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Abstract

In this paper, we propose the extended virtual element method (X-VEM) to treat singularities
and crack discontinuities that arise in the Laplace problem. The virtual element method (VEM)
is a stabilized Galerkin formulation on arbitrary polytopal meshes, wherein the basis functions
are implicit (virtual)—they are not known explicitly nor do they need to be computed within
the problem domain. Suitable projection operators are used to decompose the bilinear form on
each element into two parts: a consistent term that reproduces the first-order polynomial space
and a correction term that ensures stability. A similar approach is pursued in the X-VEM with
a few notable extensions. To capture singularities and discontinuities in the discrete space, we
augment the standard virtual element space with an additional contribution that consists of the
product of virtual nodal basis (partition-of-unity) functions with enrichment functions. For dis-
continuities, basis functions are discontinuous across the crack and for singularities a weakly
singular enrichment function that satisfies the Laplace equation is chosen. For the Laplace
problem with a singularity, we devise an extended projector that maps functions that lie in the
extended virtual element space onto linear polynomials and the enrichment function, whereas
for the discontinuous problem, the consistent element stiffness matrix has a block-structure that
is readily computed. An adaptive homogeneous numerical integration method is used to ac-
curately and efficiently (no element-partitioning is required) compute integrals with integrands
that are weakly singular. Once the element projection matrix is computed, the same steps as in
the standard VEM are followed to compute the element stabilization matrix. Numerical experi-
ments are performed on quadrilateral and polygonal (convex and nonconvex elements) meshes
for the problem of an L-shaped domain with a corner singularity and the problem of a cracked
membrane under mode III loading, and results are presented that affirm the sound accuracy
and demonstrate the optimal rates of convergence in the L2 norm and energy of the proposed
method.
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1. Introduction

Over the past two decades, enriched approximations based on the partition-of-unity frame-
work proposed by Melenk and Babuška [1, 2] have been adopted to model physical phenomena
that admit discontinuities and singularities within the problem domain. An instance of the
partition-of-unity finite element method is the extended finite element method (X-FEM) [3],
which has become an attractive choice to conduct elastic fracture simulations on finite element
meshes without the need for extensive remeshing. In this paper, we develop a new numeri-
cal formulation that leads to mesh-independent modeling on polygonal meshes and improved
numerical approximation for Laplace problems that have discontinuous and/or weakly singu-
lar solutions by generalizing concepts from the X-FEM to the virtual element method (VEM).
Among the methods for fracture on polygonal meshes that are germane to the present study,
we mention the X-FEM [4], polygonal finite elements [5] and the scaled boundary finite ele-
ment method [6]. In contrast to these approaches, we devise a method that is efficient, provides
flexibility, and is simpler to implement. Notably, shape functions on general (convex and non-
convex) polygons are not required to be known, and furthermore, we use the homogeneous
numerical integration (HNI) method [7, 8] to compute the weak form integrals without the need
to partition the elements in the mesh.

The VEM, originally proposed in Beirão da Veiga et al. [9], is a recent development in stable
Galerkin discretizations on polytopal meshes to solve boundary-value problems. In the VEM,
the basis functions are defined as the solution of a local elliptic partial differential equation, and
are never explicitly computed in the implementation of the method. For this reason, they are
dubbed as virtual, and the finite element space of the VEM as the virtual element space. Since
the virtual basis functions are unknown, the VEM uses their elliptic polynomial projections
to build the bilinear form (stiffness matrix) and the continuous linear functional (forcing or
loading term) of the variational formulation. Such projections are computable from the degrees
of freedom without introducing any further approximation error and are used to decompose
the bilinear form on each element into two parts: the consistent term that approximates the
stiffness matrix on a given polynomial space and the correction term that ensures stability. As
in the finite element method (FEM), element-level assembly procedures are used to obtain the
discrete system of linear equations.

On nonsmooth domains and in the presence of nonsmooth data, the solution of elliptic prob-
lems such as the Poisson or Laplace equations may contain weak singularities [10] that worsen
the convergence rate of any numerical method that assumes a more regular approximate solu-
tion, such as the FEM, and a fortiori, the VEM. In such a case, it may be beneficial to augment
the finite element space defined on the elements that are proximal to the singularity by introduc-
ing additional set of basis functions. These basis functions are built upon suitable enrichment
functions, which are carefully chosen to mimic the properties of the aforementioned singular-
ity. In doing so, some information about the exact solution is incorporated (for instance via the
framework of partition-of-unity) into the computational method, thus removing, or at least alle-
viating, the effect of the singularity on the scheme’s accuracy. This forms the basis of enriched
partition-of-unity methods and the X-FEM in particular, and herein we refer to the proposed
approach as the eXtended VEM (X-VEM). In principle, any number of auxiliary functions can
be considered to enrich the virtual element space according to the problem at hand—to solve
the Helmholtz problem, Perugia et al. [11] were the first to introduce approximating spaces that
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consist of the product of low-order virtual element basis functions and a planewave (nonpoly-
nomial, smooth function) in each direction. For simplicity and in the interest of clarity, in this
study we only consider one enrichment function in the extended virtual element solution of the
Laplace boundary-value problem.

Since the inception of the VEM [9, 12, 13], there have only been a few contributions that
leverage the flexibility of the method to construct admissible approximations on finite element
meshes that are cut by a strong or weak discontinuity. Notable among these are the use of VEM
to simulate flow in discrete fracture networks [14, 15], modeling of zero-thickness interface
elements for fracture in heterogeneous materials [16], and the application of the VEM to 2D
elastic fracture simulations [17]. In these contributions, nodes are inserted at locations where
each interface intersects an element, which results in the partitioning of a finite element into a
collection of polygonal elements. Two such elements have so-called hanging nodes on the com-
mon edge that lie on the material interface (weak discontinuity), but the VEM approximation is,
however, C0-conforming along the edge [15], whereas the nodes that lie on a traction-free crack
in elastic media are duplicated (similar to the FEM) to represent a discontinuous field [17].

The outline of the remainder of this article follows. In Section 2, we present the strong
and weak forms of the Laplace boundary-value problem. In Section 3, we describe the ex-
tended virtual element formulation. For the Laplace problem with a singularity, we devise an
extended projector that maps functions that lie in the extended virtual element space onto linear
polynomials and the enrichment function. For a discontinuity that cuts an element, instead of
enriching with a discontinuous function through the partition-of-unity framework as is done in
the X-FEM, we adopt the approach of Hansbo and Hansbo [18], whereby each virtual shape
function is decomposed as the sum of two discontinuous shape functions. It is known that the
approximation in the X-FEM and the approach of Hansbo and Hansbo [18] are equivalent [19].
The consistent element stiffness matrix so formed has a block-structure that is readily computed.
In Section 4, we provide a detailed description of how the method is implemented. In Section 5,
we first compare the accuracy of product Gauss cubature scheme to the HNI method [7] for
the evaluation of the weak form integrals. Then, we present two applications of the X-VEM
on polygonal meshes: the problem of the L-shaped domain with a corner singularity and the
solution of the Laplace crack problem. A discontinuous patch test [20] for the Laplace crack
problem is solved to verify the consistency of the formulation. We solve the L-shaped domain
problem using geometric enrichment and the mode III crack problem, and show that the method
delivers optimal rates of convergence in the L2 norm and the strain energy. Finally, we close
with some final remarks in Section 6.

2. Strong and weak forms of Laplace problem

Let Ω ⊂ R2 be an open, bounded domain with Lipschitz continuous boundary Γ. We
consider the following Laplace boundary-value problem:

∆u = 0 in Ω, (1a)
u = gD on ΓD, (1b)

n · ∇u = gN on ΓN , (1c)

where u is the scalar unknown, Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅ with ΓD and ΓN representing the
Dirichlet and Neumann boundaries, respectively, and gD and gN are the boundary data on ΓD
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and ΓN , respectively.
Let V = H1

gD
(Ω) denote the affine subspace of functions in the Sobolev space H1(Ω) whose

trace on ΓD is equal to gD, and V0 ⊂ V the linear subspace of functions that are zero on ΓD. The
variational formulation of problem (1a)-(1c) reads as: find u ∈ V such that

a(u, v) = (gN , v)ΓN
∀v ∈ V0, (2)

where the bilinear form a(·, ·) and the linear functional (·, ·)ΓN
are given by

a(u, v) =

∫
Ω

∇u · ∇v dx, (gN , v)ΓN
=

∫
ΓN

gNv ds, u ∈ V, v ∈ V0. (3)

The Dirichlet boundary condition in (1b) is incorporated in the definition of the functional space
V . The Neumann boundary condition in (1c) is expressed by (·, ·)ΓN

in (3). When ΓD in nonempty
and under suitable regularity assumptions on gD and gN , the exact solution to problem (2) exists
and is unique. This result is a consequence of the coercivity and continuity of a(·, ·) and the
Lax-Milgram lemma.

Remark 2.1. Here we consider the Laplace problem for the sake of simplicity, but the case of
a non-homogeneous right-hand side is readily handled in the standard VEM, cf. [9, 12, 13].

3. Extended virtual element formulation

From the weak form of the continuous problem in (2), we can write the weak form for the
X-VEM as: find uh

X ∈ Vh
X,gD
⊂ V such that

ah(uh
X, v

h
X) =

(
gN , vh

X

)
ΓN ,h

∀vh
X ∈ Vh

X,0 ⊂ V0, (4)

where ah(·, ·) and (·, ·)ΓN ,h are the virtual element bilinear form and the continuous linear func-
tional that approximate the exact bilinear form a(·, ·) and (·, ·)ΓN

in the enriched setting. Spaces
Vh

X,gD
and Vh

X,0 are built from the enrichment of the finite-dimensional virtual element space Vh,
which is a conforming subspace of V , and provides the enriched virtual element space Vh

X. The
well-posedness of (4) follows from the coercivity and continuity of the bilinear form ah on Vh

X,
which is proved later in this section.

For now, let {φi}
N
i=1 be the canonical basis functions in the X-VEM that stem from the dis-

cretization of Ω. On expanding the trial and test functions as a linear combination of these basis
functions and substituting them in (4), and using the arbitrariness of the test coefficients, we
obtain the following linear system of equations:

Kd = f , Ki j = ah(φi, φ j), fi = (gN , φi)ΓN ,h , (5)

where d is the unknown coefficient vector, K is the stiffness matrix, and f is the external force
(load) vector.

We now introduce a few function space definitions, and prepare the reader by providing a
roadmap of what lies ahead in this section. For a domain D, let Pk(D) denote the space of poly-
nomials up to degree k on D. In this paper, we consider first-order virtual elements and require
P1(D), which is the space of linear polynomials on D. For each element E, we define the local
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virtual element space Vh(E) that includes the linear polynomials P1(E) = span{1, x, y} as a sub-
space, and the global virtual element space Vh that is defined on Ω. Any virtual element function
vh in Vh(E) is uniquely characterized by its vertex values, also dubbed the degrees of freedom
(DOFs), which allows us to compute the elliptic projection Π∇vh onto linear polynomials. For
the X-VEM, we introduce the enriched local and global virtual element spaces, i.e., Vh

X(E) and
Vh

X, which incorporate some specific information at the element-level about the behavior of the
weakly singular harmonic solution (denoted by ψ) or possibly a discontinuous solution. Accord-
ingly, we define the more general projection operator Π∇Xvh

X onto span{1, x, y, ψ}, which makes
it possible to construct the extended virtual element bilinear form ah(·, ·) used in (4). We also
discuss why ψ being harmonic (∆ψ = 0) is crucial to guaranteeing that the projection Π∇Xvh

X is
computable from the degrees of freedom of vh

X.

3.1. Mesh definition and regularity assumptions
Let T = {Ωh}h be a family of decompositions of Ω into nonoverlapping polygonal elements

E with nonintersecting boundary ∂E, barycenter xE := (xE, yE), area |E|, and diameter hE =

supx,y∈E |x − y|. The subindex h that labels each mesh Ωh is the maximum of the diameters hE

of the elements of that mesh. The number of vertices of element E is denoted by NE. The
boundary of E is formed by straight edges, and the polygon E has NE edges. The vertices of the
polygonal element E are oriented in counter-clockwise order and their coordinates are denoted
by xk := (xk, yk), k = 1, 2, . . . ,NE; for convenience, we also use xk as a label for the k-th vertex.
We denote the unit normal vector to edge e ∈ ∂E by nE,e. Each vector nE,e points out of E, and
for ease of notation we let ne := nE,e.

The following mesh regularity assumptions are usually considered in the convergence anal-
ysis of the conforming VEM [9, 12]. Although the convergence analysis of the X-VEM is
beyond the scope of this paper, we present such assumptions to characterize the geometry of
the elements in the polygonal meshes, which is pertinent to our formulation.

Mesh regularity assumptions. There exists a positive constant % independent of h (hence, also
of Ωh) such that for every polygonal element E ∈ Ωh it holds that

(i) E is star-shaped with respect to a disk with radius ≥ %hE; and

(ii) for every edge e ∈ ∂E it holds that he ≥ %hE.

Remark 3.1. The restriction of E being star-shaped in (i) implies that all the elements are
simply connected subsets ofR2. The scaling assumption in (ii) implies that the number of edges
on the boundary of any element is uniformly bounded over the whole mesh family T . Weaker
assumptions have been investigated by Beirão da Veiga et al.[21] and Brenner et al. [22], which
confirm the robustness of the method on even more general meshes.

3.2. Conforming virtual element space
On every polygonal element E with boundary ∂E, we define the standard local virtual ele-

ment space

Vh(E) =
{

vh ∈ H1(E) : ∆vh = 0, vh|∂E ∈ C0(∂E), vh|e ∈ P1(e) ∀e ∈ ∂E
}
. (6)
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The space Vh(E) contains all harmonic functions defined on E whose trace on the elemental
boundary ∂E is a continuous piecewise-linear polynomial. A straightforward consequence of
definition (6) is that the linear polynomials P1(E) = span{1, x, y} (1, x, y are monomials on E),
are a subspace of Vh(E). However, in the implementation it is prudent to use the set of scaled
monomials so that all functions are O(1):

m1(x) = 1, m2(x) =
x − xE

hE
, m3(x) =

y − yE

hE
. (7)

It is evident that P1(E) = span{m1,m2,m3}, since the scaled monomials are also a basis of
P1(E).

Any virtual element function vh ∈ Vh(E) is uniquely determined by its vertex values, which
are the degrees of freedom of vh. In the FEM, it is common to associate nodes with the vertices
of an element, and hence the two choices refer to the same entity in this paper. The proof of the
unisolvence of the vertex values in Vh(E) is given in [9]. Using only this information about vh,
we compute the elliptic projection operator Π∇ : Vh(E) → P1(E), which for vh ∈ Vh(E), is the
solution of the variational problem [9]:∫

E
∇Π∇vh · ∇q dx =

∫
E
∇vh · ∇q dx ∀q ∈ P1(E), (8)

with the additional condition ∫
∂E

(Π∇vh − vh) ds = 0. (9)

To prove the computability of Π∇vh we reformulate (8) as a linear system. To this end, we
expand the linear polynomial Π∇vh on either {1, x, y} or {m1,m2,m3} and substitute such an
expansion on the left-hand side of (8). The coefficient matrix of the resulting linear system is
the stiffness matrix computed on the monomial (or scaled monomial) basis; the unknowns are
the coefficients of the expansion of Π∇vh; and the right-hand side is given by the integrals on
the right of (8), for every q taken in the polynomial basis. These latter integrals are computable
by using only the degrees of freedom of vh and the fact that q is a known polynomial. Indeed,
an integration by parts yields∫

E
∇Π∇vh · ∇q dx = −

∫
E

vh∆q dx +
∑
e∈∂E

∫
e

vhne · ∇q ds. (10)

The volume term on the right vanishes because the Laplacian of a linear polynomial is zero; the
edge integrals are computable because the degrees of freedom of vh allow us to reconstruct the
trace of vh on each edge through linear interpolation. Finally, we note that the boundary integral
in (9) is also computable after splitting it into edge subintegrals because the degrees of freedom
of vh allows us to interpolate the trace of vh on the edge.

Remark 3.2. The projection operator is polynomial preserving since Π∇q = q for q ∈ P1(E).
This property is fundamental to show that the standard virtual element method is linearly con-
sistent, i.e., it satisfies the patch test on any linear solution.
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The global conforming virtual element space Vh (subordinate to the mesh Ωh) is obtained
by gluing together all the elemental spaces Vh(E) to provide a conforming subspace of the
functional space H1(Ω). The formal definition reads as:

Vh :=
{

vh ∈ H1(Ω) : vh|E ∈ Vh(E) ∀E ∈ Ωh

}
. (11)

The degrees of freedom of the virtual element functions in Vh are given by collecting all the
nodal values at the nodes of the mesh. The unisolvence of the degrees of freedom of Vh is
an immediate consequence of the unisolvence of the degrees of freedom of each local virtual
element space Vh(E). The space Vh is conforming since the trace of any virtual element function
on any inter-element edge only depends on the degrees of freedom of that function associated
with that edge.

3.3. Extended virtual element space and the elliptic projection
To fix ideas, we first define the local virtual element space enriched with the harmonic

function ψ on the polygonal element E as:

Vh
X(E) := Vh(E) + ψVh(E). (12)

It follows from (12) that any enriched virtual element function is the sum of two terms, vh
X = vh

0+

ψvh
1, where vh

0 and vh
1 are functions of the standard virtual element space Vh(E). Consequently,

the degrees of freedom that uniquely characterize the enriched virtual element function vh
X are

now given by two distinct sets of nodal values:
{
vh

0(xk)
}NE
k=1 and

{
ψ(xk)vh

1(xk)
}NE
k=1.

The enriched space Vh
X(E) contains both the linear polynomials P1(E) and functions of the

form ψP1(E), namely, ψ, xψ, and yψ. Harmonic functions ψ, which are used as enrichment
functions for the L-shaped domain problem in Section 5.3, are of the form (polar coordinates)
ψ(r, θ) = rλ f (θ), where 0 < λ < 1 is the strength of the singularity. To use a function ψ that is
O(1), we scale ψ by ψ0 = hλ. From the above considerations, it is natural to consider the two
extended polynomial spaces defined below and denoted by PX

1,0 and PX
1,1 as possible candidates

for the construction of an extended elliptic projection. However, we anticipate that only the first
one can lead to a computable projector operator. This fact is expounded in Remark 3.3. Now,
the following inclusion holds:

P
X
1,` = P1(E) + ψP`(E) ⊂ Vh

X(E) for ` = 0, 1, (13a)

where

P
X
1,0 = span {1, x, y, ψ} = span {m1, m2, m3, ψ/ψ0}, (13b)

and

P
X
1,1 = span {1, x, y, ψ, xψ, yψ} = span {m1, m2, m3, m1ψ/ψ0, m2ψ/ψ0, m3ψ/ψ0}. (13c)

We point out that the trace of an enriched virtual element function on an element edge e ∈ ∂E
may not be a linear polynomial due to the presence of ψ in the definition (12); i.e., in general, it
lies in P1(e) + ψP1(e).
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To build the enriched bilinear form ah, we define the extended elliptic projection operator
Π∇X : Vh

X(E)→ P
X
1,0 = span(1, x, y, ψ) for each element E. For a given vh

X ∈ Vh
X(E), the extended

elliptic projection Π∇Xvh
X is the solution of the variational problem:∫

E
∇Π∇Xvh

X · ∇qX dx =

∫
E
∇vh

X · ∇qX dx ∀qX ∈ P
X
1,0(E), (14)

with the additional condition ∫
∂E

(Π∇Xvh
X − vh

X) ds = 0. (15)

Similar to its counterpart in the standard virtual element space Vh(E), the projection Π∇Xvh
X onto

the subspace PX
1,0(E) is computable from the degrees of freedom of vh

X. In fact, an integration
by part yields: ∫

E
∇Π∇Xvh

X · ∇qX dx = −

∫
E

vh
X∆qX dx +

∑
e∈∂E

∫
e

vh
X ne · ∇qX ds, (16)

which must hold for any function qX ∈ span(1, x, y, ψ). On the right-hand side, the volume
integral is zero because ∆qX = 0 for such qX (recall that ψ is a harmonic function), and the
edge integrals on ∂E are computable since vh

X = vh
0 + ψvh

1, and the trace of the standard virtual
element functions vh

0 and vh
1 can be interpolated from their degrees of freedom. In general, the

computation of Π∇Xvh
X may involve the numerical integration of weakly singular functions, and

therefore, special cubature schemes are required in order to achieve the required accuracy, see
Section 5.1.

Remark 3.3. It is worth noting that the extended elliptic projection operator that projects onto
P1,1(E), which is defined in (13), is noncomputable. In fact, although ψ is a harmonic function,
the volume integral on the right-hand side of (16) would have nonharmonic integrands. For
example, consider qX = xψ. In this case, on denoting e1 = ∇(x) = (1, 0)T , we obtain

∆(xψ) = ∇ · ∇(xψ) = ∇ · (x∇ψ + ψe1) = x∆ψ + ∇ψ · e1 = ∇ψ · e1.

Therefore, on choosing qX = xψ in (16), the volume integral

−

∫
E

vh
X∇ψ · e1 dx

on the right-hand side remains, which is noncomputable from the degrees of freedom of vh
X, as

we do not have any information about the moments of vh
X against the derivatives of ψ.

Remark 3.4. The extended projection operator is still polynomial preserving since Π∇XqX = qX

for qX ∈ span{1, x, y}, and Π∇Xψ = ψ also holds. Therefore, we can write Π∇XP
X
1,0(E) = PX

1,0(E).
Nonetheless, it is evident that Π∇XqX , qX for qX ∈ {xψ, yψ}, so even though the enriched space
contains xψ, yψ and ψ, as well as their linear combinations, the patch test using xψ and yψ as
possible exact solutions would not be met. However, this is not an issue since xψ and yψ and
their linear combinations are not harmonic functions, cf. Remark 3.3, and cannot be chosen as
exact solutions of problem (2) for the patch test.
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Remark 3.5. It should be pointed out that the approach described in this Section is applicable
as long as the enrichment function ψ is regular enough on E (e.g., ψ ∈ H1(E)), so that inte-
gration by parts in (16) can be carried out. For instance, this is the case of weakly singular
enrichment functions, which are used in the L-shaped domain problem discussed in Section 5.3.
On the contrary, a different strategy must be adopted for the case of an enrichment function
ψ discontinuous over E, whose gradient is not computable on E. The reader is referred to
Section 4.2 for further details on a viable approach to overcome this additional difficulty.

3.4. Bilinear form and linear functional
At this point, the construction of the X-VEM is straightforward and follows the procedural

steps outlined for the virtual element method [9]. We define the discrete bilinear form ah(uh
X, v

h
X)

for uh
X, v

h
X ∈ Vh

X as the sum of elemental contributions

ah(uh
X, v

h
X) =

∑
E∈Ωh

aE
h (uh

X, v
h
X), (17)

where each local bilinear form is given by

aE
h (uh

X, v
h
X) =

∫
E
∇Π∇Xuh

X · ∇Π∇Xvh
X dx + S E

((
I − Π∇X

)
uh

X,
(
I − Π∇X

)
vh

X

)
. (18)

In (18), S E(·, ·) is any symmetric positive definite bilinear form for which there exist two positive
constants c∗ and c∗, independent of h and the shape of the element, such that

c∗aE(vh
X, v

h
X) ≤ S E(vh

X, v
h
X) ≤ c∗aE(vh

X, v
h
X) ∀vh

X ∈ Vh
X(E) with Π∇Xvh

X = 0. (19)

Here, aE(·, ·) is the local coercive and continuous bilinear form:

aE(u, v) =

∫
E
∇u · ∇v ∀u, v ∈ H1(E).

Effective choices for the stabilization terms are investigated in [23, 24]. By construction, the
bilinear form aE

h (·, ·) satisfies the following properties:

• linear consistency: for all vh
X ∈ Vh

X(E) and linear polynomials qX ∈ P1(E) it holds that

aE
h (vh

X, qX) = aE(vh
X, qX); (20)

• ψ-consistency: for all vh
X ∈ Vh

X(E) it holds that

aE
h (vh

X, ψ) = aE(vh
X, ψ); (21)

• stability: there exists two positive constants α∗, α∗, independent of h and E, such that

α∗aE(vh
X, v

h
X) ≤ aE

h (vh
X, v

h
X) ≤ α∗aE(vh

X, v
h
X) ∀vh

X ∈ Vh
X(E). (22)

9



In particular, the first term in (18) ensures the linear and ψ-consistency of the method, i.e., the
patch test, since Π∇XqX = qX for qX ∈ span{1, x, y, ψ}. The second term in (18) ensures that the
X-VEM is stable—choose α∗ = 1+c∗ and α∗ = 1+c∗. In the next section, we build the extended
elliptic projection operator and provide a suitable choice for the stabilization term S E(·, ·).

We conclude this section with the formula for the right-hand side functional, which is given
by (

gN , vh
X

)
ΓN

=
∑
e∈ΓN

∫
e

gNvh
X ds.

This functional is clearly computable because gN is a known function and the trace of vh
X on

each edge e ⊂ ΓN is computable on interpolating the edge degrees of freedom.

4. Numerical implementation

4.1. Enrichment with a weakly singular function
As in the FEM, the functions of the global virtual element space Vh are continuous on

Ωh since the trace is conforming across the inter-element boundaries. Recall that NE is the
number of vertices (nodes) of element E. We can write any virtual element function of the local
space Vh(E) as the Lagrange interpolation of the NE canonical basis functions denoted by ϕ j

for j = 1, . . . ,NE, which are associated with the vertices (nodes) x j of E. More precisely, the
basis function ϕ j takes on the value 1 at the j-th node x j, and zero at all the other nodes. The
restriction of ϕ j to E is zero as in the FEM if x j does not belong to E; hence, ϕ j has compact
support, with the support region being over the 1-ring of elements that surround node x j. If E
belongs to the support of ϕ j, then the restriction of ϕ j to E is in Vh(E), which implies that the
restriction of ϕ j is a harmonic function on E and has a continuous piecewise linear trace on ∂E.
Let the mesh Ωh consist of N nodes. Then, it is readily seen that the set consisting of N basis
functions ϕ j defined in Ωh forms a partition-of-unity (PU) on Ωh:

N∑
j=1

ϕ j(x) = 1 ∀x ∈ Ωh. (23)

Likewise, the subset of basis functions that are associated with element E (known as shape
functions of the element) form a PU in E.

We now provide a broader definition than that implied by (12). Any virtual element function
of the extended space Vh

X(E) can be written as:

vh
X(x) =

∑
i∈I

ϕi(x)v0
i +

∑
j∈J⊆I

ψ(x)ϕ j(x)v1
j ∀x ∈ E, (24)

where I refers to the index set consisting of the nodes of the element E, J is the subset of I
indexing the enriched nodes and v0

j and v1
j are the nodal degrees of freedom of the standard

virtual element functions vh
0 and vh

1. It follows naturally that the set of functions {φk}k∈K defined
on E and given by

{φk}
card(K)
k=1 = {ϕi}i∈I ∪ {ψϕ j} j∈J⊆I (25)
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is a basis for the local enriched space Vh
X(E). Clearly, card(K) = card(I) + card(J). From (24),

we observe that if J = I (all nodes of E are enriched), then a PU exists on E and ψ resides in
the local enriched virtual element space. However, if fewer than NE nodes are enriched, then a
PU does not exist on E and the function ψ is not contained in Vh

X(E). For example, if only one
node of E is enriched, say node 1, then we no longer have the extended space given in (12), but
instead:

Vh
X(E) := Vh(E) + span{ψϕ1}, (26)

where ϕ1 is the shape function associated with node 1.
To construct the local stiffness matrix from the extended projection operator Π∇X that maps

the enriched virtual function vh
X onto linear monomials and ψ, we consider either full enrichment

or partial enrichment on the element E. A partially enriched element, also referred to as a
blending element in the extended finite element literature, is an element where only a subset of
nodes of the element are enriched. The local stiffness matrix of a blending element E is built
by considering all the standard virtual element shape functions associated with the nodes of E
and only the enriched basis functions associated with the nodes of E that are enriched. Even
if element E is only partially enriched, due to the presence of partitioned pieces of ψ through
the enriched nodal shape functions, we should expect an improvement of the approximation
property of the X-VEM vis-à-vis the standard VEM. To realize this end, we adopt the Π∇X
projection operator, which ensures that the consistent stiffness matrix so formed (and hence
KE) can exactly reproduce ψ at the nodes and its use leads to improvements in accuracy. The
results in Section 5.3.1 when only a single node in the mesh is enriched for the L-shaped domain
Laplace problem bears this out.

4.1.1. Matrix representation of the elliptic projector Π∇X
Assuming full enrichment and using the set of Lagrange basis functions introduced in the

previous section, we represent the projection operator Π∇X defined on E as a 4 × 2NE matrix
ΠX. The j-th column of ΠX contains the coefficients of Π∇Xφ j, the projection of the j-th basis
function φ j, on the scaled monomials augmented with ψ/ψ0, i.e., on {m1,m2,m3, ψ/ψ0}. In other
words, denote the j-th column of ΠX by (aX

j )T = {aX
1 j, a

X
2 j, a

X
3 j, a

X
4 j}

T . Then, the projection of φ j

onto {m1,m2,m3, ψ/ψ0} is given by

Π∇Xφ j(x) = aX
1 jm1(x) + aX

2 jm2(x) + aX
3 jm3(x) + aX

4 j
ψ(x)
ψ0

.

Let mX
i for i = 1, . . . , 4 denote the scaled functions that form a basis for the extended space

P
X
1,0 = P1(E) + ψP0(E). Here, mX

i for i = 1, 2, 3 are the scaled monomials and mX
4 = ψ/ψ0 is

the scaled enriched function. We compute matrix ΠX by solving the linear system

GXΠX = BX, (27)

where GX = (GX
i j) is given by

GX
i j =


1

NE

NE∑
k=1

mX
j (xk) for i = 1, j = 1, . . . , 4∫

E
∇mX

i (x) · ∇mX
j (x) dx for i > 1, j = 1, . . . , 4

, (28)

11



and BX = (BX
i j) is given by

BX
i j =


1

NE

NE∑
k=1

φ j(xk) for i = 1, j = 1, . . . , 2NE,∫
E
∇mX

i (x) · ∇φ j(x) dx for i > 1, j = 1, . . . , 2NE

. (29)

In addition, the degrees-of-freedom matrix, DX, is defined as:

DX =

[
dof(mX

1 ) dof(mX
2 ) dof(mX

3 ) 0
0 0 0 dof(mX

1 )

]
, (30)

where dof(mX
i ) is the column vector collecting the degrees of freedom of mX

i .
Integrals in (28) are computable, since integrands are known over the element E. Moreover,

integrals in (29) are also computable since they can be reduced to the element boundary ∂E
using (16). In particular, the matrix entries GX

i j (i, j = 1, 2, 3) and BX
i j (i = 1, 2, 3, j = 1, . . . ,NE)

are easily computed as the corresponding integrals of the standard VEM [13]. For example, on
using the properties of the Lagrange basis functions φ j, we have

1
NE

NE∑
k=1

φ j(xk) =
1

NE

NE∑
k=1

δ jk =
1

NE
.

However, distinct from standard VEM, the numerical computation of matrix entries GX
i j and BX

i j

involving weakly singular integrands, such as GX
i j (i = 4, j = 1, . . . , 4) and BX

i j (i = 4, j =

1, . . . , 2NE), requires special care in the choice of the cubature scheme to obtain a satisfactory
level of accuracy. The effect of the numerical integration on the accuracy of the method is
investigated in Section 5.1.

We have defined BX, GX, and DX as the enriched counterparts of matrices B, G and D that
are used in the standard VEM, for which the relation BD = G holds [13]. Analogously, it is
readily shown that the equality BX DX = GX is also met for the extended matrices.

4.1.2. Enriched stiffness matrix
On using (18), the stiffness matrix KE := (KE

i j) of the X-VEM is given by

KE
i j = (KE

c )i j + (KE
s )i j =

∫
E
∇Π∇Xφi · ∇Π∇Xφ j dx + S E

((
I − Π∇X

)
φi,

(
I − Π∇X

)
φ j

)
, (31)

where the stabilizing function S E is defined as [24]:

S E(vh,wh) = α trace(KE
c )

NE∑
`=1

dof`(vh) dof`(wh), (32)

where α is a scalar stabilization parameter and dof`(·) is the functional that returns the value
of the `-th degree of freedom when applied to a virtual element function. We note here that
multiplying the summation in (32) by the trace of KE

c ensures that the stabilization term scales
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like the consistency term. This is a standard approach within the VEM [25]. It is straightfor-
ward to prove that ah(φi, φ j) satisfies the linear and ψ-consistency and the stability condition of
Section 3.4, and that the stabilization term (32) satisfies the stability bounds (19). Now, let Ĝ be
the matrix obtained by setting the first row of GX to zero and I the 2NE × 2NE identity matrix.
Then, we can reformulate (31) in matrix form:

KE = KE
c + KE

s =
(
Π∇X

)T Ĝ
(
Π∇X

)
+ α trace(KE

c )
(
I − DXΠ∇X

)T (I − DXΠ∇X
)
. (33)

A different type of stabilization, with respect to (32), is the so-called diagonal stabilization, or
D-recipe, defined in matrix form as follows:

KE
s =

(
I −Π∇X

)T SE
d
(
I −Π∇X

)
, (34)

where SE
d is a diagonal matrix whose entries are given by [24, 26]:

(S E
d )i,i = max

(
1, (KE

c )i,i
)
. (35)

Finally, alongside (35), we also propose the following alternative choice for the diagonal matrix
SE

d to be used in (34):

(S E
d )i,i = max

(
trace(KE

c )/size(KE
c ), (KE

c )i,i
)
, (36)

where size(KE
c ) represents the dimension of KE

c . We will refer to this choice for the stabilization
as the modified D-recipe.

4.2. Enrichment with a discontinuous function
Consider a crack γ that intersects some of the elements in a mesh, and define d(x) as the

signed distance from a point x to γ. For modeling strong discontinuities like a crack, it is
convenient to consider enrichment with the generalized Heaviside function H(x), which is equal
to +1 for points with d(x) ≥ 0 (x is on or above the crack) and is −1 for points with d(x) < 0 (x
is below the crack).

As in the X-FEM, we enrich with H(x) those nodes whose basis function support intersects
the interior (tips of the crack not included) of the crack. In an element E that is cut by γ, we
take J = I and the extended virtual element approximation is:

vh
X(x) =

∑
i∈I

ϕi(x)v0
i +

∑
j∈I

H(x)ϕ j(x)v1
j ∀x ∈ E. (37)

We note that (37) suggests an extended virtual element space that is formally similar to (24).
However, in contrast to the harmonic enrichment function ψ for weak singularities used in (24),
the generalized Heaviside function H(x) is not a solution of the variational problem (2). Fur-
thermore, since the enriched virtual basis functions φ j = Hϕ j are not known along the crack, it
can be easily shown that neither the standard VEM projection Π∇ onto P1(E) nor the extended
projection Π∇X onto PX

1,0(E) are directly computable from the degrees of freedom of the method.
To deliver a viable solution, let the element E be partitioned by the discontinuity γ into two

subdomains E− and E+. To represent two independent linear polynomials on E− and E+, we
adopt the approach of Hansbo and Hansbo [18] and tailor it to the X-VEM. To this end, each
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standard virtual shape function ϕ j on E is written as the sum of two new virtual shape functions
ϕ−j and ϕ+

j that are both discontinuous across the crack, and are defined as follows:

ϕ+
j =


0 in E−

ϕ j in E+

, ϕ−j =


ϕ j in E−

0 in E+

. (38)

Clearly, ϕ−j and ϕ+
j are harmonic and continuous functions in E− and E+, respectively, and

ϕ j = ϕ−j +ϕ+
j . Proceeding likewise for all the nodes in the element, we can generate 2NE discon-

tinuous virtual basis functions, starting from the standard NE virtual basis functions. Further-
more, as we will detail later on, we do so by doubling the nodal DOFs on the standard element.
Therefore, the number of degrees of freedom for the element with an internal discontinuity is
twice that of the original element, and a virtual element basis is constructed by considering two
copies of the original virtual basis functions, restricted to E− and E+ respectively, as defined
in (38). Therefore, formally we seek a discrete solution in the space Vh

−(E) ∪ Vh
+(E), where

Vh
−(E) =

{
vh ∈ H1(E−) : ∆vh|E− = 0, vh|∂E− ∈ C0(∂E−), vh|e ∈ P1(e) ∀e ∈ (∂E ∩ ∂E−)

}
,

Vh
+(E) =

{
vh ∈ H1(E+) : ∆vh|E+ = 0, vh|∂E+ ∈ C0(∂E+), vh|e ∈ P1(e) ∀e ∈ (∂E ∩ ∂E+)

}
.

Space Vh
−(E) ∪ Vh

+(E) is not a subspace of H1(E) as we do not assume any regularity of the
virtual element functions across the crack, so that a discontinuity is admissible. As we detail
later on, virtual functions along interface edges are reconstructed by a suitable approximation.

On substituting (38) in (37), we obtain the following representation for the virtual element
approximation on an element E that is cut by γ:

vh
X(x) =

∑
i∈I

[
ϕ−i (x)v−i + ϕ+

i (x)v+
i
]
∀x ∈ E, (39)

where v−i and v+
i are degrees of freedom associated with ϕ−i and ϕ+

i , respectively. It is readily
verified that

v−i = v0
i − v1

i , v+
i = v0

i + v1
i , (40)

which indicates that the virtual element approximations in (37) and (39) are equivalent. This
correspondence has earlier been established for the representation of discontinuous fields on
finite element meshes, see for example [19] and [27].

For virtual elements, the approximation form in (39) is preferable to the one in (37), since
it provides a pathway to construct two independent linear polynomials on either side of γ. This
leads to the satisfaction of the discontinuous patch test (see Section 5), whereas use of (37) as
introduced earlier in Benvenuti et al. [28] does not.

In order to provide a feasible solution via use of (39), it is necessary to know the trace of
the virtual shape functions ϕ j along the crack, so that two separate projection operators Π∇,−

onto P1(E−) and Π∇,+ onto P1(E+) can be computed starting from the 2NE nodal degrees of
freedom. To this end, a convenient approximation for the trace of the j-th virtual shape function
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ϕ j along the crack is provided by a suitable approximating function N j(x) that is harmonic on
the cracked element E. Such a function is built as a first-order polyharmonic spline [29]:

N j(x) =

n∑
i=1

wiΨ(||x − ci||) + a · m(x), (41)

where w := {w1 . . .wn} and a := {a0 a1 a2} are unknown, and m(x) = {1 x y} is a linear basis. The
first term in the above equation is a linear combination of n radial basis functions Ψ(·) centered
at ci, and the second term is a linear polynomial in x. Finally, wi is a set of n weights, which
has to be determined, together with the coefficients ai (i = 0, 1, 2). We choose the function
Ψ(r) = ln r, which is the fundamental solution of the radial Laplace equation. With this choice,
the function N j is harmonic in the whole domain except where x = ci. In order to avoid such
singularities within the element, the n kernel points ci are chosen by sampling n points si ∈ ∂E
and then moving the sampled points si in the outward normal direction n by a small fraction η
of the element size, so that

ci = si + ηhE n(si). (42)

On each edge of the element, 8 sampling points are chosen with η = 1/20. The unknown
vectors w and a are determined by minimizing an L2 error norm on ∂E, which is approximated
as a discrete sum of m collocation points pi on the boundary of E, as follows:

min
w,a

1
m

m∑
i=1

[N j(pi) − b j(pi)]2, (43)

where b j(x) is the (known) trace of ϕ j on the element boundary. The number of collocation
points is chosen as m = 3n. The minimization of the discretized L2 error in (43) leads to an
overdetermined linear least squares system for the coefficient vectors w and a:[

A BT
] {w

a

}
= b, (44a)

where

Ai j = Ψ(||pi − c j||), B =

[
1 1 . . . 1
p1 p2 . . . pm

]
, b =

{
b j(p1), b j(p2) . . . b j(pm)

}T
. (44b)

If the trace of ϕ j along the crack is approximated by the trace of N j (see Figs. 1a and 1b for
examples of N j computed along the crack in a hexagonal element), it is indeed possible to
construct the two separate projection operators Π∇,− onto P1(E−) and Π∇,+ onto P1(E+) starting
from the 2NE nodal degrees of freedom, as in the standard VEM.

We can now write the bilinear form as

a(ϕi, ϕ j) =

∫
E
∇ϕi · ∇ϕ j dx =

∫
E−
∇ϕ−i · ∇ϕ

−
j dx +

∫
E+

∇ϕ+
i · ∇ϕ

+
j dx, (45)
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Figure 1: Trace of the approximation N j of ϕ j along the crack on a hexagonal element, where ϕ j is the virtual
shape function associated with the node j that is marked by the circle in (a) and (b).

which is the sum of a consistency term plus a stabilization term. The entries of the consistent
part of the local stiffness matrix are

(KE
c )i− j− =

∫
E−
∇Π∇,−ϕ−i · ∇Π∇,−ϕ−j dx, (46a)

(KE
c )i+ j+ =

∫
E+

∇Π∇,+ϕ+
i · ∇Π∇,+ϕ+

j dx, (46b)

(KE
c )i+ j− = Kc

i− j+ = 0, (46c)

where we adopt the subscripts i−, i+ to denote the two degrees of freedom associated with the
virtual basis functions ϕ−i and ϕ+

i , respectively. On the other hand, the matrix entries of the
stabilization term are

(KE
s )i− j− = S E((I − Π∇,−)ϕ−i , (I − Π∇,−)ϕ−j

)
, (47a)

(KE
s )i+ j+ = S E((I − Π∇,+)ϕ+

i , (I − Π∇,+)ϕ+
j
)
, (47b)

(KE
s )i+ j− = (KE

s )i− j+ = 0, (47c)

where possible choices for S E(·, ·) have been previously defined in Section 4.1.2. On a unit
square element, Fig. 2 illustrates the difference between the standard virtual element projection
onto P1(E) of one of the four virtual basis functions and the separate projections onto P1(E−)
and P1(E+) of the two corresponding basis functions in the proposed X-VEM.

5. Numerical results

In this section, we first show how the presence of a radial singularity renders the choice of
numerical cubature to be crucial to obtain accurate results (Section 5.1). Then, results of the
extended patch tests are presented in Section 5.2. Finally, in Section 5.3 and Section 5.4, we
describe the extended virtual element solutions for problems with singular and discontinuous
primal fields.
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Figure 2: (a) Projection onto P1(E) of one of the virtual basis functions ϕ j of a square element. (b) Separate
projections of ϕ+

j and ϕ−j onto P1(E+) and P1(E−), respectively. (c) Superposition of the three projections.

5.1. Numerical integration
Consider the enrichment function ψ(r) = rλ, where r =

√
x2 + y2 and 0 < λ < 1. Let us

examine a typical enriched stiffness matrix contribution that arises in the X-VEM. For a unit
square element, consider the evaluation of the integral

Iλ =

∫ 1

0

∫ 1

0
∇ψ · ∇ψ dx = λ2

∫ 1

0

∫ 1

0
r2(λ−1) dx. (48)

In light of the Laplace problem that follows in the next section, we select λ = 1/3. The exact
result is: I1/3 = 0.2823793355343268. The use of two cubature procedures, one general and
one especially conceived for singular functions, has been investigated for the computations of
integrals. The general procedure is a product Gauss cubature scheme for polygons proposed
by Sommariva and Vianello in [30], also distributed as an open source MATLAB routine under
the name polygauss.m. The enhanced procedure is based on the numerical integration of
homogeneous functions on convex and nonconvex polygons and polyhedra, developed by Chin
et al. [7], hereafter referred to by the acronym HNI. The polygauss approach relies on a Gauss-
like cubature formula over convex, nonconvex and multiply connected polygons. The formula
is exact for polynomials of degree at most 2n − 1 using mn2 nodes, where m is the number of
sides that are not orthogonal to a given line, nor lying on it. This cubature scheme does not
require triangulation of the domain, but relies directly on univariate Gauss-Legendre quadrature
via Green’s integral formula.

The HNI scheme allows to reduce integration of homogeneous functions over arbitrary con-
vex and nonconvex polytopes to integration over the boundary facets of the polytope. By defi-
nition, a positively homogeneous function of degree q satisfies

f (λx) = λq f (x) (49)

for all x and where λ > 0. Given a two-dimensional domain M, bounded by ∂M, let n be the
unit outward vector normal to ∂M and dσ the differential length of the parametrized curve σ
on ∂M. Then, given a homogeneous function f of degree q, applying Euler’s homogeneous
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function theorem and Stokes’ theorem, it can be shown that∫
M

f (x) dx =
1

2 + q

∫
∂M

(x · n) f (x) dσ. (50)

If M is a polygonal domain with edges ei (i = 1, . . . ,m), let ai · x = bi the line containing edge
ei, where the sign of bi is determined such that ai/‖ai‖ is the outward normal to the polygon.
Then, (50) reduces to ∫

M
f (x) dx =

1
2 + q

m∑
i=1

bi

‖ai‖

∫
ei

f (x) dσ. (51)

On applying an nq-th point Gauss quadrature rule, (51) becomes∫
M

f (x) dx =
1

2 + q

m∑
i=1

bi

‖ai‖

nq∑
j=1

wi j f (xi j). (52)

With Gauss quadrature applied to the bounding line segments, (52) provides numerical integra-
tion with polynomial precision over arbitrary polygons. Such a scheme is particularly efficient
when integrating a weakly singular homogeneous function over a two-dimensional domain,
such as that encountered when numerically solving the Laplace problem on an L-shaped do-
main using the X-VEM. It is also pertinent in the computation of the matrix G defined in (28),
stiffness matrix entries KE

i j defined in (33), and strain energy computations as well. Indeed, if
the singular point is within the domain of integration, then this leaves only the computation of
an integral of a smooth function over the boundary of the polygon. Furthermore, if the singular
point lies on the boundary and coincides with one of the bounding line segments, then no con-
tribution arises from this line integral. If a weakly singular homogeneous function is singular
at the origin and the i-th line segment passes through the origin, then we have bi/‖ai‖ = 0.
These two observations reveal why the HNI scheme is effective for weakly singular functions.
However, bounding line segments may still be very close to the singular point, resulting in a
nearly singular integral. Polynomial approximation of such an integral is poor and requires
many cubature points to attain sufficient accuracy. To optimize the distribution of integration
points required on each line segment, we adopt an adaptive integration scheme that provides an
optimized, custom cubature rule for each element. This allows such integrals to be calculated
to a user-specified precision through an a posteriori estimation of the error (see [8] for further
details).

The relative errors obtained with both polygauss and the adaptive HNI scheme [7, 8] are
listed in Table 1. The advantages of the adaptive HNI method are striking and its use ensures
sound accuracy and robustness, which is especially needed with enriched approximation spaces
that can deliver high-accuracy.

5.2. Extended patch tests
As a verification of the X-VEM and a check for the proposed implementation, we perform a

series of extended patch tests by using manufactured solutions for the Laplace equation ∆u = 0
with Dirichlet boundary conditions on a L-shaped domain (see also Section 5.3), in order to
ensure that the enrichment function can be exactly reproduced using the X-VEM. To this end,
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Table 1: Relative error when I1/3 is computed with the adaptive HNI scheme [7, 8] and product Gauss cuba-
ture [30]. nQ is the number of integration points; for the HNI method, nQ integration points are used on the
element boundary.

HNI Gauss
nQ Relative error nQ Relative error
10 1.2 × 10−8 8450 4.1 × 10−3

20 3.9 × 10−11 33282 1.7 × 10−3

30 8.8 × 10−12 132098 6.7 × 10−4

40 2.0 × 10−16 526338 2.7 × 10−4

Table 2: Errors in the H1 seminorm for the extended patch test on the L-shaped domain. For product Gauss
cubature scheme, 8450 integration points within the element are used, whereas 40 integration points on the element
boundary are used with the adaptive HNI scheme.

Exact solution ‖u − uh‖H1

ψ HNI Gauss
r2/3 sin(2θ/3) 7.4 × 10−9 1.6 × 10−5

r1/2 sin(θ/2) 2.9 × 10−8 2.8 × 10−4

r1/3 sin(θ/3) 1.3 × 10−7 4.6 × 10−3

we choose harmonic solutions ψ in polar coordinates (r, θ), centered on the domain re-entrant
corner, that have a weak singularity in r = 0. Then, we appropriately set gD = ψ on the boundary
Γ = ΓD (ΓN = ∅). We use ψ as the enrichment function in the X-VEM.

We consider coarse meshes of square elements (12 elements) where all nodes in a mesh are
enriched. The exact solutions ψ considered contain the radial term rλ with λ = 2

3 ,
1
2 ,

1
3 . Table 2

shows the outcome of the extended patch tests for each reference solution employed, in terms
of absolute errors in the H1 seminorm. For the sake of comparison, integrals involved in these
tests are computed by means of both a high-order product Gauss cubature rule (8450 evaluation
points on each element) and the adaptive HNI method [7, 8]. For homogeneous polynomials,
the latter approach allows to further reduce the integration to function evaluations at the edges
of each polygonal element. This also avoids the evaluation of the enrichment function ψ at the
location of the vertex singularity.

For all values of λ, Table 2 reveals that the adaptive HNI scheme delivers much better
accuracy with far fewer points than product Gauss cubature, which points to the efficiency of
the adaptive HNI method.

5.3. L-shaped domain with corner singularity
A well-known benchmark problem with a geometric corner singularity is the Laplace prob-

lem on an L-shaped domain. The boundary-value problem is posed as:

∆u = 0 in Ω, (53a)
u = 0 on ΓD, (53b)

n · ∇u = gN on ΓN , (53c)

where Ω is shown in Fig. 3. Polar coordinates are used with the origin centered on the re-
entrant corner. Following Strouboulis et al. [31], we choose the Neumann boundary data gN
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that is consistent with the exact solution [32]:

u(r, θ) = r
1
3 sin

θ

3
, ∇u(r, θ) =

r−2/3

3

[
− sin

2θ
3

e1 + cos
2θ
3

e2

]
, (54)

which has a derivative singularity at r = 0.

Figure 3: Geometry and boundary conditions for the L-shaped domain Laplace problem.

To compute matrix KE, we implement the elliptic projector described in Section 4.1.1. We
adopt the stabilization (32), where the stabilization parameter α is set to 1. Diagonal stabiliza-
tions (see Section 4.1.2) are also investigated in the study. In the analyses, meshes consisting of
squares, distorted quadrilaterals and general polygons are considered; polygonal meshes have
been generated from Voronoi diagrams [33]. Two representative meshes are shown in Fig. 4.

5.3.1. Topological enrichment
We first study the case shown in Fig. 5 where only the node located at the vertex singularity

is enriched. We refer to this strategy as topological enrichment. The expected convergence rate
in strain energy for this case is min(2λ, 2p) [32], where λ is the order of the singularity at the
corner and p is the degree of the polynomial approximating field. Since, for the problem at hand,
λ = 1/3 and p = 1, we expect a convergence rate of 2λ = 2/3. This sub-optimal convergence
was also noted in previous finite element studies where enrichment for crack problems (λ = 1/2)
is used [34].

A convergence study for the X-VEM is conducted by computing both the relative error in
strain energy and the relative error in L2 norm on a sequence of refined meshes. The relative
error in strain energy is computed using

E =
|a(ũh, ũh) − a(u, u)|

a(u, u)
, (55)
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Figure 4: Representative meshes made of (a) distorted quadrilaterals and (b) convex polygons for the L-shaped
domain problem.

where a(u, u)/2 = 0.423569003301483 is the exact strain energy and ũh is the projection of the
discrete solution uh, defined as:

ũh =
∑
K∈T

Π∇Kuh,

with Π∇K = Π∇ for non-enriched elements and Π∇K = Π∇X for elements containing enriched nodes.
The reason for this choice is that it is not possible to compute the true energy associated with
uh, since the virtual functions are not explicitly known [35].

Figs. 6 and 7 show the convergence plots of the relative error in strain energy and the relative
L2 error, respectively. The expected convergence rate (denoted by R) is indicated in the plots.
All methods converge in both strain energy and in the L2 norm with a rate close to 2/3, which
is in agreement with theory. The results from the X-VEM are relatively insensitive to the type
of mesh (quadrilaterals or polygons); however they are consistently much more accurate than
the results obtained using the standard VEM. The sensitivity of the errors in strain energy to
the choice of the stabilization parameter α on quadrilateral meshes is presented in Fig. 8. The
choice α = 1 yield results that are proximal to the X-FEM, whereas values of α smaller than
1 deliver considerably better accuracy than the X-FEM. Moreover, Fig. 8 also contains results
for the diagonal stabilization, both in the standard form (35) and in the modified form (36).
Notably, the modified D-recipe allows for improved accuracy over the other stabilizations, with
the advantage of not requiring any tunable parameters.

5.3.2. Geometric enrichment
It was pointed out in the previous Section that the convergence rate obtained with a single

enriched node (topological enrichment) leads to the same rate of convergence as the standard
FEM, namely 1/3 in H1 seminorm and 2/3 in relative error in strain energy. It has been shown
by Laborde et al. [34] and Béchet et al. [37] that optimal convergence (rate of unity in the H1
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Figure 5: L-shaped domain problem with a single enriched node at re-entrant corner (topological enrichment).

101 102

(Number of DOFs)1/2

10-3

10-2

10-1

100

R
el

at
iv

e 
er

ro
r 

in
 s

tr
ai

n 
en

er
gy

VEM (rectangular Q4)
VEM (distorted Q4)
VEM (Voronoi)
FEM (rectangular Q4)
X-VEM (rectangular Q4)
X-VEM (distorted Q4)
X-VEM (Voronoi)
X-FEM (rectangular Q4)

R = 2/3

Figure 6: Convergence in terms of relative error in strain energy for the L-shaped domain problem where only the
node at the re-entrant corner is enriched (topological enrichment). Comparisons are made with both the standard
VEM and standard FEM/X-FEM (from [36]) on quadrilateral and polygonal meshes. All methods converge with
a rate close to 2/3.
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Figure 7: Convergence in terms of relative L2 error for the L-shaped domain problem where only the node at
the re-entrant corner is enriched (topological enrichment). Comparisons are made with the standard VEM on
quadrilateral and polygonal meshes. All methods converge with a rate close to 2/3.
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Figure 9: L-shaped domain problem where nodes that lie within the ball of radius re = 0.5 are enriched (geometric
enrichment).

seminorm for crack problems) is recovered in the X-FEM if all nodes that lie within a fixed
radius of the singularity are enriched. This strategy is referred to as geometric enrichment. The
recovery of the optimal rate of convergence with geometric enrichment has been shown in many
prior studies with the X-FEM for singular problems with cracks and corners.

To assess if the X-VEM can yield optimal convergence rates with geometric enrichment, we
enrich all nodes that lie within a ball of radius re = 0.5 from the corner (see Fig. 9). Conver-
gence plots for the relative errors in strain energy and L2 norm are presented in Figs. 10 and 11,
respectively, on quadrilateral as well as polygonal meshes. In both instances, the X-VEM con-
vergence rates are close to 2, in agreement with theory. Finally, Fig. 12 depicts a comparison
between convergence rates in strain energy for both topological and geometric enrichments for
quadrilateral meshes and convex and non-convex polygonal meshes.

5.4. Discontinuous patch test
We are interested in evaluating the effectiveness and robustness of the X-VEM in the pres-

ence of discontinuities, and to this end, we devise a suitable patch test. As usual, the essential
idea is to formulate a problem in which the exact solution lies in the discrete space and to verify
if the extended virtual element approximation matches such a solution. For the problem at hand,
we adapt the patch test first proposed by Dolbow and Devan [20] in finite strain elasticity to the
present context of the Laplace problem that admits a piecewise linear solution. Consider the
following Laplace problem of a membrane occupying the unit square domain Ω that is bisected
by a discontinuity γ into two subdomains Ω− = [0, 1] × [0, 1/2] and Ω+ = [0, 1] × [1/2, 1],
and subjected to zero Dirichlet boundary conditions along the edge x = 0 and discontinuous
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Figure 10: Convergence in terms of relative error in strain energy using geometric enrichment (re = 0.5). Extended
virtual element computations are done with the elliptic projector Π∇X on quadrilateral and polygonal meshes and
are compared to both the standard VEM and the X-FEM from [36]. All methods converge with a rate close to 2.
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Figure 11: Convergence in terms of relative L2 error using geometric enrichment (re = 0.5). Extended virtual
element computations are done with the elliptic projector Π∇X on quadrilateral and polygonal meshes. All methods
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Figure 12: Comparison between convergence plots in terms of relative error in strain energy using topological
enrichment (hollow markers) and geometric enrichment with re = 0.5 (solid markers). Extended virtual element
computations are performed with the elliptic projector Π∇X on distorted quadrilateral, polygonal and non-convex
polygonal meshes.

Neumann boundary conditions along the edge x = 1 and horizontal edges:

∆u(x, y) = 0 in Ω\γ, (56a)
u(0, y) = 0, (56b)

∂u
∂x

(1, y) =

1, y ≤ 1/2
2, y > 1/2

, (56c)

∂u
∂y

(x, 0) = 0,
∂u
∂y

(x, 1) = 0. (56d)

For this so-called discontinuous patch test, whose geometry and boundary conditions are shown
in Fig. 13, the exact solution is the piecewise linear function

u(x, y) =

x, x ∈ Ω−

2x, x ∈ Ω+
. (57)

In agreement with expectations, the extended virtual element formulation proposed in Sec-
tion 4.2, which uses distinct projector operators on the two subdomains that are formed by a
crack that cuts the element, passes the patch test with errors on the order of machine precision.

5.5. Cracked membrane under mode III loading
We study the performance of the proposed X-VEM to model the behavior of a squared mem-

brane that is partially cut into two parts by a central crack starting from one of the membrane
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Figure 13: Geometry and loading conditions of the discontinuous patch test.

edges. These two parts are pulled in opposite directions through the application of out-of-plane
displacements that are anti-symmetrical with respect to the membrane plane and linearly in-
creasing from zero to ±1 in the x direction, as illustrated in Fig. 14. The boundary of the
membrane for x ≥ 0.6 is clamped, i.e., zero transversal displacement are prescribed. Thus,
the deformation of the membrane is characterized by a mode III opening displacement field.
The determination of the displacement field of the cracked membrane is a Laplace problem (1),
where the primal field u is its out-of-plane displacement. The cracked membrane, whose geom-
etry is shown in Fig. 14, is assumed to be a unit square. We study the stability of the method on
meshes with rectangular and polygonal elements. Two representative meshes are displayed in
Fig. 15.

A series of simulations are performed on a sequence of refined rectangular and polygonal
meshes. As in the previous problem, we adopt the stabilization (32), where the stabilization
parameter α is set to 1. Diagonal stabilizations (see Section 4.1.2) are also investigated. Ex-
amples of deformed meshes are shown in Fig. 16. Convergence of the X-VEM on rectangular
and polygonal meshes is studied, using a reference solution obtained with the X-FEM on an
overkill mesh consisting of 409,600 square elements. The reference result for the strain energy
is 0.575232. Fig. 17 shows the relative error in the strain energy with the X-VEM on quadri-
lateral and polygonal meshes. The rate of convergence of the X-VEM is consistent with that
obtained with the X-FEM on quadrilateral meshes, but accuracy is superior with both quadri-
lateral and polygonal meshes.

The influence of the stabilization parameter α on the accuracy of the X-VEM on quadrilat-
eral meshes is depicted in Fig. 18, along with the results provided by diagonal stabilizations
introduced in Section 4.1.2. The choice α = 1 in the X-VEM delivers results that are signif-
icantly more accurate with respect to the X-FEM, whereas increasing α leads to a progressive
reduction in accuracy. However, convergence rate is maintained. Notably, among diagonal sta-
bilizations, the modified D-recipe allows to realize the same accuracy as that obtained with the

27



Figure 14: Geometry of the squared cracked membrane under prescribed boundary displacements along z-axis.
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Figure 15: Representative meshes made of (a) square elements and (b) polygonal elements for the inclined crack
problem.
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Figure 16: X-VEM contour plots of the deformed cracked membrane under mode III loading obtained from polyg-
onal meshes with respectively (a) 100 elements and (b) 1600 elements.
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Figure 17: Convergence in terms of relative error in strain energy for the inclined crack problem using α = 1.
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Figure 18: Influence of the stabilization parameter α on the relative error in the strain energy for the inclined crack
problem and comparison with diagonal stabilizations.

stabilization in (33) (α = 1) without the need for any tunable parameters. On the other hand,
the standard D-recipe does not perform adequately for the problem under study. Overall, the
proposed X-VEM for Laplace problems with discontinuities appears to be more accurate than
the X-FEM on quadrilateral meshes, with optimal convergence rate, and furthermore, it has the
flexibility of performing equally well on polygonal meshes.

Finally, similar to its finite element counterpart [38], the X-VEM with discontinuous enrich-
ment can induce high condition numbers in the global stiffness matrix, which can lead to loss
of accuracy when solving the algebraic system of linear equations. Poor matrix-conditioning
arises when the discontinuity cuts an element E into two regions E− and E+ such that either E−

or E+ is very small compared to E. This causes the approximation space of the enriched DOFs
to be similar to the approximation space of non-enriched DOFs, leading to near linear depen-
dence in the algebraic system of equations. Among the large number of methods for treating
matrix ill-conditioning, a relatively simple technique is the use of a Jacobi (diagonal) precondi-
tioner, which normalizes the diagonal of the stiffness matrix [39]. For low-order finite elements,
this diagonal preconditioner suffices, though for higher-order finite element use of alternative
stabilization techniques is needed to address the ill-conditioning [40]. The implementation of
the preconditioner consists in applying the substitution d = Dd̄ to the original linear system of
equations Kd = f , where D is the inverse of the square root of the main diagonal of K, i.e.,
D = diag(K)−1/2. Then, we solve the system (DT K D)d̄ = DT f , instead of the original system
of equations. The diagonal entries of the modified stiffness matrix, (DT K D), are all ones.

In order to show the effect of preconditioner in the X-VEM and provide a viable solution to
the ill-conditioning issue, we solve the mode III cracked membrane problem, discussed in the
previous subsections, on a 5 × 5 mesh of square elements in the presence of a horizontal crack
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Figure 19: X-VEM stiffness matrix condition number for a mode III cracked membrane using the Jacobi precon-
ditioner.

directed along the x-axis. The discontinuity is moved along the y-axis, so that each intersected
element is cut into two rectangular regions with very different area, in order to intentionally
provoke ill-conditioning in the global stiffness matrix. The width of the smallest region cut by
the interface is used in Fig. 19 as a measure of the proximity of the interface to the element
edge. As Fig. 19 illustrates, the preconditioner allows to considerably mitigate the issue of
ill-conditioning.

6. Concluding remarks

We developed a stable and convergent extended virtual element method (coined as X-
VEM) for the Laplace problem with vertex singularities and crack discontinuities. As in the
X-FEM [3], we augmented the standard virtual element space with an additional contribution
that consists of the product of virtual nodal basis (partition-of-unity) functions with enrichment
functions. For the Laplace problem with a vertex singularity, we devised an extended projec-
tor that maps functions that lie in the extended virtual element space onto linear polynomials
and the enrichment function. Crack discontinuities were modeled by tailoring the approach
of Hansbo and Hansbo [18] to virtual elements, whereby each virtual shape function was de-
composed as the sum of two discontinuous shape functions. The resulting stiffness matrix had
a block-structure that was readily computed. We used the adaptive homogeneous numerical
integration scheme devised in [7] and [8] to accurately and efficiently compute integrals with
integrands that were weakly singular. We emphasize that in this integration scheme no element-
partitioning is required. Once the element projection matrix was computed, well-established
guidelines from the standard VEM [13] were followed to compute the element stabilization ma-
trix. We also conducted a discontinuous patch test that verified the consistency of the proposed
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method. Numerical experiments were performed on quadrilateral and polygonal meshes for the
problem of an L-shaped domain with a corner singularity and the problem of a cracked mem-
brane under mode III loading. For the L-shaped domain problem with geometric enrichment,
the method delivered optimal rates of convergence in the L2 norm and the strain energy. For
the cracked membrane problem stable convergence in energy norm was observed, and better
accuracy compared to the X-FEM was obtained. As in most studies on the VEM, the accuracy
did depend on the choice of the stabilization term. We considered choices for the stabilization
that were based on the trace of the consistency matrix (parameter α) and the diagonal entries
of the consistency matrix (D-recipe with no tunable parameters) [26]. A modified version of
the D-recipe stabilization yielded accurate results. Among potential topics for future work, we
mention the extension of the present formulation to higher-order (k ≥ 2) virtual element spaces
and the application of the X-VEM to elastic and inelastic (cohesive models) fracture simulations
in solid continua.
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[1] J. M. Melenk, I. Babuška, The partition of unity finite element method: Basic theory and
applications, Computer Methods in Applied Mechanics and Engineering 139 (1996) 289–
314.
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