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In Jaśkowiec and Sukumar (Int J Numer Methods Eng., doi: 10.1002/nme.6528,
2020), we presented high-order (p = 2–20) symmetric cubatures rules for tetrahe-
dra and pyramids. This algorithm was sensitive to the initial location of the cubature
nodes, and it did not converge for p > 11 over prisms and hexahedra (cubes). In this
addendum, we resolve this issue and obtain high-order symmetric rules over prisms
and cubes. For the prism, we use the initial guess for the cubature rule as the ten-
sor product of a cubature rule over a triangle and a univariate Gauss quadrature rule,
and for the cube the initial guess is the tensor product of univariate Gauss quadra-
ture rules. Verification and convergence tests are presented to affirm the accuracy of
the cubature rules. On applying the cubature algorithm described in Jaśkowiec and
Sukumar (Int J Numer Methods Eng., 121 (11), 2418-2436, 2020), we also construct
non-symmetric high-order (p = 2–20) cubature rules over prisms, cubes, and pyra-
mids. In the Supplementary Materials, all cubature rules (128 digits of precision) are
provided in a text file and in Matlab® format.
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1 INTRODUCTION

In a recent paper,1 the authors presented high-order (p = 2–20) symmetric cubatures rules for tetrahedra and pyramids. It was
noted that for p > 11 over prisms and hexahedra (cubes), there was nonconvergence in the cubature algorithm. We attributed
this nonconvergence to the algorithm’s strong dependence on the initial guess for the cubature nodes (randomly chosen or from
lower-order rules). In this communication, we resolve this issue and obtain high-order symmetric cubature rules for prisms and
cubes. For prisms, we use the initial guess for the cubature rule as the tensor product of a cubature rule over a triangle and a
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FIGURE 1 Reference elements. (a) Prism and (b) Hexahedron (biunit cube).

univariate Gauss quadrature rule, and for cubes the initial guess is the tensor product of univariate Gauss quadrature rules. In these
tensor-product rules, symmetry orbits have to be identified, which are shown in Felippa,2 Witherden and Vincent,3 and Kubatko
et al.4 In the supplementary materials, symmetric cubature rules for prisms and cubes are made available. Additionally, as an
extension of the contribution in Jaśkowiec and Sukumar,5 non-symmetric cubature rules for the pyramid, prism and cube, are
also constructed and provided in the supplementary materials. In Section 2, symmetry relations for the prism and the hexahedron
(biunit cube) are presented, and symmetric cubature rules are constructed in Section 3. Verification and convergence tests to
assess the accuracy of the cubature rules are presented in Section 4, and the main conclusions are summarized in Section 5.

2 REFERENCE ELEMENTS AND SYMMETRY RELATIONS

Our objective is to obtain symmetric cubature schemes over a prism and a cube. As problem domains, we consider the reference
prismR and the reference hexahedron (biunit cube)H that are shown in Fig. 1. We use monomials as basis functions over these
reference domains. The integral of a monomial of order (degree) p = r + s + t over R andH are:

∫
R

xryszt dx =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2 r! s!
(t + 1)(r + s + 2)!

if t is even

0 otherwise
, ∫

H

xryszt dx =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

8
(r + 1)(s + 1)(t + 1)

if r, s and t are all even

0 otherwise
.

(1)
For symmetric arrangement of integration points over the prism (see Fig. 1a), it is convenient to use barycentric coordinates in

the xy-plane.6,3 Six possible permutation stars for the prism {SRi }6i=1 are presented in Table 1, where the values within the square
brackets are permuted. For the hexahedron shown in Fig. 1b, any point in the element is expressed using Cartesian coordinates.
For this element, the symmetry orbits {SHi }7i=1 are listed in Table 2.
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TABLE 1 Symmetry orbits using barycentric coordinates in the xy-plane for the reference prism.
symmetry
orbits

permutation stars in
barycentric coordinates |SRi |

SR1
(

1
3
, 1
3
, 1
3
, 0

)

1
SR2

(

1
3
, 1
3
, 1
3
, ±c

)

2
SR3

(

[a, a, 1 − 2a], 0
) 3

SR4
(

[a, a, 1 − 2a], ±c
) 6

SR5
(

[a, b, 1 − a − b], 0
) 6

SR6
(

[a, b, 1 − a − b], ±c
) 12

TABLE 2 Symmetry orbits for the reference hexahedron.
symmetry
orbits

permutation stars in global
coordinates |SHi |

SH1
(

0, 0, 0
) 1

SH2
(

[±a, 0, 0]
) 6

SH3
(

[±a, ±a, ±a]
) 8

SH4
(

[±a, ±a, 0]
) 12

SH5
(

[±a, ±b, 0]
) 24

SH6
(

[±a, ±a, ±b]
) 24

SH7
(

[±a, ±b, ±c]
) 48

3 SYMMETRIC CUBATURE SCHEMES: PRISM AND CUBE

The cubature algorithm proposed in Jaśkowiec and Sukumar1 is implemented to generate high-order symmetric cuba-
ture schemes over the reference prism and the reference hexahedron shown in Fig. 1. The computations are done using
double-precision arithmetic and the final steps of the algorithm are performed in high-precision (160 digits) arithmetic.
For the prism and the cube, convergence of the algorithm is very sensitive to the initial guess for the cubature nodes. When the

initial cubature nodes are randomly generated or chosen using combination of lower order integration schemes, the algorithm
fails to converge for higher orders.1 We resolve this herein by generating the initial nodal sets as Cartesian products. For the
prism, we use the Cartesian product of symmetric cubature rules over a triangle and univariate Gauss quadrature rules. For
the cube, tensor-product univariate Gauss quadrature rules are chosen as the initial set. This approach leads to initial sets with
relatively large number of nodes. However, the cubature algorithm is able to significantly reduce the number of nodes in the final
cubature rule. For example, if p = 15, the initial set over a prism consists of 49×9 = 441 nodes, while there are 9×9×9 = 729
nodes for the cube. The final cubatures over the prism and cube have 238 nodes and 256 nodes, respectively.
The initial sets generated by the Cartesian products are symmetric, but the specific symmetry orbits have to be firstly identi-

fied over the reference elements to start the algorithm. For the prism, symmetry orbits are naturally taken from the combination
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TABLE 3 Number of integration points and combination of symmetry orbits for various symmetric prismatic cubature rules.
Our results are compared to the rules presented in Witherden and Vincent.3

This work Witherden and Vincent3
p n |SR1 | |SR2 | |SR3 | |SR4 | |SR5 | |SR6 | rw n |SR1 | |SR2 | |SR3 | |SR4 | |SR5 | |SR6 | rw
2 5 0 1 1 0 0 0 0.755 5 0 1 1 0 0 0 0.750
3 8 0 1 2 0 0 0 0.553 8 0 1 0 0 1 0 0.407
4 11 0 1 1 1 0 0 0.458 11 0 1 1 1 0 0 0.458
5 16 1 0 1 2 0 0 0.177 16 1 0 1 2 0 0 0.231
6 28 0 2 2 1 0 1 0.151 28 0 2 2 1 0 1 0.161
7 35 0 1 1 2 1 1 0.157 35 0 1 1 2 1 1 0.157
8 46 0 2 2 4 0 1 0.136 46 0 1 1 2 1 1 0.136
9 59 0 1 1 6 1 1 0.164 60 1 1 1 6 1 1 0.063
10 84 1 1 3 6 0 3 0.092 85 0 2 3 5 1 3 0.024
11 99 0 3 1 8 1 3 0.069 – – – – – – – –
12 136 0 2 2 7 2 6 0.022 – – – – – – – –
13 162 0 0 0 12 3 6 0.113 – – – – – – – –
14 194 0 1 2 12 3 8 0.068 – – – – – – – –
15 238 0 2 4 8 1 14 0.046 – – – – – – – –
16 287 0 1 3 9 3 17 0.022 – – – – – – – –
17 338 0 1 0 19 1 18 0.041 – – – – – – – –
18 396 0 0 0 19 1 23 0.040 – – – – – – – –
19 420 0 3 4 18 3 23 0.028 – – – – – – – –
20 518 0 1 2 22 3 30 0.030 – – – – – – – –

of the triangle symmetry orbits in the xy-plane and location of univariate Gauss quadrature rules in the z-direction. The hexa-
hedral symmetry orbits are directly obtained by matching the univariate quadrature nodes in the x-, y- and z-directions to the
permutation stars in Table 2.
In Tables 3, symmetric prismatic cubature rules for orders p = 2 to p = 20 are presented. The number of integration points,

combination of symmetry orbits, and values of the parameter rw = min(wi)∕max(wi) (measures the quality of the cubature
scheme) are indicated. Up to p = 10, numerical integration results from our integration schemes are compared to those obtained
using the rules fromWitherden and Vincent.3 For p = 2 to p = 8, we obtain the same number of cubature nodes as in Witherden
and Vincent,3 and for p = 9, 10 we have managed to obtain cubatures with fewer number of nodes. For p = 2–10, the values
of rw for our cubatures and those of Witherden and Vincent3 are close. Similar information on the cubatures over the cube is
presented in Table 4. Symmetric cubature rules are provided only for odd values of p since the even orders (one less than the
odd p) have the same rule. Cubature rules for odd orders over the cube have been obtained up to p = 21, with schemes for
p = 5, 9 being the same as in Witherden and Vincent.3 Our cubature rules from p = 13 to p = 21 are new. For higher order
prismatic cubatures, it is observable that two types of symmetric orbits, SR4 and SR6 , dominate over other orbits. For higher order
hexahedral cubatures, SH6 is the dominant symmetric orbit.
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TABLE 4 Number of integration points and combination of symmetry orbits for various symmetric hexahedral cubature rules.
Our results are compared to the rules presented in Witherden and Vincent.3

This work Witherden and Vincent3
p n |SH1 | |SH2 | |SH3 | |SH4 | |SH5 | |SH6 | |SH7 | rw n |SH1 | |SH2 | |SH3 | |SH4 | |SH5 | |SH6 | |SH7 | rw
3 6 0 1 0 0 0 0 0 1.0 6 0 1 0 0 0 0 0 1.0
5 14 0 1 1 0 0 0 0 0.378 14 0 1 1 0 0 0 0 0.378
7 34 0 1 2 1 0 0 0 0.246 34 0 1 2 1 0 0 0 0.336
9 58 0 1 2 1 0 1 0 0.116 58 0 1 2 1 0 1 0 0.116
11 90 0 1 3 1 0 2 0 0.055 90 0 1 3 1 0 2 0 0.105
13 154 0 1 2 1 1 4 0 0.097 – – – – – – – – –
15 256 0 2 2 1 2 5 1 0.067 – – – – – – – – –
17 346 0 1 2 3 2 6 2 0.005 – – – – – – – – –
19 454 0 1 2 0 3 11 2 0.039 – – – – – – – – –
21 580 0 2 2 0 3 12 4 0.024 – – – – – – – – –

As in Jaśkowiec and Sukumar,1 the reader can find the listing of the cubature points and weights in the supplementary
materials, where data with 128 digits of precision are provided in two forms: compact where only the unique values in the
symmetry orbits (free variables) are given and extended with all points and weights given in column-format x y z w. Cubature
rules are listed in a text file as well as in MATLAB® binary format.

4 NUMERICAL TESTS

We present verification and convergence tests for the symmetric prismatic and hexahedral cubature rules using double-precision
arithmetic. The aim of the verification tests is to ensure that the cubature rules deliver close to machine-precision accuracy for the
integration of polynomial functions. In the convergence tests, nonpolynomial functions are considered to assess the performance
of the cubature rules. For comparison purposes, the same tests are also carried out for the cubature rules of Witherden and
Vincent.3 Symmetric cubature rules for the prism are readily obtained as the Cartesian product of cubature rules over the
triangle and univariate Gauss quadrature rules. Similarly, symmetric hexahedral cubature rules can be constructed using the
Cartesian product of cubature rules over the square and univariate Gauss quadrature rules. Symmetric hexahedral cubature rules
can also be generated using the tensor product (1D × 1D × 1D) of univariate Gauss quadrature rules. The two-dimensional
cubature rules for the triangle and the square are taken from Witherden and Vincent.3 Such cubature rules over the prism and
the hexahedron require far more number of cubature nodes than the lower bound estimate for n. We also compare the accuracy
and efficiency of our symmetric cubature rules with the symmetric cubature rules that are generated by these Cartesian product
constructions over the prism and the hexahedron. A single verification test is presented in Section 4.1, and in the Section 4.2
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(a) (b)

FIGURE 2 Cube meshed by (a) 16 prisms and (b) 8 hexahedra.

we consider convergence tests for an exponential function over the biunit cube C = [−1, 1]3 and a trigonometric function over
a semi-cylindrical domain.
For the tests, the biunit cube C is meshed with 16 prismatic elements or 8 hexahedral elements (see Fig. 2). For all tests, the

relative error is defined as

R =
|I − Iq|
|I|

,

where I is the exact value of the integral, and Iq is the numerically computed value of the integral using the cubature rule.

4.1 Verification tests on the biunit cube

For each p, 100 random polynomials f (x) are generated and then integrated over the biunit cube, We choose the order of f (x) to
be the same as the order of the cubature to be checked. The accuracy of any cubature rule of order p should be within machine-
precision for any polynomial up to order p over a mesh of prismatic or hexahedral (cubes) elements that partitions C . The results
of the numerical tests are presented in Table 5 for prismatic elements and in Table 6 for hexahedral elements. The maximum as
well as the algebraic mean values of the relative integration errors from a set of 100 tests for each p are presented. From Table 5
and Table 6, we observe that for each p the errors oscillate about machine precision, thereby establishing the correctness of the
cubature rules.

4.2 Convergence tests

Convergence tests using exponential and trigonometric functions are conducted.1,5 The test for the exponential function is
performed over the biunit cube. The trigonometric test function is integrated over a semi-cylindrical domain (curved sides),
which is generated by a nonlinear transformation from the biunit cube.5
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TABLE 5 Integration errors for verification test over the biunit cube that is meshed with 16 prisms. Comparisons are made to
results obtained using the schemes presented inWitherden and Vincent,3 as well as the cubature rules generated by the Cartesian
product of triangular cubatures and univariate Gauss quadrature rules. The listing is the maximum and mean values of the error
from hundred tests for each p.

,
This work Witherden and Vincent3 Tensor product (2D × 1D)

p n max mean n max mean n max mean
R × 1016 R × 1016 R × 1016

2 5 27 3 5 28 3 6 52 4
3 8 26 3 8 23 3 12 46 4
4 11 67 5 11 56 4 18 8 5
5 16 65 5 16 91 5 21 63 7
6 28 65 6 28 30 5 48 70 6
7 35 45 5 35 50 6 60 74 8
8 46 189 10 46 91 8 80 224 12
9 59 144 10 60 117 6 95 134 9
10 84 83 7 85 207 10 150 277 11
11 99 248 10 – – – 168 193 15
12 136 164 11 – – – 231 311 23
13 162 195 17 – – – 259 239 20
14 194 835 20 – – – 336 867 29
15 238 296 22 – – – 392 355 19
16 287 383 13 – – – 495 411 15
17 338 140 13 – – – 540 79 13
18 396 108 13 – – – 670 328 17
19 420 67 9 – – – 730 100 13
20 518 361 17 – – – 869 679 30

4.2.1 Exponential test function

We consider the exponential test function1

f (x) = exp(�x + �y + z), (2a)

whose integral over the biunit cube C is:

I = ∫
C

f (x) dx =
[

exp(�) − exp(−�)
][

exp(�) − exp(−�)
][

exp() − exp(−)
]

��
. (2b)

For this test, we choose � = 5, � = 2, and  = 1, and the exact value of the integral is I = 2.5302052232599806 × 102.
In Fig. 3, convergence curves of the relative integration error are shown as a function of p and n for the prismatic and hexahedral

meshes. Up to order p = 10 and p = 11 for prismatic and hexahedral meshes, respectively, the relative errors for ours schemes and
those of Witherden and Vincent3 are proximal. For the mesh with prismatic elements, convergence is nonmonotonic, whereas
convergence is monotonic over the mesh with hexahedral elements. For p > 10, the accuracy in the integration improves with our
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TABLE 6 Integration errors for verification test over the biunit cube that is meshed with 8 hexahedra (cubes). Comparisons are
made to results obtained using the schemes presented in Witherden and Vincent,3 as well as cubature rules over the cube that
are generated using Cartesian products (2D × 1D and 1D × 1D × 1D) of lower-dimensional integration rules. The listing is the
maximum and mean values of the error from hundred tests for each p.

,
This work Witherden and Vincent3 Tensor product (2D × 1D) Tensor product (1D × 1D × 1D)

p n max mean n max mean n max mean n max mean
R × 1016 R × 1016 R × 1016 R × 1016

3 8 27 4 6 36 5 8 48 3 8 34 4
5 14 4 2 14 66 6 24 34 4 27 89 6
7 34 30 13 34 103 7 48 114 6 64 191 8
9 58 103 7 58 133 8 100 277 15 125 100 9
11 90 99 8 90 193 14 168 348 19 216 620 17
13 154 152 12 – – – 259 675 19 343 167 16
15 256 594 29 – – – 384 437 32 512 202 18
17 346 379 18 – – – 540 294 20 729 180 17
19 454 610 23 – – – 720 864 30 1000 159 16
21 580 354 23 – – – 935 1664 33 1331 136 16

schemes, and reaches close to (10−15) for p = 20 (prism) and p = 21 (hexahedron). From Fig. 3, we observe that the relative
errors for our schemes and those obtained using tensor-product cubature rules are of the same order of accuracy. However, for a
fixed p (cubature order), our cubature rules require far fewer number of nodes (smaller n); for a fixed n, our rules deliver better
accuracy (see Fig. 3b and Fig. 3d).

4.2.2 Integration over a semi-cylindrical domain

In this example, the function f = sin(x2+y2) is integrated over a semi-cylindrical domainΩ of height 2, inner radiusR1 =
√

�∕2

and outer radius R2 =
√

3�. Illustration of the domain as well as the expression for the geometric map appear in Jaśkowiec
and Sukumar.5 The exact value of the integral of f over Ω is equal to �. The semi-cylindrical domain is meshed with 16
prismatic elements or 8 hexahedral elements. The relative error in the numerical integration as a function of the order p is
presented in Fig. 4. Up to p = 10 in Fig. 4a and p = 11 in Fig. 4b, our schemes and those from Witherden and Vincent3

have similar accuracy. Nonmonotonic convergence is observed for prismatic elements and monotonic convergence is realized
when hexahedral elements are used. In both cases, integration error increases for the highest p, since close to machine-precision
accuracy has already been attained. The tensor-product cubature rules deliver the same level of integration accuracy as our
cubature rules. As in the previous example, we observe that for a fixed p, our cubature rules require far fewer number of nodes,
and for a fixed n, our rules deliver better accuracy (see Fig. 4b and Fig. 4d).
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FIGURE 3 Relative error in the integration of the exponential function in (2) (� = 5, � = 2,  = 1) over the biunit cube, which
is meshed with (a), (b) 16 prismatic elements and (c), (d) 8 hexahedral elements. Results are shown as a function of p (cubature
order) and n (number of cubature nodes).

5 CONCLUSIONS

In this addendum, we extend the contributions of Jaśkowiec and Sukumar1 by constructing high-order symmetric cubatures for
the prism and the hexahedron (biunit cube). We constructed symmetruc cubature rules up to order p = 20 for the prism and
up to order p = 21 for the cube. In the literature, the highest orders that are currently available for symmetric cubatures are
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FIGURE 4 Relative error in the integration of the function sin(x2 + y2) over the semi-cylindrical domain using (a), (b) 16
prismatic elements and (c), (d) 8 hexahedral elements with curved faces. Results are shown as a function of p (cubature order)
and n (number of cubature nodes).

p = 10 and p = 11 for the prism and the cube, respectively.3 As noted in Jaśkowiec and Sukumar1, the cubature algorithm was
very sensitive to the initial guess for the cubature nodes. In this paper, the initial cubature nodes were generated by Cartesian
products of lower dimensional cubatures. The polynomial-precision accuracy of the cubature rules were verified and their sound
accuracy was affirmed in the integration of nonpolynomial test functions. Numerical tests were also performed using Cartesian
product cubature rules over the prism and the hexahedron. For a given p (cubature order), we found that these cubature rules
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delivered comparable accuracy to our cubature rules. However, for a given p, our rules required far fewer number of nodes, and
for a given n, our rules provided better accuracy—thereby establishing that the cubature rules for the prism and hexahedron
proposed herein are more efficient than standard Cartesian product cubature rules over the prism and the hexahedron.
On applying the algorithm in Jaśkowiec and Sukumar,5 we also constructed non-symmetric cubature rules from p = 2 to

p = 20 over the prism, cube and pyramid (reference elements). These rules have also been verified and their accuracy assessed
on the same tests that are reported in this paper. In the supplementary materials, listings of both symmetric and non-symmetric
cubature rules (128 digits of precision) are provided.
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