59 570 17

10 74 553 22 74 685 23 81 104 11

11 94 195 14 95 99 13 – – –

12 117 76 11 122 96 12 – – –

13 144 281 19 146 343 21 – – –

14 175 328 20 177 332 22 – – –

15 207 399 28 214 251 25 – – –

16 247 467 30 – – – – – –

17 288 190 17 – – – – – –

18 338 668 38 – – – – – –

19 390 852 42 – – – – – –

20 448 662 30 – – – – – –

and for the chosen values of �, �, and 
 , we have I = 5.054368832531350 × 102.

The numerical tests for the integration of the exponential function on the reference tetrahedron are the same as those performed

in Section 4.1.1. Our cubature schemes and those of Xiao and Gimbutas2 are used in the study. From all the permutations of the

numbering of the vertices, the maximum error for each p is selected and used in the convergence plots shown in Fig. 4. Plots
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FIGURE 4 Relative error in the integration of the exponential function in (26) (� = 9, � = 12, 
 = 4) on the reference
tetrahedron.

are shown for the relative integration error R versus p. For p ≤ 15 the convergence rates and accuracy of both cubature schemes

are similar. For p > 15, our cubature schemes continue to show monotonic convergence and attain an accuracy of (10−13) for

p = 20.

The exponential function in (26) is also used to integrate over the biunit cube. The exact integral of the exponential function

in C = [−1, 1]3 is:

I = ∫
C

f (x) dx = 1
��


(

exp(�) − exp(−�)
)(

exp(�) − exp(−�)
)(

exp(
) − exp(−
)
)

. (28)

For this test, we choose � = 15, � = 12, and 
 = 14, and the exact value of the integral is I = 2.539061482164276 × 1014.

For the purpose of numerical integration, the cube is meshed by 1466 tetrahedra of similar sizes. We compare the accuracy

of the cubature rules generated in this paper to those by Xiao and Gimbutas.2 In Fig. 5, convergence curves of the relative

integration error of both schemes are shown as a function of p. We observe that the integration schemes of Xiao and Gimbutas2

converge monotonically, while the convergence of our scheme is nonmonotonic; however, for most p, our cubature schemes

have better accuracy. For p = 20, our scheme attains machine-precision accuracy.
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FIGURE 5 Relative error in the integration of the exponential function in (26) (� = 15, � = 12, 
 = 14) over the biunit cube,
which is meshed with 1466 tetrahedra.

4.2.2 Rational test function

In this test, we consider the rational function

f (x) =
g5(x)

1 +
[

g3(x)
]2
, (29)

where gk(x) is a randomly generated polynomial of order k. The cubature rules are used to compute the integral of f (x) over the

reference tetrahedron. A reference value of the integral is obtained bymeshing the reference tetrahedron with 1156 tetrahedra and

performing numerical integration on each tetrahedron and summing the results. On each tetrahedron of the mesh, our cubature

schemes from p = 13 to p = 20 and those of Xiao and Gimbutas2 (p = 13, 14, 15) yield the same reference result.

The cubature schemes from this work are tested on the reference tetrahedron with permutations on the numbering of the

vertices. The tetrahedral cubatures for p = 2 up to p = 20 are used for the numerical integration of the rational test function

in (29). For each permutation, the integration errors fluctuate and the maximum error for each p is chosen. In Fig. 6, the relative

integration error R versus p is presented for our scheme and those obtained using the cubature scheme of Xiao and Gimbutas.2

It can be seen that for p ≤ 15, the accuracy of both schemes is proximal and convergence is monotonic. For p > 15, the

convergence of our cubature schemes retain monotonicity, and an accuracy of (10−7) is attained for p = 20.
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FIGURE 6 Relative error in the integration of the rational function in (29) over the reference tetrahedron.

4.2.3 Weakly singular test functions

In this test, we consider the weakly singular functions

f1(x) =
1
√

r
, f2(x) =

1
r
, r =

√

x2 + y2 + z2. (30)

These functions are unbounded at the origin, but have integrable singularities over the reference tetrahedron T . The exact value

of the integral of f1(x) and f2(x) over T are I = 163∕679 and I = 1531∕4236, respectively.

For this example, we conduct studies that are similar to those performed in Sections 4.2.1 and 4.2.2. The results are shown in

Fig. 7. We observe that the accuracy improves for increasing p, but the convergence curve is nonmonotonic using our cubature

rules as well as for the rules from Xiao and Gimbutas.2 In most instances, our cubature rules give slightly better results that

those obtained using the cubature rules of Xiao and Gimbutas.2 However, even for p = 20 the accuracy is limited and tends

to level-off. These accuracy trends are similar to what is obtained in the integration of 1∕
√

r and 1∕r on a square using tensor-

product Gauss quadrature.36 Most of the error resides in the vicinity of the vertex located at the origin, and hence more cubature

points are needed in this region. Singularity-canceling schemes such as the Duffy transformation or the generalized Duffy trans-

formation and also the homogeneous numerical integration method36 are more accurate and efficient approaches for evaluating

such integrals.
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FIGURE 7 Relative error in the integration of weakly singular functions over the reference tetrahedron. (a) f1(x) and (b) f2(x)
are given in (30).

4.2.4 Integration over a semi-cylindrical domain

In this example, we consider a semi-cylindrical domain Ω of height 2, inner radius R1 =
√

�∕2 and outer radius R2 =
√

3�

that is shown in Fig. 8. We integrate the test function f (x, y) = sin(x2 + y2) over Ω. The exact value of this integral is:

I = ∫
Ω

sin(x2 + y2) dx =

1

∫
−1

�

∫
0

R2

∫
R1

r sin(r2) drd�dz = −� cos(r2)||
|

R2

R1
= �. (31)

In order to perform the numerical integration over Ω, the biunit cube is meshed using 12 tetrahedra. Then the following

geometric map of the biunit cube to the semi-cylindrical domain (see Fig. 8) is used:

x = R(�) sin
[�
2
(1 + �)

]

,

y = R(�) cos
[�
2
(1 + �)

]

,

z = �,

R(�) = R1
1 − �
2

+ R2
1 + �
2

.

(32)

Due to the geometric map, the domainΩ is covered by curved tetrahedra. Numerical integration is performed using the cubature

schemes proposed in this work and those from Xiao and Gimbutas2. The relative error in the numerical integration as a function

of the order p is presented in Fig. 9. Up to p = 15, both schemes yield similar results but with nonmonotonic convergence. For

p > 15, the cubature rules proposed in this work continue to show improved accuracy and convergence towards the exact value.
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FIGURE 8 Geometric map from a binunit cube to a semi-cylindrical domain of height ℎ = 2, inner radius R1 =
√

�∕2 and
outer radius R2 =

√

3�.

5 CONCLUSIONS

In this paper, we have presented a new algorithm to generate high-order cubature rules for tetrahedra. To construct a cubature

scheme, the nonlinear moment equations were solved with positive weights and with integration points (nodes) in the interior of

the tetrahedron (so-called ‘PI rules’). The cubature algorithm consisted of three stages, with each a modified Newton procedure.

In the first stage, we began the search for a cubature rule by selecting random integration points inside the tetrahedron (used the

lower bound estimate to set the number of inserted points). The search direction in the Newton update was found by minimizing

the square of the norm of the Newton equations subject to inequality constraints that result from the PI rules. A fixed step size

was used in the update of the solution vector. In the second stage, a quadratic minimization problem with equality and inequality

constraints was considered using step size control to accelerate convergence. Finally, in the third stage a full Newtonmethod (unit

step size) was used in conjunction with an equality constrained quadratic least squares problem that provided the search direction

as the solution of a linear system of equations. In all stages of the algorithm that involved calculations in double precision, a

preconditioned matrix (via Gauss-Jordan elimination) was used at every iteration step, which ensured that the Jacobian matrix

was well-conditioned. The initial iterations in the third stage were carried out in double precision, and the last few iterations

were conducted using Variable Precision Arithmetic (128 digits) in Matlab, which provided cubature rules with high-precision.

Cubature schemes of order p = 2 to p = 20 were constructed with the same or fewer number of integration points than existing

rules. In the literature only rules up to p = 15 are available; the rules for p = 16 to p = 20 that were generated were new.
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FIGURE 9 Relative error in the integration of the function sin(x2 + y2) over the semi-cylindrical domain.

Verification tests and accuracy assessment of the cubature rules (truncated to 64 decimal digits) were conducted using double-

precision calculations. The domains of integration were the reference tetrahedron T = {(x, y, z) ∶ 0 ≤ x ≤ 1, 0 ≤ x + y ≤

1, 0 ≤ x + y + z ≤ 1}, a tetrahedral mesh-partition of the biunit cube C = [−1, 1]3, and a tetrahedral (curved elements) mesh-

partition of a semi-cylindrical domain. The p-order rules successfully passed the verification tests with monotonic convergence

and near machine-precision accuracy for the integration of p-order monomial and Chebyshev (polynomial) basis functions over

T and C . The sound accuracy of the cubature schemes was also demonstrated for the integration of an exponential test function

over T and C , rational and weakly singular test functions over T , and a trigonometric function over a semi-cylindrical domain.

For some of the test examples, we observed nonmonotonic convergence. To better understand the performance of the cubature

scheme on different integrands, developing error estimators for the numerical integration scheme would be valuable. As part of

future work, we plan to construct polynomial-precise cubature rules over other 3D domains such as pyramids, prisms and cubes.
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