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In this article, we present an algorithm to construct high-order fully symmetric
cubature rules for tetrahedral and pyramidal elements, with positive weights and
integration points that are in the interior of the domain. Cubature rules are fully sym-
metric if they are invariant to affine transformations of the domain. We divide the
integration points into symmetry orbits where each orbit contains all the points gener-
ated by the permutation stars. These relations are represented by equality constraints.
The construction of symmetric cubature rules require the solution of nonlinear poly-
nomial equations with both inequality and equality constraints. For higher orders,
we use an algorithm that consists of five sequential phases to produce the cuba-
ture rules. In the literature, symmetric numerical integration rules are available for
the tetrahedron for orders p = 1–10, 14, and for the pyramid up to p = 10. We
have obtained fully symmetric cubature rules for both of these elements up to order
p = 20. Numerical tests are presented that verify the polynomial-precision of the
cubature rules. Convergence studies are performed for the integration of exponen-
tial, weakly singular and trigonometric test functions over both elements with flat
and curved faces. With increase in p, improvements in accuracy is realized, though
nonmonotonic convergence is observed.
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1 INTRODUCTION

In this article, we construct high-order fully symmetric cubature rules for tetrahedra and pyramids. This contribution draws on

our recent work,1 in which high-order non-symmetric cubature rules over tetrahedra were proposed. We include full symmetries

via additional equality constraints in the algorithm to realize symmetric cubature rules. This article is self-contained; however,

to avoid needless repetitions, where appropriate we point the reader to Jaśkowiec and Sukumar1 for some of the details.
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Finite element (FE) methods require numerical integration to be performed over two- and three-dimensional element shapes.

In three-dimensional higher order FE calculations,2,3 efficient and accurate numerical integration (cubature) schemes are

required to deliver reliable and fast simulations. Any cubature scheme is represented as {xi, wi}ni=1, where xi ∈ ℝd is the i-th

integration point (node) and wi is the corresponding weight. It is desirable that all weights are positive and all nodes are in the

interior of the domain, which are collectively referred to as the ‘PI’ criteria. In addition, in many applications involving finite

elements, it is also desirable that the cubature scheme is symmetric, i.e., it is invariant to affine transformation into itself.4,5,6,7

Symmetric rules are preferred since symmetric distribution of interpolation nodes (e.g., shape functions on a tetrahedron) can be

leveraged to deliver fast assembly of stiffness and mass matrices in finite element analysis. More importantly, use of symmetric

cubature rules in nonlinear finite element analysis ensures that the simulation results do not depend on the nodal ordering in the

element connectivity.

In three dimensions, commonly used finite elements shapes are: tetrahedron, hexahedron, prism and pyramid. For all of these

elements, a mapping is available to a reference element on which numerical integration is carried out. For hexahedral and

prismatic elements, symmetric cubature schemes can be readily obtained using tensor-product of univariate and 2D Gaussian

rules, even though the number of nodes is far from optimal. For the tetrahedron and pyramid, such standard tensor-product

constructions are not possible. Use of the Duffy transformation8 to generate symmetric integration schemes for pyramids has

been proposed,9 but this approach brings additional complications in the numerical integration. The tetrahedral, pyramidal,

hexahedral, and prismatic elements are well-studied in the literature.10 Bedrosian11 was the first to construct shape functions for

pyramidal elements, whichwas improved upon and extended for higher order by Bergot et al.12 Formeshing complex geometries,

pyramidal elements serve as a glue to connect tetrahedral and hexahedral elements, which ensures C0-continuity over the finite

element mesh.13 Various contributions pertaining to pyramidal finite element have appeared in the literature, among which we

mention the construction of H-div and H-curl conforming higher order pyramidal elements14,15,16,17,18 and a five-node pyramidal

element for explicit dynamics simulations.19

In this article, we present fully symmetric cubature rules up to order (synonymous with polynomial degree) p = 20 for tetra-

hedral and pyramidal finite elements. Over the past decade, a few contributions have appeared on the construction of symmetric

cubature rules over tetrahedra and pyramids,20,4,21,7,6,9,22 with rules that are available for p = 1–10, 14 and p = 1–10 for the

tetrahedron and the pyramid, respectively. As noted in Jaśkowiec and Sukumar,1 constructing high-order 3D cubature rules over

finite elements is a challenging problem, which is further compounded herein due to the presence of additional symmetry con-

straints. Symmetric cubature rules for simplexes (including the tetrahedron) of arbitrary order can be generated using open or

closed Newton-Cotes formulas proposed by Silvester.23 However, this approach provides far from optimal number of integration

points and also includes some negative weights. In Zhang et al,21 barycentric coordinates are applied to generate two symmet-

ric cubature rules (p = 8 and p = 14) for the tetrahedron. Shunn and Ham7 describe a family of symmetric integration rules for
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tetrahedra. The distribution of points in each cubature rule is based on an underlying cubic close-packed grid, and the precise

point locations and weights are optimized to reduce the truncation error in the cubature approximation. This approach results in

a family of symmetric rules up to p = 7 for a tetrahedron. A different approach is utilized in Kubatko et al,9 where symmetric

cubature rules for the pyramid up to p = 8 (PI criteria is met) are obtained by using the Duffy transformation from the hexahe-

dron. In William et al,6 a sphere close-packed lattice arrangement of points is utilized in the formulation of symmetric cubature

rules on the tetrahedron. An analytical approach is used in Chen et al22 to find symmetric cubature rules for the pyramid up to

order p = 3. Witherden and Vincent4 use the refinement approach of Zhang et al21 to generate symmetric schemes up to order

p = 10 for the tetrahedron and the pyramid.

In this article, the algorithmwe use to generate symmetric cubature rules for tetrahedral and pyramidal elements is an extension

of our recent work,1 where non-symmetric cubature rules up to p = 20 over the tetrahedron are proposed. To construct symmetric

rules, we adopt combinations of symmetry orbits as first introduced by Felippa,24 and later also used by Zhang et al,21 Witherden

and Vincent,4 and Geevers at al.25 Each orbit consists of a set of symmetric nodes that are generated from a permutation star. The

position of the nodes is represented by free variables that are present in the permutation star. These free variables are determined

through an iterative search procedure. The algorithm has five sequential phases, where each phase ‘improves’ the position of

the nodes in the orbits, so that the final cubature scheme so devised has an accuracy of (10−160). For p < 8, all five phases are

not necessary, but in other cases due to ill-conditioning in the solution of the nonlinear system of equations and round-off errors

that accumulate, all five phases are required. As an improvement over the current state-of-the-art, we construct cubature rules

up to order p = 20 for both the tetrahedron and the pyramid. To assess their accuracy, the polynomial-precision of all cubature

rules is verified using double-precision arithmetic. Cubature rules (128 decimal digits of precision) for the tetrahedron and the

pyramid from p = 2 up to p = 20 are provided in the supplementary materials.

The structure of the reminder of this article follows. The formulation is described in Section 2, wherein first we present

the reference elements (tetrahedron and pyramid) in Section 2.1, then discuss symmetry relations on the reference elements in

Section 2.2, and finally present the constrained nonlinear problem in Section 2.3. The main elements of the five-phase cubature

algorithm are described in Section 3. The cubature rules obtained in this paper are presented in Section 4, and the presentation

and discussion of verification and convergence tests are conducted in Section 5. Finally, the main findings from this work are

provided in Section 6.
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FIGURE 1 Reference elements. (a) Tetrahedron and (b) Pyramid.

2 FORMULATION

First, the domains used for the reference tetrahedron and pyramid are described. Then, details on the symmetry relations over

each reference element are provided, and finally we present the problem of solving the nonlinear polynomial (moment) equations

that are subjected to linear equality and linear inequality constraints to generate the cubature schemes.

2.1 Reference elements

Our objective is to obtain symmetric cubature schemes over a tetrahedron and a pyramid. As problem domains, we consider the

reference tetrahedron T and the reference pyramid P shown in Fig. 1. We use monomials as basis functions over these reference

domains. The integral of a monomial of order p = r + s + t over T and P is given by21,22

∫
T

xryszt dx = r! s! t!
(r + s + t + 3)!

, ∫
P

xryszt dx =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

4 (r + s + 2)! t!
(r + 1)(s + 1)(r + s + t + 3)!

if r and s are both even

0 otherwise
. (1)

2.2 Symmetry relations

In order to obtain the symmetric arrangement of the integration points in the tetrahedron, it is convenient to use barycentric

coordinates.26,21,4 If we assign vi as the coordinate of the i-th vertex of the reference tetrahedron (see Fig. 1a), then a point

x ∈ T can be expressed using the barycentric coordinates, � = (�1, �2, �3, �4)T , as

x =
4
∑

i=1
�iv1,

4
∑

i=1
�i = 1, (0 ≤ �i ≤ 1).



JAN JAŚKOWIEC AND N. SUKUMAR 5

For the reference tetrahedron T , the barycentric coordinates and Cartesian coordinates are related by

x = D̃�, D̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0

0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (2a)

� = B̃x + r̃, B̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −1 −1

1 0 0

0 1 0

0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, r̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2b)

We note the following identities:

B̃D̃B̃ = B̃, D̃B̃D̃ = D̃, D̃r̃ = 0. (3)

The cubature scheme in T is symmetric if it is invariant under permutations of the barycentric coordinates of the cubature

points. This implies that if there is a cubature point expressed in barycentric coordinates that is associated with the weight

w then other points generated by all possible permutations of the barycentric coordinates must also be associated with the

same weight w. Such permutations naturally divide the integration points into symmetry orbits STi , where each orbit contains

all the points generated by its permutation star. The permutation star of an orbit is an m-tuple of positive real numbers (with

possible repetitions), which when permuted yield symmetric points that belong to the orbit. If a point in a reference element

is represented in Cartesian coordinates then m = 3, and if it is given in barycentric (homogeneous) coordinates then m = 4

with only three of them being independent since they must sum to unity. To further clarify, we present the construction of the

permutation star for the tetrahedron. Let the barycentric coordinates of a point in the reference tetrahedron be represented by

the 4-tuple (N1, N2, N3, N4), where N1 +N2 +N3 +N4 = 1. If all entries are the same, then the permutation star is unique,

(1∕4, 1∕4, 1∕4, 1∕4) (centroid of the element), and is the sole member of ST1 . Now, consider the barycentric coordinate of a point

with one free variable a (repeated three times). The corresponding permutation star is ([a, a, a, 1 − 3a]), and on permuting the

entries within the square brackets it yields the orbit ST2 = {(a, a, a, 1 − 3a), (a, a, 1 − 3a, a), (a, 1 − 3a, a, a), (1 − 3a, a, a, a)}.

If the number of points that belong to STi is denoted by |STi |, then we have |ST1 | = 1 and |ST2 | = 4 !∕3 ! = 4. The remaining

permutation stars are: ([a, a, 1∕2 − a, 1∕2 − a]), ([a, a, b, 1 − 2a− b]) and ([a, b, c, 1 − a− b− c]) for a total of five permutation

stars in a tetrahedron. These five permutation stars in the tetrahedron (see Table 1) were proposed by Felippa,24 and later also

adopted by others.21,4,25 In this article, we use these five permutation stars for generating orbits in the cubature schemes.The

search for the cubature schemes is an iterative process in which the parameters in the permutation stars have to be found for each

orbit. Note that ST1 ⊂ S
T
2 ⊂ S

T
3 ⊂ S

T
4 ⊂ S

T
5 . Hence, during the iterative procedure, it might occur that parameters a and b in ST5
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TABLE 1 Tetrahedron symmetry orbits with barycentric coordinates.The entries within the square brackets are permuted.

symmetry
orbits

permutation star in
barycentric coordinates |STi |

ST1
(

1
4
, 1
4
, 1
4
, 1
4

)

1
ST2

(

[a, a, a, 1 − 3a]
)

4
ST3

(

[a, a, 1
2
− a, 1

2
− a]

)

6
ST4

(

[a, a, b, 1 − 2a − b]
)

12
ST5

(

[a, b, c, 1 − a − b − c]
)

24

are almost the same. If so, then this orbit is replaced by ST4 . This same scenario is applicable to other orbits for the tetrahedron

and the pyramid.

The number of integration points in the tetrahedral symmetric cubature rule is given as a linear combination of the symmetry

orbits:

n =
5
∑

i=1
ni|S

T
i |, (4)

where ni is the number of i-th symmetry orbits. It should be noted that the position of ST1 is fixed, so n1 = {0, 1} can only assume

two values. Even though the position of the point in the orbit ST1 is fixed, the associated weight has to be determined. This leaves

this orbit with one free variable. For orbits ST2 and ST3 , besides their weights an additional variable needs to be determined, so

they have two free variables. Proceeding likewise, the orbits ST4 and ST5 have three and four free variables, respectively. The

symmetric cubature rules consist of the set of symmetry orbits, so for unique description of the cubature all these free variables

need to be known. All the free variables are represented by the vector s and the total number of free variables is given by

ns = n1 + 2n2 + 2n3 + 3n4 + 4n5.

For the pyramid shown in Fig. 1b, any point in the element is expressed using Cartesian coordinates. For the pyramidal

element, the relevant relations in (3) are trivial since D̃ = B̃ = I and r̃ = 0. For this element, the symmetry orbits {SPi }
4
i=1

are listed in Table 2. The relation for the number of integration points is analogous to (4). The number of free variables for the

pyramid is given by

ns = 2n1 + 3n2 + 3n3 + 4n4.

The cubature scheme, {xi, wi}ni=1, consists of set of nodes and associated weights. All the unknowns are represented in the

extended vector z = [w1 x1 y1 z1 w2 x2 y2 z2 …wn xn yn zn]T . On considering (2) as well as the permutations in Tables 1
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TABLE 2 Pyramid symmetry orbits.

symmetry
orbits

permutation star in global
coordinates |SPi |

SP1
(

0, 0, c
)

1
SP2

(

[±a, 0], c
)

4
SP3

(

±a, ±a, c
)

4
SP4

(

[±a, ±b], c
)

8

and 2, the following relations between z and s are established:

z = Bs + r, (5a)

s = Dz. (5b)

For two cases, we now provide explicit forms of the matrices B and D, and the vector r. For the tetrahedron, let us consider

a cubature scheme that has a single ST2 orbit (see p = 2 in Table 3). Then, n = 4 (four cubature nodes) and ns = |s| = 2 (two

free variables). Letting s ∶= {a w}T denote the unknown vector with the free variables, we can write

B =

⎡

⎢

⎢

⎢

⎣

1 1 −3 0 1 −3 1 0 −3 1 1 0 1 1 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

⎤

⎥

⎥

⎥

⎦

T

, D =

⎡

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎦

,

and the vector r =
{

0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
}T . For the pyramid, we consider a cubature scheme with the two orbits

SP1 and SP3 (see p = 2 in Table 5). Here, n = 5 and ns = |s| = 5. With s ∶= {c1P w1P a3P c3P w3P }T , we can write the relevant

matrices as

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 −1 1 0 0 1 −1 0 0 −1 −1 0 0

0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

, D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and the vector r = 0 (20 × 1 column vector).

The identities presented in (3) are inherited for the matrices B and D, and hence

BDB = B, DBD = D, Dr = 0. (6)

The two relations in (5) are combined to provide another relation for the global vector z:

Gz = r, G = I − BD. (7)
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The matrices B, D and G consist mostly of zeros, and since the nonzero values are integers, they are easy to construct and

operate on. Equation (7) defines the constraints for the vector z so that the points in the tetrahedron or pyramid are arranged in a

fully symmetric manner. The matrix G is singular and the pair (G, r) represents the consistent set of equations. This means that

some of the equations in (7) are linearly dependent. These dependent equations are removed from the system of equations via a

modified Gauss-Jordan (MGJ) elimination procedure,1 which results in the modified system of equations

Ḡz = r̄. (8)

Since (8) has fewer equations than unknowns, its solution is nonunique. The vectors that satisfy (7) and (8) are grouped in the

following set:

Sc =
{

y ∶ ||Gy − r|| = 0
}

=
{

y ∶ ||Ḡy − r̄|| = 0
}

. (9)

To prepare us for what lies ahead, we define another set S0c = {y ∶ y ∈ ker(G)} = {y ∶ y ∈ ker(Ḡ)}, which defines the null

space of G and also Ḡ. The matrix Ḡ is used to define the projection matrix27

P = I − ḠT (ḠḠT)−1 Ḡ, (10)

which is used to project the incremental vector onto the null space of Ḡ (constrained symmetry space). We now present three

lemmas that are used later on.

Lemma 1. If a vector u is defined as u = Bv + r, then

u ∈ Sc ∀v.

Proof. If the vector u belongs to the set Sc , it suffices to show thatGu− r = 0. To this end, on using the definition of the matrix

G given in (7) and the relations in (6), we can write

Gu − r = GBv +Gr − r = Bv − BDBv + r − BDr − r = Bv − Bv = 0.

Lemma 2. If a vector u is defined as u = Bv, then

u ∈ S0c ∀v.

Proof. If the vector u belongs to the set S0c , then it suffices to show that Gu = 0. To this end, on using the definition of the

matrix G given in (7) and the relations in (6), we can write

Gu = GBv = Bv − BDBv = Bv − Bv = 0.
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Lemma 3. If a vector u is defined as u = Pv, then

u ∈ S0c ∀v.

Proof. If the vector u belongs to the set S0c , it suffices to show that Ḡu = 0. To this end, on using the definition of the projection

matrix given in (10), we can write

Ḡu = ḠP v =
[

Ḡ − ḠḠT (ḠḠT)−1 Ḡ
]

v =
[

Ḡ − Ḡ
]

v = 0.

2.3 Constrained moment problem

The integration of an arbitrary function f (x) over the domain 
 is given by a cubature formula of the form

∫



f (x) dx ≈ |
|
n
∑

i=1
f (xi)wi, (11)

where the pair {xi, wi}ni=1 represents the cubature scheme with xi the i-th integration point (node), wi is the i-th weight, n is

the number of integration points, and |
| represents the volume of the domain. We apply (11) to the tetrahedral and pyramidal

reference elements shown in Fig. 1. The volumes |
| of the tetrahedral and pyramidal reference elements are 1∕6 and 4∕3,

respectively. For a given p, the goal is to find the cubature scheme with the minimal number of nodes, along with the position

of each node and its associated weight that gives the exact integral for any p-order polynomial. In this article, we require that

the p-order cubature scheme meets the following three requirements: (i) weights are positive, (ii) nodes reside in the interior

of the domain, and (iii) cubature scheme is fully symmetric. The two first requirements are clear. A cubature scheme being

fully symmetric means that it is invariant to affine transformation of the domain 
. The solution of this problem is nonunique,

because there can exist distinct p-order cubature rules that satisfy the constrained problem. In our previous work,1 high-order

non-symmetric cubature schemes were proposed with minimal number of nodes that were close to the lower bound estimate.

The symmetry constraints lead to more number of integration points in the symmetric cubature rules in comparison to the

non-symmetric case.

In order to find p-order cubatures, we have to find the solution of the following constrained moment problem:

f (z) = 0, (12a)

subject to the linear inequality and linear equality constraints

Az < b, (12b)

Ḡz = r̄, (12c)
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where (12a) are polynomial (moment) equations, the pair (A, b) represents algebraic constraints for the inside nodes and positive

weights, and the pair (Ḡ, r̄) represents the symmetric constraints. We define the vector f to represent the error of the moment

equations:

f ∶=Mw − p, (13a)

where

M = |
|

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Φ1(x1) Φ1(x2) … Φ1(xn)

Φ2(x1) Φ2(x2) … Φ2(xn)

… … … …

Φl(x1) Φl(x2) … Φl(xn)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, w =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

w1

w2

…

wm

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, p =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∫
 Φ1(x) dx

∫
 Φ2(x) dx

…

∫
 Φl(x) dx

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (13b)

In (13b), Φi (i = 1, 2,… ,l) are the basis functions, which are chosen as monomials and l represents the number of basis

functions. The number of basis functions, l = (p+1)(p+2)(p+3)∕6, which consists of all monomials up to order p in 3D. The

problem in (12) is strongly nonlinear, and an iterative procedure based on Newton’s method is applied. Equation (1) is used to

precompute the integrals of the monomials in multi-precision arithmetic (160 digits) to form p in (13), and the results are stored

in a data file.

For the cubature problem, some authors have used the symmetry requirements to reduce the size of the problem domain and

the number of unknowns.20,21,4,28 In these contributions, symmetry is applied to the nodal positions and the basis functions, so

that in the reduced-scale problem only the unknowns in s (fewer than in z) need to be determined. In this article, we follow the

approach in Jaśkowiec and Sukumar,1 and apply preconditioning to the Jacobian matrix. This operation destroys the symmetry

of the basis functions. Therefore, we consider the full domain (T and P ) on which the symmetry constraints (12c) are enforced

on the unknown vector z at each iteration step of the algorithm. For example, in a p = 15 cubature rule, the reduced-scale

problem has 56 unknowns whereas the full-scale problem has 1056 unknowns. We obtain robustness for higher p but at greater

computational costs, but this is not a significant limitation since it is a one-time cost. In Section 3, we present the algorithm for

solving (12), where the symmetry constraints play an important role.

3 ALGORITHM FOR SYMMETRIC CUBATURES

To determine the cubature rules, we search for the vector z that satisfies the nonlinear equations (12a) subject to the linear

inequality constraints (12b) and the linear equality constraints (12c). The algorithm has five phases, and in each phase an iterative
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procedure is performed to calculate the increment Δz such that

zk = zk−1 + �Δz, zk−1, zk ∈ Sc , (14)

where k− 1 and k are iteration step counters, and � is the step size. On combining (7) with (14) it can be shown that the vector

increment Δz belongs to S0c .

At every phase of the algorithm, the increment Δz in (14) is computed using a modified Newton procedure. The step size �

is set to 0.1 (damped or guarded Newton) for phases one to three, and � = 1 (full Newton) for phases four and five. However, to

improve the convergence rate in the third phase, the optimal � can be determined as presented in Jaśkowiec and Sukumar.1 The

Jacobian matrix Jk = )fk∕)z needs to be calculated at every iteration step. The pair (Jk,fk) is calculated using the monomial

basis, which if used as is would lead to ill-conditioning of the Jacobian matrix as p is increased. To resolve this issue, we follow

Jaśkowiec and Sukumar1 and precondition the Newton equations using the MGJ procedure, which results in the modified well-

conditioned pair (J̄k, f̄k). To solve (12), we seek the increment Δz that minimizes the Newton residual and satisfies the linear

inequality and linear equality constraints. For the so-called extended version of the problem, the full vectorΔz is found, whereas

in the reduced version of the problem,Δs (increment of the free variables vector) is firstly found, and thenΔz is set. The extended

version is used in phases two to four, and the reduced version is used in phase one and phase five. In all phases, various types of

constrained minimization problems arise. For constrained linear least-squares problems, the Matlab function lsqlin is utilized.

The flowchart of the five-phase algorithm is shown in Fig. 2. In all phases symmetry is enforced on the vector zk at every

iteration step. To initiate the algorithm, we first choose the set of orbits and then randomly generate points in the orbits. This set

of points is sent to phase one of the algorithm. The role of phase one is to reposition the nodes to be suitable for the next phase.

For phases one to five, if the convergence criteria is met the computations proceed to the subsequent phase; if not, one more

orbit is added and the algorithm restarts from phase one. In phases one to three the inequality constraint (12b) is enforced (also

checked at each iteration step), but in the fourth and fifth phases it is not. If phase four terminates successfully, then we proceed

to phase five. The fifth phase uses high-precision calculations, and is time-consuming. Hence, it is instructive to search for a

more efficient scheme that has fewer nodes by removing one of the symmetry orbits and repeating the algorithm from phase two.

When the cubature with minimal possible number of integration points is found, then the final phase five is invoked to calculate

the cubature rules with high precision. We assign a prescribed error tolerance �i (i = 1, 2,… , 5) to each phase of the algorithm,

and within each iteration step of the i-th phase, convergence is checked via ||f || < �i. The values of �i are set individually for

each cubature rule. We know they must be monotonically decreasing with each phase, but there is no simple means to choose a

specific value. In phase five, which is done using variable-precision floating-point arithmetic (VPA), �5 is set to 10−160.
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FIGURE 2 Flowchart of the symmetric cubature algorithm.
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3.1 Phase one

In this phase, we solve the constrained minimization problem

min
Δz

1
2
||JkΔz + fk||2, (15a)

subject to the following linear inequality and linear equality constraints

CΔz < d, (15b)

ḠΔz = 0, (15c)

where the pair (C , d) is constructed to apply the inequality constraints (12b) for the increment vector Δz. In (15), the vector Δz

can be expressed as

Δz = BΔs. (16)

On using Lemma 2, we have ḠΔz = 0 for every vector Δs. Let J rk = JkB and Cr = CB. The matrix J rk is rectangular with

greater number of rows than columns and the pair (J rk ,fk) represents the singular, consistent equation. This pair is preprocessed

using the MGJ procedure,1 so that all equations that are linearly dependent are removed from the pair, which results in the

modified form (J̄ rk , f̄k). Now, the constrained minimization problem is:

min
Δs

1
2
||J̄ rkΔs + f̄k||

2, (17a)

subject to the linear inequality constraints

CrΔs < d. (17b)

3.2 Phase two

In this phase, the vector Δz is calculated as

Δz = PΔz̄, (18)

where Δz̄ is the solution of the following minimization problem:

min
Δz̄

1
2
||J̄kΔz̄ + f̄k||2, (19a)

subject to the linear inequality constraints

CΔz̄ < d, (19b)
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where the pair (J̄k, f̄k) is the preprocessed pair (Jk, fk) using MGJ.1 The vector Δz calculated in (18) belongs to S0c , which is

established using Lemma 3.

In this phase the inequality constraints are enforced on theΔz̄, and then this vector is projected onto the symmetry subspace to

obtain the vectorΔz, see (18). It may happen that during the iteration procedure some points in the vector zk from (14) go outside

the tetrahedron, but after a few iterations they return to be within the element. According to Lemma 3, we know that the vector

Δz ∈ S0c , and so the vector zk keeps the symmetry of the points in the domain in each iteration step. The projection operation

in (18) is performed with machine-precision (i.e., double-precision herein) accuracy. As the iterations proceed, truncation errors

may accumulate and the symmetry in the vector z may be violated, especially for high-order problems. In order to circumvent

this issue, using Lemma 1, we perform the following simple procedure after each iteration:

sk = Dzk, zk = Bsk + r. (20)

3.3 Phase three

In this phase, the vector Δz is obtained using the same projection as in the previous phase, see (18). Also in this case to get rid

of the influence of the truncation error during the projection, the procedure in (20) is performed. In this phase,Δz̄ is the solution

of the following constrained quadratic minimization problem:

min
Δz̄

1
2
||Δz̄||2, (21a)

subject to the following linear inequality and linear equality constraints:

CΔz̄ < d, J̄kΔz̄ = −f̄k. (21b)

3.4 Phase four

The increment Δz is obtained in a similar manner to that in the previous two phases, and the symmetry corrections are also

implemented. For the vector Δz̄, the following quadratic minimization problem is posed:

min
Δz̄

1
2
||Δz̄||2, (22a)

subject to the linear equality constraints

J̄kΔz̄ = −f̄k. (22b)
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The problem posed in (22) has an exact (algebraic) solution:

Δz̄ = −J̄Tk
(

J̄kJ̄Tk
)−1 f̄k. (23)

In this phase, condition (12b) is not enforced, but is checked after each iteration. Up to this phase, all calculations are done

in double precision. Though a rare occurrence, if it so happens that during the iterations any point goes outside the reference

element (tetrahedron or pyramid), or any weight is negative, then the whole algorithm is considered to have failed, and the

algorithm is restarted.

3.5 Phase five

The previous four phases are performed using double-precision arithmetic. After the fourth phase, we often have a cubature

scheme with an accuracy of(10−16) for small p and about(10−6) for p > 15. The goal of this phase is to improve the accuracy

of the integration scheme. To this end, VPA is applied in this phase with 160 digits of precision. The calculations using VPA

arithmetic are very time-consuming and so the number of iterations should be limited to only a few. Thus, it is important that

the algorithm converges fast to achieve an accuracy of (10−160) for each p.

In this phase, the vector Δz is calculated using (16), where Δs is the solution of the following constrained quadratic

minimization problem:

min
Δs

1
2
||Δs||2, (24a)

subject to the linear equality constraints

J̄ rkΔs = −f̄k. (24b)

The solution of (24) is of the same form as (23), and is given by

Δs = −(J̄ rk)
T (J̄ rk(J̄

r
k)
T)−1 f̄k. (25)

4 SYMMETRIC CUBATURE SCHEMES

The proposed cubature algorithm is implemented to generate p-order cubature schemes (p = 2 to p = 20) on a tetrahedron and

pyramid. During phases 1–4, the computations are done using double-precision arithmetic, whereas high-precision (160 digits)

arithmetic is applied in the fifth phase.

The algorithm is started by choosing the combination of symmetry orbits Si, and then randomly scattered points in the orbits

are generated so that they all are in the interior of the domain. For moderate p, convergence is fast, but for p > 15, the algorithm
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becomes sensitive to the location of the starting points. Thus, for higher orders the distribution of initial points are selected using

the integration points from two previously generated lower order cubature schemes. It takes about 40 min to obtain the cubature

rule for p = 10 using double-precision calculations, whereas it takes about 2 days to generate the cubature rule for p = 20. For

the high-precision calculations using VPA (160 decimal digits) in Matlab, it is sufficient to perform about 7 iterations. However,

these calculations are time-consuming. For example, an iteration for p = 10 takes 40 min, whereas for p = 20, one iteration

takes over 30 h on a multiprocessor server. All cubature weights are positive, and the value of a weight defines the influence

of the corresponding node. Thus, it is desirable that their values are not very small. The quality of the cubature scheme can be

assessed by the value of the following parameter:

rw =
min(wi)
max(wi)

.

It is desirable that rw is as close to unity as possible, but this is difficult to achieve in practice and typically worsens with increase

in p. A very small value of rw indicates that the influence of some nodes in the cubature scheme is diminished.

In Table 3, the number of integration points in a tetrahedron for different p is listed using our scheme and those presented in

Witherden and Vincent4 and Zhang et al.21 The table also shows the combinations of symmetry orbits as well as the value of rw

for all schemes. Up to p = 10, the number of integration points for our schemes are the same as those ofWitherden and Vincent,4

though the value of rw for our schemes is the same or higher. For p = 9, our results also match for the combination of symmetry

orbits; however, for p = 10 we obtain different combination of orbits but with the same number of integration points. Our

cubature schemes for p = 2, p = 5 and p = 6 exactly matches those of Witherden and Vincent.4 Furthermore, we have generated

rules for p = 11 to p = 20, and besides p = 14, all other rules are new additions to the literature. Note that for p = 14, we obtain

fewer number of integration points than Zhang et al.21 In Table 4, we compare our results for the number of integration points

in the symmetric tetrahedral cubature scheme to the non-symmetric rules presented in Jaśkowiec and Sukumar.1 The lower

bound estimate for the number of integration points is also indicated. It is seen that placing the symmetry requirements results

in greater number of nodes. On average, the symmetric cubature rule has about 20 percent more nodes than the non-symmetric

cubature rule.

The analogous listing of Table 3 for the pyramid (see Fig. 1b) is presented in Table 5. For p = 2 to p = 10, we have obtained

schemes that have the same or fewer number of nodes than those in Witherden and Vincent;4 for p = 6 and p = 10, our rules

have fewer number of nodes. For most p, we obtain values of rw that are greater than those of Witherden and Vincent.4 Our

symmetric pyramidal cubature rules from p = 11 to p = 20 are new additions to the literature.

For the tetrahedral and pyramidal cubature schemes, the location of the cubature nodes for three values of p (p = 8, 16, 20) is

depicted in Fig. 3. In Fig. 4, the cubature nodes for p = 7, 13, 17 are presented on the xy-plane, which reveal the symmetry in

the position of the nodes. Each node is shown as a ball with the radius of the ball being proportional to the value of the cubature
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TABLE 3 Number of integration points and combination of symmetry orbits for various symmetric tetrahedral cubature rules.
Our results are compared to the rules presented in Witherden and Vincent4 and Zhang et al.21

This work Witherden and Vincent4 and Zhang et al21 (in braces)
p n |ST1 | |ST2 | |ST3 | |ST4 | |ST5 | rw n |ST1 | |ST2 | |ST3 | |ST4 | |ST5 | rw
2 4 0 1 0 0 0 1.000 4 0 1 0 0 0 1.000
3 8 0 2 0 0 0 0.961 8 0 2 0 0 0 0.835
4 14 0 2 1 0 0 0.711 14 0 2 1 0 0 0.378
5 14 0 2 1 0 0 0.378 14 0 2 1 0 0 0.378
6 24 0 3 0 1 0 0.182 24 0 3 0 1 0 0.182
7 35 1 1 1 2 0 0.085 35 1 1 1 2 0 0.085
8 46 0 4 1 2 0 0.150 46 0 4 1 2 0 0.138

(46) (0) (4) (1) (2) (0) (0.117)
9 59 1 4 1 3 0 0.040 59 1 4 1 3 0 0.001
10 81 1 2 2 5 0 0.026 81 1 2 0 6 0 0.008
11 110 0 2 3 5 1 0.086 – – – – – – –
12 168 0 3 2 4 4 0.049 – – – – – – –
13 172 0 4 2 6 3 0.023 – – – – – – –
14 204 0 6 4 5 4 0.008 (236) (0) (5) (0) (4) (7) (0.020)
15 264 0 3 2 6 7 0.032 – – – – – – –
16 304 0 4 2 7 8 0.014 – – – – – –
17 364 0 4 4 9 9 0.026 – – – – – – –
18 436 0 7 8 10 10 0.007 – – – – – – –
19 487 1 3 1 13 13 0.013 – – – – – – –
20 552 0 6 2 13 15 0.012 – – – – – – –

TABLE 4 Number of integration points as a function of p for tetrahedral cubature rules. Results are compared to the lower
bound estimate, nlb = ⌈(p + 1)(p + 2)(p + 3)∕24⌉, and to the rules given in Jaśkowiec and Sukumar.1

p 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
nlb 3 5 9 14 21 30 41 55 72 91 114 140 170 204 242 285 333 385 443
n1 4 6 11 14 23 31 44 57 74 94 117 144 175 207 247 288 338 390 448
n 4 8 14 14 24 35 46 59 81 110 168 172 204 264 304 364 436 487 552

weight. It can be observed that nodes with larger weights are located in the vicinity of the center of the element. With increasing

distance from the center of the element, the nodal weights decrease. Smallest weights are for nodes located close to the faces of

the element. This shows that the nodes located well inside the element have the greatest contribution to the value of the integral,

whereas those close to the outer boundaries have much less influence.

The reader can find the listing of the cubature points and weights in the supplementary materials, where data with 128 digits

of precision are provided in two forms: compact where only the unique values in the symmetry orbits (free variables) are given

(see Tables 1 and 2), and extended with all points and weights given in column-format x y z w. Additionally, tetrahedral cubature

rules are also provided in barycentric coordinates. The results are given in a text file as well as in MATLAB R© binary format.
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TABLE 5 Number of integration points and combination of the symmetry orbits for various order of symmetric pyramidal
cubature rules. Results are compared to the rules presented in Witherden and Vincent.4

This work Witherden and Vincent4

p n |SP1 | |SP2 | |SP3 | |SP4 | rw n |SP1 | |SP2 | |SP3 | |SP4 | rw
2 5 1 0 1 0 0.643 5 1 1 0 0 0.856
3 6 2 0 1 0 0.560 6 2 0 1 0 0.446
4 10 2 1 1 0 0.307 10 2 1 1 0 0.307
5 15 3 1 2 0 0.271 15 3 1 2 0 0.234
6 23 3 2 3 0 0.081 24 4 2 3 0 0.036
7 31 3 2 5 0 0.133 31 3 2 5 0 0.132
8 47 3 4 5 1 0.061 47 3 3 6 1 0.030
9 62 2 6 5 2 0.083 62 2 4 9 1 0.055
10 80 4 6 7 3 0.014 83 3 3 9 4 0.051
11 103 3 8 11 3 0.110 – – – – – –
12 127 3 9 12 5 0.016 – – – – – –
13 152 4 8 15 7 0.040 – – – – – –
14 184 4 12 17 8 0.023 – – – – – –
15 234 2 13 23 11 0.028 – – – – – –
16 285 1 13 22 18 0.027 – – – – – –
17 319 3 13 28 19 0.009 – – – – – –
18 357 1 14 31 22 0.011 – – – – – –
19 418 2 17 29 29 0.014 – – – – – –
20 489 1 19 31 36 0.009 – – – – – –

5 NUMERICAL TESTS

In this section, we present verification and convergence tests for the cubature rules. The cubature schemes are provided with 128

digits of precision in the supplementary material; however, numerical tests are performed using double-precision arithmetic. The

aim of the verification tests is to ensure that the cubature rules deliver close to machine-precision accuracy for the integration of

polynomial functions. In the convergence tests, nonpolynomial functions are considered to assess the performance of the cubature

rules. For comparison purposes, the same tests are carried out for the cubature rules proposed in Witherden and Vincent4

(taken from the ‘quadpy’ project29), and the non-symmetric tetrahedral cubature rules from Jaśkowiec and Sukumar.1 A single

verification test is presented in Section 5.1, and in Sections 5.2.1–5.2.4 we consider convergence tests for exponential, weakly

singular and trigonometric functions. The weakly singular function test is performed on the reference tetrahedron; all other tests

are performed on the biunit cube or unit cube. All cubes are meshed using 12 tetrahedra and 6 pyramids as shown in Fig. 5. In

the final convergence test (see Section 5.2.4), integration is performed on the semi-cylindrical domain, which is mathematically

generated by the transformation from the biunit cube.1 For all tests, the relative error is defined as

R =
|I − Iq|
|I|

,
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FIGURE 3 Location of cubature nodes for p = 8, p = 16 and p = 20. (a) Tetrahedron and (b) Pyramid. The center of each ball
is used to represent the location of the cubature node, and its radius is proportional to the value of the cubature weight.

where I is the exact value of the integral, and Iq is the numerically computed value of the integral using the cubature rule.

5.1 Verification tests on the biunit cube

For each p, 100 random polynomials f (x) are generated and then integrated over the biunit cube, C = [−1, 1]3. We choose the

order of f (x) to be the same as the order of the cubature to be checked. The accuracy of any cubature rule of order p should be

within machine-precision for any polynomial up to order p over a mesh of tetrahedral or pyramidal elements that partitions Ω.

The cube is first meshed with 12 tetrahedral elements and secondly by 6 pyramidal elements. The results of the numerical tests
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FIGURE 4 Location of cubature nodes on the xy-plane for p = 7, p = 13 and p = 17. (a) Tetrahedron and (b) Pyramid. The
center of each ball is used to represent the location of the cubature node, and its radius is proportional to the value of the cubature
weight.
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FIGURE 5 Cube meshed by (a) 12 tetrahedra and (b) 6 pyramids.
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are presented in Table 6 for tetrahedral elements and in Table 7 for pyramidal elements. The maximum as well as the algebraic

mean values of the relative integration errors from a set of 100 tests for each p are presented. It can be observed that the errors

for the integration schemes of order p ≤ 10 generated from this study and those from Witherden and Vincent4 are of the same

magnitude and oscillate about machine precision. For both integration schemes, the maximum error is (10−14), with mean

values of (10−15). For p ≥ 10, the relative errors by our schemes are also close to machine precision.

TABLE 6 Integration errors for test on biunit cube that is meshed with tetrahedra. Comparisons are made to results obtained
using the schemes presented in Witherden and Vincent.4 The listing is the maximum and mean values of the error from hundred
tests for each p.

,
This work Witherden and Vincent4

p n max mean n max mean
R × 1016 R × 1016

1 1 11 3 1 16 3
2 4 17 4 4 19 3
3 8 112 5 8 28 5
4 14 47 6 14 82 7
5 14 44 6 14 82 7
6 24 73 6 24 127 9
7 35 109 8 35 91 7
8 46 49 8 46 64 7
9 59 293 11 59 376 10
10 81 534 17 81 532 15
11 110 408 16 – – –
12 168 97 7 – – –
13 172 551 18 – – –
14 204 453 15 – – –
15 264 313 19 – – –
16 304 238 18 – – –
17 364 313 16 – – –
18 436 93 9 – – –
19 487 141 13 – – –
20 552 540 21 – – –

5.2 Convergence tests

Convergence tests using exponential, trigonometric and weakly singular functions are conducted.1 The test for the exponential

function is performed on the biunit cube. The tests for weakly singular functions are done on the reference tetrahedron. One of

the trigonometric functions is tested on the unit cube, whereas the other is assessed on the semi-cylindrical domain that also has

curved sides. The meshing of the cube using tetrahedra and pyramids is shown in Fig. 5. In these tests, three types of cubature
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TABLE 7 Integration errors for test on biunit cube that is meshed with pyramids. Comparisons are made to results obtained
using the schemes presented in Witherden and Vincent.4 The listing is the maximum and mean values of the error from hundred
tests for each p.

,
This work Witherden and Vincent4

p n max mean n max mean
R × 1016 R × 1016

1 1 6 1 1 6 1
2 5 33 3 5 11 3
3 6 22 3 6 40 4
4 10 33 5 10 28 4
5 15 39 4 15 100 7
6 23 86 8 24 41 5
7 31 37 4 31 132 6
8 47 76 6 47 121 6
9 62 321 9 62 78 8
10 80 138 10 83 246 9
11 103 663 25 – – –
12 127 71 8 – – –
13 152 400 19 – – –
14 184 257 13 – – –
15 234 193 13 – – –
16 285 165 12 – – –
17 319 403 15 – – –
18 357 271 13 – – –
19 418 197 11 – – –
20 489 111 13 – – –

schemes are compared: those proposed in this article, the symmetric rules from Witherden and Vincent4, and in the case of

tetrahedra the non-symmetric rules from Jaśkowiec and Sukumar.1 We present the relative error in the integration versus the

polynomial order p of the cubature scheme. The non-symmetric tetrahedral cubature rules have fewer number of integration

points than the symmetric cubature rules, see Table 4. Therefore, for tetrahedra, the relative error in the integration versus the

number of integration points in the mesh, ng , is also shown.

5.2.1 Exponential test function

We consider the exponential test function1

f (x) = exp(�x + �y + z), (26a)
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whose integral over the biunit cube C is:

I = ∫
C

f (x) dx =
[

exp(�) − exp(−�)
][

exp(�) − exp(−�)
][

exp() − exp(−)
]

��
. (26b)

For this test, we choose � = 5, � = 2, and  = 1, and the exact value of the integral is I = 2.5302052232599806 × 102.

For the tetrahedral mesh, the relative error in integration as a function of p and ng are presented in Figs. 6a and 6b, respectively.

In Fig. 6c, the convergence curve for the relative error in integration versus p is shown for the pyramidal mesh. For both cases,

we observe that our schemes and those of Witherden and Vincent4 converge nonmonotonically. For p > 10, the accuracy of our

schemes improve and reaches close to (10−13) for p = 20. Our symmetric and non-symmetric cubature schemes display the

same level of accuracy, but the non-symmetric rules require fewer number of integration points to reach a prescribed level of

accuracy.

5.2.2 Trigonometric test function

This test is taken from Chen et al,22 where the trigonometric function

f (x) = x3 sin(ky�y) sin(kz�z) (27a)

is considered. The integral of f over the unit cube [0, 1] is given by

I =
sin2

(ky�
2

)

sin2
(

kz�
2

)

�2kykz
. (27b)

For ky = 2.5 and kz = 1, the value of the integral is I = 0.2∕�2. Numerical results are presented in Fig. 7, and reveals once

again that the accuracy of our scheme and those of Witherden and Vincent4 closely matches; in addition, all schemes show

nonmonotonic convergence. In this test too, our symmetric and non-symmetric cubature rules deliver the same level of accuracy

for a given p, with the latter scheme being more efficient.

5.2.3 Weakly singular test functions over tetrahedra

In this test, we consider the weakly singular functions

f1(x) =
1
√

r
, f2(x) =

1
r
, r =

√

x2 + y2 + z2. (28)

The exact values of their integrals over the reference tetrahedron are I = 163∕679 and I = 1531∕4236, respectively.1 The

relative error in the numerical integration as a function of the order p is presented in Fig. 8. We observe convergence with

increase in p, but convergence is nonmonotonic using our cubature rules as well as those from Witherden and Vincent.4 It is

observed that the p = 9 scheme of Witherden and Vincent4 failed in this test, which is due to fact that one point in this cubature
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FIGURE 6 Relative error in the integration of the exponential function in (26) (� = 5, � = 2,  = 1) over the biunit cube,
which is meshed with (a), (b) 12 tetrahedra and (c) 6 pyramids.

rule is very close to the origin where both functions are nearly singular. For our symmetric and non-symmetric cubature rules,

the trends from previous tests persist. One noticeable observation is the dramatic reduction in error with the symmetric rule for

p = 20, which is not attained by the non-symmetric rule of the same order (see Figs. 8a and 8b).
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FIGURE 7 Relative error in the integration of the trigonometric function in (27) over the unit cube. The unit cube is meshed
with (a), (b) 12 tetrahedra and (c) 6 pyramids.

5.2.4 Integration over a semi-cylindrical domain

In this example, a function f = sin(x2 + y2) over a semi-cylindrical domain Ω of height 2, inner radius R1 =
√

�∕2 and outer

radius R2 =
√

3� is considered, where the domain is illustrated in Jaśkowiec and Sukumar.1 The exact value of the integral of

f over Ω is equal to �. The geometric map is provided in Jaśkowiec and Sukumar.1 Due to the geometric map, the domain Ω is

covered by curved tetrahedral or pyramidal elements. The relative error in the numerical integration as a function of the order

p is presented in Fig. 9. Up to p = 10, our schemes and those from Witherden and Vincent4 have similar accuracy, and both
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FIGURE 8 Relative error in the integration of weakly singular functions over the reference tetrahedron. (a), (b) f1(x) = 1∕
√

r
and (c), (d) f2(x) = 1∕r.

display nonmonotonic convergence. For p > 10, the cubature rules proposed in this work continue to show improved accuracy

and convergence towards the exact value. This example also affirms the observation from previous tests that the non-symmetric

cubature rules are more efficient in integrating nonpolynomial functions.
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FIGURE 9 Relative error in the integration of the function sin(x2 + y2) over the semi-cylindrical domain using (a), (b) 12
tetrahedral and (c) 6 pyramidal elements with curved faces.

6 CONCLUSIONS

A new algorithm for generating symmetric, high-order cubature schemes for tetrahedra and pyramids has been presented in this

article. The algorithm consisted of five sequential phases to obtain high-precision cubatures. The algorithm was used to generate

cubature schemes of orders from p = 2 to p = 20 for tetrahedral and pyramidal elements. The cubature rules consist of combi-

nations of symmetry orbits that ensure that the rules are invariant to any affine transformation. The orbits were constructed by

permutation stars that consist of free variables, which were determined via the search procedure. Application of symmetry orbits
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can lead to solving a reduced-scale cubature problem, as has been shown by others.21,4 However, in this article we considered

the full-scale problem, which we found to be suitable to generate cubature rules over the tetrahedron and the pyramid.† This

increases the computational costs, but the algorithm is robust and high-order cubature rules were found that were efficient. We

constructed tetrahedral cubature schemes up to p = 10 that have the same number of nodes as those in Witherden and Vincent,4

but obtained fewer number of nodes for pyramidal cubatures of orders p = 6 and p = 10. In our previous work,1 we generated

non-symmetric cubature rules for tetrahedra up to p = 20. It is evident that the symmetry constraints lead to significant increase

in the number of nodes in the cubature scheme. As a matter of comparison, for p = 10 and p = 20, we obtained n = 81 (71) and

n = 552 (448), respectively, which is an increase of 14 percent and 23 percent in the number of nodes.

We conducted verification tests to ensure the machine-precision accuracy of the cubature rules, and performed convergence

tests to demonstrate its performance on several test functions. For p ≤ 10, our rules were compared to those of Witherden and

Vincent.4 Convergence was observed in all tests, though it was nonmonotonic with some oscillations. This is not unexpected

since nonpolynomial functions were being integrated. Besides the test with weakly singular functions, close tomachine-precision

accuracy was attainable with a p = 20 cubature rule for all other tests. Convergence tests were also performed with the non-

symmetric tetrahedral cubature rules from our previous work.1 Consistent with expectations, these non-symmetric rules were

more efficient (fewer number of integration points for a given level of accuracy) than the symmetric rules from the present work.

All the cubature rules generated in this article are provided in the supplementary materials in extended and compact forms with

128 digits of precision. In the extended form all the nodes with their weights are listed using x, y, z,w values in each row. In the

compact form only the values from the symmetry orbits are listed with associated weights. Additionally, the tetrahedral cubature

schemes are also provided in barycentric coordinates. The files are given in text format and also in MATLAB R© binary format.
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