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Abstract

General polyhedral discretizations offer several advantages over classical approaches consisting of standard
tetrahedra and hexahedra. These include increased flexibility and robustness in the meshing of geometrically
complex domains and higher-quality solutions for both finite element and finite volume schemes. Currently,
the use of general polyhedra is hampered by the lack of general-purpose polyhedral meshing algorithms and
software. One approach for generating polyhedral meshes is the use of tetrahedral subdivisions and dual-cell
aggregation. In this approach, each tetrahedron of an existing tetrahedral mesh is subdivided using one of
several subdivision schemes. Polyhedral-dual cells may then be formed and formulated as finite elements
with shape functions obtained through the use of generalized barycentric coordinates. We explore the use
of dual-cell discretizations for applications in nonlinear solid mechanics using a displacement-based finite
element formulation. Verification examples are presented that yield optimal rates of convergence. Accuracy
of the methodology is demonstrated via several nonlinear examples that include large deformation and
plasticity.
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1. Introduction

Several finite element formulations now exist for general polyhedral elements, ones with arbitrary number
of vertices and faces, generally nonconvex, and with possibly nonplanar faces (Rashid and Selimotic, 2006;
Bishop, 2014; Beirão da Veiga et al., 2013; Gain et al., 2014; Chi et al., 2017; Talebi et al., 2016; Liu et al.,
2017; Sohn et al., 2012, 2013; Kim and Sohn, 2015). However, despite recent research in the development
of polyhedral finite element formulations, the development of general purpose polyhedral meshing tools is
lacking. Examples include hybrid meshing (hex dominant) (Oaks and Paoletti, 2000; Sokolov et al., 2016;
Gao et al., 2017), cut-cell approaches (Sohn et al., 2012, 2013; Kim and Sohn, 2015), and Voronoi techniques
(Abdelkader et al., 2019). Boundary-conforming Voronoi meshes can be challenging to generate on complex
domains. Furthermore, both Voronoi and cut-cell meshes can cause difficulties in numerical simulations
due to the presence of small edges and faces. Another approach to meshing is to start with a tetrahedral
mesh, possible of low quality, and then aggregate into polyhedra. This has been explored in the context of
meshfree methods by Millán et al. (2015); Koester and Chen (2019) and discontinuous Galerkin methods by
Bassi et al. (2012). The construction of polyhedral-dual meshes from tetrahedral meshes has been explored
by a number of authors (Balafas, 2014; Garimella et al., 2014; Lee, 2015). Rimoli and Ortiz (2011) have
used polyhedral-dual cells of tetrahedra in the mesoscale modeling of polycrystalline materials.

Here, we explore the use of polyhedral-dual cells of a pre-existing tetrahedral mesh (the primal mesh)
to form a polyhedral mesh suitable for finite element analysis. In this approach, each tetrahedron is first
subdivided using one of several possible subdivision schemes. The resulting pieces are then either used
directly (as a polyhedron) or aggregated into larger polyhedra. The shape quality of the polyhedral-dual
elements is inherited from the initial tetrahedral elements. The resulting polyhedral elements, although
generally nonconvex, have planar faces thus allowing for the use of several types of shape functions. We
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use harmonic and maximum-entropy (max-ent) shape functions, both of which are a type of optimization-
based shape function. The harmonic shape functions minimize a functional of the norm of the gradient
whereas max-ent shape functions minimize a certain relative entropy functional. Our primary application
is nonlinear solid mechanics, so we seek to minimize the number of quadrature points per element without
inducing zero or near-zero energy modes. A key research question, beyond the scope of this work, is how
does the efficiency and robustness of this polyhedral discretization compare to using the tetrahedral mesh
directly for nonlinear solid mechanics (Danielson, 2014; Ostien et al., 2016).

This paper is structured as follows. Section 2 reviews the governing equations for solid mechanics and
the weak formulation. Section 3 discusses the concepts of tetrahedral subdivision and dual-cell aggregation.
The polyhedral finite element formulation is presented in Section 4. Verification examples are presented
in Section 5. These include the engineering patch test, convergence examples for linear elasticity, and the
Cook’s membrane problem in the nearly incompressible regime of material behavior. Several boundary-value
problems, both static and dynamic, are presented in Section 6. Finally, we conclude with our main findings
in Section 7.

2. Governing equations

Consider the motion of a body B with interior domain Ω and boundary Γ subjected to applied surface
tractions t per unit area. We assume that there are no externally applied body forces. A Lagrangian
description of the motion of B is used. The initial configuration of the body is denoted by B0 with interior
Ω0 and boundary Γ0. In the initial configuration, the position vector of a material point is denoted by X.
In the deformed configuration, the position of a material point is denoted by x. The displacement vector u
is then given by u := x−X.

2.1. Conservation of mass

The deformation gradient F is defined as the material derivative of x with respect to X so that F :=
∂x/∂X = ∂u/∂X+I, where I is the identity tensor. The initial and current mass densities are denoted by
ρ0 and ρ, respectively. The Jacobian J of the deformation gradient F is given by its determinant, J = detF .
The conservation of mass can then be expressed as (Belytschko et al., 2014; Bonet and Wood, 2008)

ρ0 = ρ J . (1)

2.2. Conservation of momentum

The shape functions of the polyhedral elements described in Section 4 will be constructed directly on the
initial configuration of the element. Therefore, a total -Lagrangian formulation of the governing equations
is appropriate. In the absence of body forces, the conservation of linear momentum is given by (Belytschko
et al., 2014; Bonet and Wood, 2008)

∂P

∂X
: I = ρ0 ü (2)

with boundary conditions
u = u on Γu

0 and P ·N = t0 on Γt
0 ,

where P is the first Piola-Kirchhoff stress tensor, ü is the acceleration vector, N is the outward unit normal
on Γ0, t0 is the surface traction vector per unit initial area, and Γu

0 ∪ Γt
0 = Γ0 and Γu

0 ∩ Γt
0 = ∅.

The first Piola-Kirchhoff stress tensor P is related to the Cauchy stress tensor σσσ (true stress) by the
expression P = J σσσF−T , where the notation ( · )−T represents the composition of the transpose and inverse
operators. Conservation of angular momentum follows from the symmetry of σσσ.
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Figure 1: (a) Geometry definition of a machine part and (b) tetrahedral mesh (11, 851 vertices, 46, 789 tetrahedra).

2.3. Weak form

The weak form of (2) is given by the following variational problem (Belytschko et al., 2014; Bonet and
Wood, 2008): find the trial functions u ∈ H1(Ω0), where H1(Ω0) := [H1(Ω0)]3, with u = u on Γu

0 such
that ∫

Γt
0

t0 · v dS −
∫

Ω0

P : (∂v/∂X) dX =

∫
Ω0

ρ0 ü · v dX (3)

for all test functions v ∈ H1
0 (Ω0). Here, H1(Ω0) is the Sobolev function space of degree one containing

functions that possess square-integrable weak derivatives, and the Sobolev space H1
0 (Ω0) := {v ∈H1(Ω0) :

v = 0 on Γu
0}.

The Galerkin procedure for obtaining an approximate solution to (3) uses a finite dimensional approx-
imation to H1(Ω0), denoted by V h, with V h ⊂ H1(Ω0) and V h

0 = {vh ∈ V h |vh = 0 on Γu
0}. Let

{φI , I = 1, . . . , N} be a basis for V h so that any uh ∈ V h may be written as uh(X) =
∑N

I=1 φI(X)uI . A
finite element approximation entails choosing basis functions φI(X) with local support defined by a mesh.
Let Ωe represent the domain of a finite element in the initial configuration with boundary Γe and vertex
(nodal) coordinates Xa, a = 1, . . . , Nv, where Nv is the number of vertices of the polyhedral element. The
basis functions may be decomposed into element shape functions denoted as ψa(X).

A conventional finite element mesh consists of hexahedra or tetrahedra. In this work, we instead consider
a mesh comprised of more general polyhedra defined through a process of tetrahedral subdivision and
aggregation as described in Section 3. The construction of the element shape functions and their derivatives
is described in Section 4 along with a consistent integration scheme for approximating the integrals in (3).

3. Tetrahedral subdivision and aggregation

Our method of polyhedral meshing relies on an initial tetrahedral mesh of the given domain. An example
tetrahedral mesh of a machine part is shown in Fig. 1. Each tetrahedral element is then subdivided using
one of three types of tetrahedral subdivision: (1) barycentric (also called median subdivision), (2) full trun-
cation (also called rectification), and (3) partial truncation. These three subdivision methods are illustrated
in Fig. 2. The resulting mesh decomposition may then be partitioned into dual cells and formulated as
polyhedral finite elements. Barycentric subdivision is discussed in Section 3.1. Truncation subdivision is
discussed in Section 3.2.

3.1. Barycentric subdivision

Polyhedral meshing through barycentric subdivision (medial mesh) has been studied by Balafas (2014)
and Garimella et al. (2014). The barycentric subdivision process in two dimensions is illustrated in Fig. 3.
Each triangle is first subdivided into three quadrilaterals through the introduction of an additional vertex
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Figure 2: Three types of tetrahedral subdivisions: (a) barycentric subdivision, (b) full truncation (rectification), and (c) partial
truncation. Barycentric subdivision creates four sub-hexahedra (inset). Full truncation creates four sub-tetrahedra and a
6-vertex octahedron (inset). Partial truncation creates four sub-tetrahedra and a 12-vertex octahedron (inset).

(a) (b) (c) (d)

aggregate of 
quadrilaterals in 2D

aggregate of 
hexahedra in 3D

Figure 3: Method of constructing type-1 polyhedral-dual elements using barycentric subdivision in two dimensions. (a) Original
triangle and a barycentric subdivision, (b) triangle patch and barycentric subdivision, (c) resulting polygonal-dual cell, and
(d) example three-dimensional polyhedral-dual cell consisting of sub-hexahedra.

(a) (b)

Figure 4: Type-1 polyhedral-dual mesh of the example machine part shown in Fig. 1. (a) Mesh (222, 548 vertices, 11, 851
polyhedra) and (b) random coloring of polyhedral elements.
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Figure 5: Histograms of the various meshes (tetrahedral and polyhedral dual) of the example machine part shown in Fig. 1.
(a) Number of attached tetrahedra to a node in the original tetrahedral mesh, (b) number of element vertices for the type-1
polyhedral-dual mesh shown in Fig. 4, and (c) number of element vertices for the type-2 and type-3 polyhedral-dual meshes
(polytet elements only).

at the centroid (barycenter) and additional vertices at the midpoint of each edge as shown in Fig. 3a and
Fig. 3b. A polygonal-dual cell may then be formed by aggregating the quadrilaterals attached to each
original triangle vertex as shown in Fig. 3c. In three dimensions, each tetrahedron is first subdivided into
four hexahedra by using edge midpoints, face centroids, and the element centroid as shown in Fig. 2a.
A polyhedral-dual cell is then formed by aggregating the hexahedra attached to each original vertex. A
three-dimensional dual cell is shown in Fig. 3d. Note that the dual cells are nonconvex, in general. If the
polyhedral dual-cell is in the interior of the domain, the interior vertex need not be used as a node but
rather only to define the underlying hexahedral cells. The quadrilateral face of each dual cell is planar if
the edges of the original tetrahedra are affine. The resulting polyhedral mesh will be referred to as a type-1
polyhedral-dual mesh. Figure 4 shows the type-1 polyhedral-dual mesh corresponding to the tetrahedral
mesh of Fig. 1.

Depending upon the number of attached tetrahedra to a given vertex in the original tetrahedral mesh,
the number of vertices of the type-1 dual cell can be quite large, sometimes greater than one hundred.
Histograms of element and vertex counts are shown in Fig. 5 for the example shown in Fig. 4. Figure 5a
gives the number of attached tetrahedra to vertices in the original tetrahedral mesh. The number of attached
tetrahedra exhibits a bimodal distribution with peaks at approximately 12 and 24 attached tetrahedra. The
maximum number of attached tetrahedra is 40. Figure 5b gives the number of vertices in the type-1
polyhedral-dual mesh. Most polyhedral elements have between 20 and 80 vertices with a maximum of 120.

3.2. Truncation

The truncation subdivision process consists of two types, full (also called rectification) and partial. The
full-truncation subdivision process in two dimensions is illustrated in Fig. 6. Each triangle is first subdivided
into four triangles through the introduction of an additional vertex at the midpoint of each edge as shown in
Fig. 6a. The rectified triangle corresponds to the interior triangle. Within a patch of elements, a polygonal-
dual cell is formed by aggregating the sub-triangles attached to each original triangle vertex as shown in
Fig. 6b and Fig. 6c. In three dimensions, each tetrahedron is first subdivided into a 6-vertex octahedron
and 4 tetrahedra using edge midpoints as shown in Fig. 2b. Note that each face of the 6-vertex octahedron
is a triangle. A polyhedral-dual cell is formed by aggregating the sub-tetrahedra connected to the original
tetrahedral vertices. This polyhedral-dual cell will be referred to as a polytet element. Examples of the
two dual cells (polytet and 6-vertex octahedron) are shown in Fig. 6d. Note that the polytet elements are
nonconvex, in general. The resulting polyhedral mesh will be referred to as a type-2 polyhedral-dual mesh.

Figure 7 shows the type-2 polyhedral-dual mesh corresponding to the tetrahedral mesh of Fig. 1. A
histogram of the number of vertices per polytet element resulting from the full truncation process is given
in Fig. 5c. Most elements have between 5 and 20 vertices.
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aggregate 
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Figure 6: Method of constructing type-2 polyhedral-dual elements using full truncation (rectification). (a) Original triangle
and rectification in 2D, (b) triangle patch with rectified triangles, (c) resulting polygonal-dual cell and rectified triangle, and
(d) example 6-vertex octahedron (rectified tetrahedron) and a polyhedral-dual cell (polytet) consisting of sub-tetrahedra.

(a) (b)

Figure 7: Type-2 polyhedral-dual mesh of the example machine part shown in Fig. 1. (a) Mesh (74, 331 vertices, 11, 851
polytets (tetrahedral aggregates)), 46, 789 6-vertex octahedra) and (b) coloring of elements.
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Figure 8: Method of constructing type-3 polyhedral-dual elements using partial truncation. (a) Original triangular element and
partial truncation in 2D, (b) triangular patch with partial truncation, (c) new hexagon and polygonal aggregate of triangles,
(d) polyhedral aggregate of tetrahedra and 12-vertex octahedron in 3D.

(a) (b)

Figure 9: Type-3 polyhedral-dual mesh of the example machine part shown in Fig. 1. (a) Mesh (140, 830 vertices, 11, 851
polytets (tetrahedral aggregates)), 46, 789 12-vertex octahedra) and (b) random coloring of elements.

The partial-truncation subdivision process in two dimensions is illustrated in Fig. 8. Each triangle is
first subdivided into three triangles and a hexagon through the introduction of two additional edge vertices
as shown in Fig. 8a. The edge subdivisions do not have to be of equal length in general. Here, we only
consider an equal-length edge subdivision. As with full-truncation, within a patch of elements a polygonal-
dual cell is formed by aggregating the sub-triangles attached to each original triangle vertex as shown in
Fig. 8b and Fig. 8c. In three dimensions, each tetrahedron is first subdivided into a 12-vertex octahedron
and 4 tetrahedra as shown in Fig. 2c. Note that the faces of this octahedron consist of 4 triangles and 4
hexagons and the hexagonal faces are planar. A polyhedral-dual cell (polytet) is formed by aggregating the
sub-tetrahedra connected to the original tetrahedral vertices. Examples of the two dual cells (polytet and
12-vertex octahedron) are shown in Fig. 8d. The resulting polyhedral mesh will be referred to as a type-3
polyhedral-dual mesh.

Figure 9 shows the type-3 polyhedral-dual mesh corresponding to the tetrahedral mesh of Fig. 1. The
histogram of the number of vertices per polytet element remains the same as for the type-2 dual mesh,
Fig. 5c.
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For simplicity, only the type-3 polyhedral-dual mesh will be considered in the remainder of the paper in
the context of finite element analysis. In comparison to the type-1 polyhedral-dual mesh, the type-3 mesh
does not have polyhedral elements with a large number of vertices (compare Fig. 5c with Fig. 5b). Also, the
12-vertex octahedron in the type-3 polyhedral mesh is better proportioned to the polytet aggregates than
is the 6-vertex octahedron in the type-2 mesh.

4. Polyhedral formulation

In this section, we discuss the finite element formulation for the polyhedral elements resulting from
tetrahedral subdivision and aggregation. The element formulation entails the development of element-level
shape functions, a consistent integration scheme of the weak form given by (3), and a methodology to avoid
locking behavior in the nearly incompressible regime of material behavior. Several formulations are possible.
A virtual element formulation, a type of mean-gradient approach (Flanagan and Belytschko, 2015; Cangiani
et al., 2015), eliminates the need to define shape functions and naturally provides a consistent integration
scheme (Beirão da Veiga et al., 2013; Gain et al., 2014; Chi et al., 2017). However, a virtual element
formulation requires artificial stabilization. The choice of stabilization parameters can be problematic for
nonlinear applications and for problems with localized contact or concentrated forces (Wriggers et al., 2016).
Coarse mesh accuracy can also be effected by the stabilization. Instead, we use an element formulation
similar to the one adopted in Bishop (2014). Shape functions are defined on the element, and a first-order
integration scheme is used that is sufficient to avoid zero-energy modes. However, the integration scheme
does require a correction to the derivatives of the shape-functions in order to obtain a necessary consistency
property (Bishop, 2014; Talischi et al., 2015).

4.1. Shape functions

Due to the geometric structure of the polyhedral-dual meshes (e.g., the polyhedral elements have planar
faces), several types of shape functions may be used (Sukumar and Malsch, 2006; Wicke et al., 2007; Hormann
and Sukumar, 2018). For example, Wachspress shape functions could be used for the 12-vertex octahedra,
since the elements are convex and have planar faces (Wachspress, 1975). Both max-ent and harmonic shape
functions could also be used for any of the element types (Sukumar, 2004; Joshi et al., 2007; Martin et al.,
2008; Hormann and Sukumar, 2008; Bishop, 2014). Both max-ent and harmonic shape functions are strictly
positive, although the approximate solution for harmonic shape functions can result in small violations of
the positivity property. For simplicity, only harmonic and max-ent shape functions are considered here.

The shape functions ψa(X), a = 1, . . . , Nv, are defined directly on the initial configuration of the element.
There is no mapping to a parent coordinate system as with standard finite elements (Hughes, 2000). The
integration of the weak form of the governing equations (Section 2.3) is also performed directly on the initial
configuration of the element as described in Section 4.2.

4.1.1. Harmonic shape functions

Harmonic functions minimize the Dirichlet energy given by the following functional

J(ψ) :=
1

2

∫
Ωe

∇ψ · ∇ψ dX (4)

with ψ ∈ H1(Ωe). The minimizer of this functional satisfies the following variational problem: find ψ ∈
H1(Ωe) with ψ = ψ on Γe such that ∫

Ωe

∇ψ · ∇v dX = 0 (5)

for all test functions v ∈ H1
0 (Ωe). The strong form of this variational problem is simply,

∇2ψ = 0 in Ωe with ψ = ψ on Γe . (6)
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(a) (b) (c) (d)

Figure 10: (a) Example polyhedron with element shape functions shown for three vertices (b)–(d). (Adapted from Bishop
(2014).)

Boundary conditions for each shape function are prescribed such that the resulting shape functions naturally
form a partition of unity,

Nv∑
a=1

ψa(X) = 1 (7)

and linear reproducibility
Nv∑
a=1

ψa(X)Xa = X. (8)

The appropriate boundary conditions are described in Joshi et al. (2007); Martin et al. (2008); Bishop (2014).
The property of linear reproducibility, together with a consistent integration scheme presented in the next
section, result in an isoparametric first-order finite element formulation with optimal rates of convergence.

Example shape functions are shown in Fig. 10. By construction, the harmonic shape functions possess the
Kronecker-delta property at the nodes. This property simplifies the enforcement of displacement boundary
conditions in the finite element solution. Note that while the shape functions are shown for the entire
element in Fig. 10, only their values and derivatives at the quadrature points need to be determined. In
Bishop (2014), solutions to (5) were approximated using the finite element method on a sub-tetrahedral
mesh of the element. The construction of this sub-tetrahedral mesh was obtained by assuming that the
element shape was star-convex with respect to the vertex-averaged centroid. For a polyhedral-dual mesh,
the 6-vertex and 12-vertex polyhedra are strictly convex and thus the method of Bishop (2014) can be used
to solve (6). Also, for the polytet elements, the sub-tetrahedra naturally provide a mesh on which to solve
(6). It was proven in Bishop (2014) that shape functions obtained using finite element approximations of
(6) also possess the linear reproducing properties, (7) and (8).

A necessary condition on the shape function derivatives for passing the patch test (see Section 5.1) is
obtained by taking the gradient of (7) and (8) (Krongauz and Belytschko, 1997), resulting in

Nv∑
a=1

∇ψa(X) = 0 ,

Nv∑
a=1

∇ψa(X)⊗Xa = I , X ∈ Ωe . (9)

4.1.2. Maximum entropy shape functions

The max-ent shape functions involve the formulation of a convex optimization problem in terms of a
relative entropy functional with linear reproducing constraints (Sukumar, 2004; Arroyo and Ortiz, 2006;
Sukumar and Wright, 2007; Hormann and Sukumar, 2008). For a given X ∈ Ωe, the shape functions
ψa(X), a = 1, . . . , Nv, are found by minimizing the functional

J(ψa, a = 1, . . . Nv) :=

Nv∑
a=1

ψa(X) ln

(
ψa(X)

wa(X)

)
(10)

subject to the reproducing constraints, (7) and (8). Here, wa(X) is a suitable prior weight function for the
given vertex. This constrained optimization problem can be solved using the method of Lagrange multipliers.
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Following Sukumar and Wright (2007), the Lagrangian L(ψa, λ0,λλλ) is defined as

L(ψa, λ0,λλλ) :=

Nv∑
a=1

ψa(X) ln

(
ψa(X)

wa(X)

)
+ λ0

(
Nv∑
a=1

ψa(X)− 1

)
+ λλλ ·

(
Nv∑
a=1

ψa(X)Xa −X

)
(11)

where λ0 and λλλ are the Lagrange multipliers associated with the constraints for partition of unity and linear
precision, respectively. The first-order optimality conditions and the subsequent solution for ψa(X) are
discussed in detail in Arroyo and Ortiz (2006); Sukumar and Wright (2007). Examples of the max-ent shape
functions on both convex and nonconvex polygons are given in Sukumar (2004); Hormann and Sukumar
(2018). Construction of the derivatives of the max-ent shape functions is discussed in Sukumar and Wright
(2007). The max-ent shape functions require an iterative solution (e.g. Newton’s method), but only need
to be obtained at the quadrature points of the element as described in Section 4.2.

4.2. Consistent element integration

Nonlinear computational solid mechanics typically involves the use of numerically expensive constitutive
models, e.g., those with internal-state variables (de Souza Neto et al., 2008). For an explicit time-integration
scheme, the element is integrated at every time step in order to assemble the internal-force vector. Thus, it
is imperative to minimize the number of quadrature points, while avoiding the use of an integration scheme
that would result in a zero or low-energy mode. In Rashid and Selimotic (2006), an integration scheme is
used in which the number of quadrature points is equal to the number of element vertices. In this approach, a
polyhedron is partitioned into Nv tributary regions with each region associated with a vertex. A quadrature
point is placed at the centroid of each tributary region, and the quadrature weight is simply the volume of the
tributary region. This integration scheme has only linear precision (can integrate linear functions exactly),
but is sufficient to guarantee convergence of the overall finite element formulation. This approach was also
used by Bishop (2014). For the present application, we use the integration scheme of Rashid and Selimotic
(2006) only for the octahedral elements (both 12-vertex and 6-vertex). For the polytet elements, consisting
of an aggregate of tetrahedra, we simply place one quadrature point at each centroid of the tetrahedron.
Numerical experiments confirmed that this element integration scheme (for polytet elements) was sufficient
to avoid zero or low-energy modes, although more investigation is needed.

Since the harmonic and max-ent shape functions are nonpolynomial in nature, significant error is intro-
duced with the use of a first-order integration scheme. This error ultimately results in a failure to pass the
patch test (a test for polynomial completeness in the element formulation) as demonstrated in Section 5.1.
To circumvent this difficulty, the derivatives of the shape functions must be modified to satisfy the discrete
divergence theorem while maintaining other necessary consistency properties. This derivative correction
restores the so-called integration consistency identified by Krongauz and Belytschko (1997) and applied in
the context of meshfree methods by Chen et al. (2001) and polyhedral finite elements by Bishop (2009,
2014); Talischi et al. (2015). The divergence theorem states that∫

Ωe

∇ψa dX =

∫
Γe

ψaN dS (12)

where N is the outward unit normal vector on Γe. In discrete form, this becomes

NQ∑
k=1

wk∇ψak =

NΓ
Q∑

l=1

wΓ
l ψalNl , (a = 1, . . . , Nv) (13)

where ψak := ψa(Xk), and Xk is the position of the k-th quadrature point. The quadrature weight is wk in
the element volume and wΓ

l on the element surface (faces). The number of quadrature points in the element
volume is NQ, and the number of quadrature points on the element surface is NΓ

Q. For nonpolynomial shape
functions, (13) will not be satisfied in general, yet satisfaction of this identity is critical to pass the patch
test.
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In order to satisfy this integration constraint, we slightly modify the derivatives of the shape functions (a
derivative correction). This derivative correction is obtained by minimizing the weighted sum of the squared
differences with respect to the original values subject to the constraint (13):

min
ξk∈R3

NQ∑
k=1

wk||ξk −∇ψak||2 (14)

subject to the constraint
NQ∑
k=1

wk ξk −
NΓ

Q∑
l=1

wΓ
l ψalNl = 0 . (15)

Let dak represent the solution of this constrained minimization problem for each shape function ψa and
quadrature point Xk. This problem is solved for each shape function and coordinate direction, indepen-
dently, using the method of Lagrange multipliers (Luenberger, 2003, Ch. 10). This constrained minimization
problem differs slightly from that used in Bishop (2009, 2014) by the inclusion of the quadrature weights wk

in (14). Numerical tests have shown only small differences between the two approaches. The Lagrangian L
associated with the constrained problem is defined as

L(ξk,λ) :=

NQ∑
k=1

wk||ξk −∇ψak||2 + λ ·

NQ∑
k=1

wk ξk −
NΓ

Q∑
l=1

wΓ
l ψalNl

 (16)

where λ is the Lagrange multiplier vector. The necessary conditions for a local minimum are given by

∂L

∂ξk
= 0 (k = 1, . . . , NQ) . (17)

Surprisingly, this procedure for modifying the shape-function derivatives does not corrupt their con-
sistency properties given in (9). A proof of this result was given in Bishop (2014) for the case when the
quadrature weights in (14) are not included. The proof still holds when the quadrature weights are included.
The updated proof is given in Appendix A.

4.3. Near incompressibility

To prevent locking behavior in the nearly incompressible regime, a mean-dilation approach is used, com-
monly referred to as B-bar in the linear regime (Hughes, 2000, Ch. 4.5) and F-bar in the large-deformation
regime (de Souza Neto et al., 2008, Ch. 15). The examples shown in Section 6 demonstrate the performance
of these approaches in nearly incompressible regime including elasto-plasticity.

4.4. Explicit dynamics

For high-rate phenomena, (3) is typically integrated using a central-difference explicit-time integration
scheme (Belytschko et al., 2014, Ch. 6). To obtain a diagonalized mass matrix for a polyhedral mesh, the
special lumping technique of Hinton et al. (1976) is used. This mass lumping procedure is recommended by
Hughes for non-standard element formulations as it is guaranteed to produce positive lumped masses. This
approach was used by Bishop (2009) for modeling pervasive fracture phenomena with random polygonal
meshes and more recently by Bishop et al. (2016); Chin et al. (2018).

5. Verification

In this section, several verification examples are presented. The engineering patch test is discussed in
Section 5.1. Convergence results are reported for a three-dimensional linear elastic beam in both bending and
torsional loadings in Sections 5.2 and 5.3, respectively. The convergence behavior in the nearly incompressible
regime is explored using the B-bar formulation in Section 5.4. The behavior in the nearly incompressible
regime is studied further in Section 5.5 using the Cook’s membrane problem.
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(a) (b) (c)

Figure 11: Polyhedral mesh of a cube for use in the patch-test verification problem. (a) tetrahedral mesh (29 nodes, 59
tetrahedra), (b) type-3 polyhedral-dual mesh (248 nodes, 29 polytet, 59 octahedra), and (c) random coloring of elements.

(a) (b)

(c) (d)

1.050

0.900
0.975

Figure 12: Results for the patch-test verification problem without (a), (c) and with (b), (d) correction of the shape function
derivatives to satisfy integration consistency: (a), (b) uniaxial tension, σ11 = 1.0, (c), (d) pure shear, σ12 = 1.0.

5.1. Patch test

The patch test is commonly used to test new finite element formulations for polynomial completeness
up to a given order (Hughes, 2000; Belytschko et al., 2014). For first-order elements presented here, a
small collection of elements (a patch) is verified to reproduce linear polynomials. The patch test consists
of applying uniform tractions to the boundary, and then verifying that the resulting finite element solution
returns the exact linear displacement field. Equivalently, displacement boundary conditions corresponding
to the exact displacement field for a uniform stress state can be applied. For the present series of patch
tests, a cubical domain is used as shown in Fig. 11. The material is taken to be isotropic and linear eleastic
with a Young’s modulus of 1.0 and a Poisson’s ratio of 0.3. Tractions corresponding to a stress field with
only one nonzero component and with a unit value are applied to the patch. This test is repeated for each
of the six stress components.

Figure 12 shows results for two of the patch tests, a uniaxial loading (a), (b) and a pure shear loading (c),
(d), using harmonic shape functions. The displacements are scaled by a factor of 0.5 for clarity. Results are
provided both without (a), (c) and with (b), (d) correction of the shape function derivatives for integration
consistency. The patch test is clearly violated without the correction of the derivatives. The stress error for
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Table 1: Stress error (maximum) in the patch test over all stress components, without and with correction of the shape function
derivatives to satisfy integration consistency (see Fig. 12).

applied traction state without correction with correction

tension 0.18 9.6 · 10−13

shear 0.13 2.7 · 10−12

Dmax = 0.65 Dmax = 0.37 Dmax = 0.186

(a) (b) (c)

1.0

0.0
0.5

Figure 13: von Mises stress field for the verification problem of a three-dimensional beam in bending under a transverse shear
load at three levels of mesh refinement. The maximum element diameter Dmax is given.

these tests is given in Table 1. Results using max-ent shape functions are similar.

5.2. Three-dimensional linear elastic beam in bending with shear

For the next verification test, we consider a linear elastic prismatic beam in bending under a transverse
shear load. The material is taken to be isotropic and linear elastic with a Young’s modulus of 1.0 and a
Poisson’s ratio of 0.3. The beam has a square cross section and length to width ratio of five. The exact stress
solution is provided by Barber (2010) and displacement field by Bishop (2014). The exact displacements
were enforced on one end of the beam, while tractions were applied to the other end. A sequence of refined
tetrahedral meshes was created along with type-3 polyhedral-dual meshes. The von Mises stress field for
three mesh refinements using harmonic shape functions are shown in Fig. 13.

Convergence results are shown in Fig. 14 in both the L2 norm and energy semi-norm. The rates of
convergence are close to the theoretical convergence values of 2.0 and 1.0, respectively. Results for both
harmonic and max-ent shape functions are provided. The max-ent shape functions were used only for the
polytet aggregate elements. There is very little difference between results using the two different types of
shape functions. Similar small differences have been observed in a meshfree context by (Bishop, 2019) when
comparing the approximability of extreme deformation fields using both max-ent and reproducing-kernel
basis functions. The differences may be larger if the max-ent shape functions were also used in the 12-vertex
octahedra. These results are consistent with the small differences in polygonal shape functions shown in
(Hormann and Sukumar, 2018, Ch. 1) for both convex and nonconvex elements.

5.3. Three-dimensional linear elastic beam in torsion

For the next verification test, we consider the same three-dimensional linear elastic prismatic beam but
instead with torsional loading. The exact stress solution is provided by Barber (2010) and displacement
field by Bishop (2014). The exact displacements were enforced on one end of the beam, while tractions
were applied to the other end. The von Mises stress field for three mesh refinements using harmonic shape
functions are shown in Fig. 15. Convergence results are given in Fig. 16 in both the L2 norm and energy
semi-norm. As with the bending case, the rates of convergence are close to the theoretical convergence values.
Again, there is very little difference between results using the harmonic and max-ent shape functions.
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Figure 14: Convergence results for the verification problem of a three-dimensional beam in bending under a transverse shear
load. (a) L2 norm of displacement error and (b) energy semi-norm of displacement error. Results are shown for both harmonic
and maximum-entropy shape functions (polytet aggregate elements only). Rates of convergence are identified. (Poisson’s ratio
is 0.3; Dmax is the maximum element diameter.)

Dmax = 0.65 Dmax = 0.37 Dmax = 0.186
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Figure 15: von Mises stress field for the verification problem of a three-dimensional beam in torsion at three levels of mesh
refinement in the initial tetrahedral mesh. The maximum element diameter is given.
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Figure 16: Convergence results for the verification problem of a three-dimensional beam in torsion. (a) L2 norm of displacement
error and (b) energy semi-norm of displacement error. Results are show for both harmonic and maximum-entropy shape
functions (polytet aggregate elements only). Rates of convergence are identified. (Poisson’s ratio is 0.3, Dmax is the maximum
element diameter.)

5.4. Three-dimensional nearly incompressible linear elastic beam

For the next verification test, we explore the behavior of the polyhedral-dual elements in the nearly
incompressible regime (Poisson’s ratio ν → 0.5) using the B-bar formulation and harmonic shape functions.
We consider the same three-dimensional beam and loading presented in Section 5.2. Convergence results
are given in Fig. 17 in both the L2 norm and energy semi-norm for several values of Poisson’s ratio. There
is no observed degradation in coarse-mesh accuracy or convergence rate.

5.5. Cook’s membrane, nearly incompressible

For the final verification test, we consider the Cook’s membrane problem in the nearly incompressible
regime using the B-bar formulation. The Cook’s membrane problem is commonly used to explore the
behavior of finite element formulations in the nearly incompressible regime undergoing a mixture of shear
and bending strains (Korelc and Wriggers, 1996; Ostien et al., 2016). The boundary-value problem is shown
in Fig. 18. The domain consists of the quadrilateral ABCD. The edge AD is fixed while a shear traction T
is applied to edge BC. Plane strain conditions are enforced through the thickness of the plate (Z-direction)
by prescribing u3 = 0. The material is taken to be isotropic and linear elastic with a Young’s modulus of
1.0 and a Poisson’s ratio of 0.4999.

A coarse polyhedral-dual mesh for the domain is shown in Fig. 19. A conventional hexahedral mesh
is also shown. A finer mesh is also used with approximately one-half of the maximum-element size. A
comparison of pressure fields from Cook’s membrane verification problem using coarse (a), (b) and fine (c),
(d) polyhedral-dual meshes is shown in Fig. 20 using both the standard formulation (a), (c) and B-bar
formulation (b), (d). The pressure field is smooth for the B-bar formulation, but the solution is unstable
showing a highly oscillatory pressure field when using the standard formulation. Results using a conventional
trilinear hexahedral element are shown in Fig. 21 for comparison. Interestingly, there is severe locking for
the standard formulation, but still exhibits some locking behavior for the B-bar formulation, whereas this
is not observed in the polyhedral formulation.

6. Examples

In this section, several nonlinear examples are presented using the type-3 polyhedral mesh. Results
are also provided using conventional hexahedral elements for comparison. In Section 6.1, a hyperelastic I-
beam is subjected to torsion and large deformation. Section 6.2 shows the response of an elastic-plastic plate
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Figure 17: Convergence results for the verification problem of a three-dimensional beam in bending with transverse shear load
for various values of Poisson’s ration ν approaching the incompressible limit of ν = 0.5 using the B-bar formulation. (a) L2

norm of displacement error and (b) energy semi-norm of displacement error. Rates of convergence are identified. (Dmax is the
maximum element diameter.)
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Figure 18: Definition of the domain for the Cook’s membrane verification problem. The edge AD is fixed while a shear traction
T is applied to edge BC. Plane strain conditions are enforced through the thickness of the plate.

(a) (b) (c) (d)

Figure 19: Type-3 polyhedral-dual mesh of the Cook’s membrane verification problem. (a) Coarse tetrahedral mesh (270 nodes,
758 tetrahedra), (b) type-3 polyhedral-dual mesh (2, 788 nodes, 270 polytet, 758 octahedra), (c) random coloring of elements,
and (d) a conventional hexahedral mesh (780 nodes, 348 hexahedra).
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Figure 20: Comparison of pressure fields from Cook’s membrane verification problem using coarse (a), (b) and fine (c), (d)
type-3 polyhedral-dual meshes with a Poisson’s ratio of 0.4999. (a), (c) standard formulation, (b), (d) B-bar formulation.
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Figure 21: Comparison of pressure fields from Cook’s membrane verification problem using coarse (a), (b) and fine (c), (d)
hexahedral meshes with a Poisson’s ratio of 0.4999. (a), (c) standard formulation, (b), (d) B-bar formulation.
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Figure 22: Geometry definition for the I-beam example problem.

(a) (b) (c) (d)

Figure 23: Polyhedral mesh of the I-beam example problem. (a) Initial tetrahedral mesh (25, 598 nodes, 117, 436 tetrahedra),
(b) type-3 polyhedral-dual mesh (321, 783 nodes, 25, 598 polytet, 117, 436 octahedra), (c) random coloring of elements, and (d)
a conventional coarse hexahedral mesh (13, 137 nodes, 8, 576 hexahedra).

containing a hole subjected to uniaxial extension. The Taylor-bar impact problem is presented in Section 6.3.
Finally, in Section 6.4, a linear elastic analysis of the machine part used in Section 3 is presented.

The Cubit meshing software was used to create the initial tetrahedral mesh as well as reference hexahedral
meshes (Cubit, 2018). For the nonlinear example problems, the explicit-dynamics time-integration scheme
described in Section 4.4 was used. The critical time step was calculated using the dilational wave speed and
the minimum edge length over all elements in the deformed mesh. The resulting characteristic time was
scaled by a factor of 0.7 in order to achieve a stable time step.

6.1. Hyperelastic I-beam in torsion

For a first nonlinear example using a polyhedral-dual mesh, we consider the large-deformation response
of a hyperelastic I-beam subjected to a torsional load. The geometry definition is given in Fig. 22. A
polyhedral-dual mesh for the domain is shown in Fig. 23. A coarse hexahedral mesh is also shown. A refined
hexahedral mesh (uniform 1 to 8 refinement) is used to provide a comparison to the results obtained using
the polyhedral-dual mesh.

The constitutive model is taken be neo-Hookean hyperelastic with a Young’s modulus of 100 GPa and
a Poisson’s ratio of 0.3 (Bonet and Wood, 2008, Ch. 6.4). The beam is fixed on one end while the other
end is prescribed a pure rotation through 90 degrees. The axial motion is constrained at both ends. The
prescribed motion is quasistatic.

The deformed configuration of the I-beam is shown in Fig. 24 for both the polyhedral-dual mesh and
the refined hexahedral mesh after a 90 degree rotation. The von Mises stress field is also shown. The stress
field was not post-processed (smoothed). The deformation and stress fields are nearly identical. The axial
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Figure 24: Comparison of the von Mises stress field in a hyperelastic I-beam subjected to a large torsional rotation using both
(a) polyhedral dual and (b) hexahedral discretizations. (Stress units are MPa.)

0 20 40 60 80 100
0

5

10

15

20

25

30

0 20 40 60 80 100
0

50

100

150

200

(b)(a) rotation, degrees

ax
ia

l r
ea

ct
io

n 
fo

rc
e,

 k
N

re
ac

tio
n 

m
om

en
t, 

N
-m

rotation, degrees

hexahedra
polyhedra

hexahedra
polyhedra

Figure 25: Comparisons of (a) reaction force and (b) moment of a hyperelastic I-beam subjected to a large torsional rotation
using both polyhedral dual and hexahedral discretizations.
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Figure 26: (a) Geometry definition and (b) three-dimensional view for the problem of a plate with hole.

force and moment reactions are shown in Fig. 25 for both the polyhedral-dual mesh and hexahedral mesh.
The reactions are nearly identical.

6.2. Elastic-plastic deformation of a plate with hole

For the next example, we consider the elasto-plastic response of a plate with hole subjected to uniform
axial extension. The geometry definition is given in Fig. 26. A polyhedral-dual mesh for the domain is shown
in Fig. 27. A coarse hexahedral mesh is also shown. A refined hexahedral mesh (two stages of uniform 1 to
8 refinement) is used to provide a comparison to the results obtained using a polyhedral-dual mesh.

An isotropic large-strain elasto-plastic constitutive model is used. The model follows Eterovic and Bathe
(1990) with further elaboration (and corrections) by (Bathe, 1996, Ch. 6.6.4). Young’s modulus and Poisson’s
ratio are take to be 100 GPa and 0.3, respectively. The yield stress is taken to be 300 MPa with a hardening
modulus of 500 MPa. The hardening is taken to be isotropic.

The plate is subjected to uniform extension. The prescribed motion is quasistatic. The deformed
configuration of the plate is shown in Fig. 28 at an extension of 2 mm. The hydrostatic stress field, von Mises
stress field, and equivalent plastic strain are shown. The stress field was not post-processed (smoothed). The
deformed configuration with stress fields obtained using the refined hexahedral mesh are shown in Fig. 29.
The deformation and stress fields are nearly identical. The axial reaction force is shown in Fig. 30 for both
the polyhedral-dual mesh and hexahedral mesh. The reaction force is nearly identical.

6.3. Taylor-bar impact

For the next example, we consider the Taylor-bar impact problem consisting of a small cylinder impacting
a rigid surface (Taylor, 1948). The cylinder has a height of 24 mm and a diameter of 8 mm. A polyhedral-dual
mesh for the domain is shown in Fig. 31. A coarse hexahedral mesh is also shown. A refined hexahedral mesh
(uniform 1 to 8 refinement) is used to provide a comparison to the results obtained using a polyhedral-dual
mesh.

The elasto-plastic material model used for the previous example (Section 6.2) is also used here. The
density of the material is taken to be 2700 kg/m3. The impact velocity of the cylinder is 300 m/s. To model
the impact, the nodes on the impact face are prescribed both zero displacement and velocity in the axial
direction. Loss of contact is not modeled.
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(a) (b) (c) (d)

Figure 27: Polyhedral mesh of the problem of a plate with hole. (a) Initial coarse tetrahedral mesh (504 nodes, 1, 492
tetrahedra), (b) type-3 polyhedral-dual mesh (5, 312 nodes, 504 polytet, 1, 492 octahedra), (c) random coloring of elements,
and (d) a conventional hexahedral mesh (2, 220 nodes, 1, 320 hexahedra). Meshes refined by a factor of 4 in each dimension
were used in the boundary-value problem.
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Figure 28: Simulation results for an elastic-plastic plate with hole subjected to uniaxial extension using polyhedral finite
elements. (a) Pressure (MPa), (b) von Mises stress (MPa), and (c) equivalent plastic strain (263, 670 nodes, 19, 538 polytet,
95, 116 octahedra).
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Figure 29: Simulation results for an elastic-plastic plate with hole subjected to uniaxial extension using a standard trilinear
hexahedral finite elements. (a) Pressure (MPa), (b) von Mises stress (MPa), and (c) equivalent plastic strain (97, 920 nodes,
84, 480 hexahedra).
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Figure 30: Comparisons of force versus deflection response of an elastic-plastic plate with hole subjected to uniaxial extension
using both polyhedral and hexahedral discretizations.
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(a) (b) (c) (d)

Figure 31: Polyhedral mesh of the Taylor-bar impact problem. (a) Initial tetrahedral mesh (2, 395 nodes, 11, 762 tetrahedra),
(b) type-3 polyhedral-dual mesh (32, 327 nodes, 2, 395 polytet, 11, 762 octahedra), (c) random coloring of elements, and (d) a
conventional hexahedral mesh (6, 897 nodes, 6, 144 hexahedra).

The deformed cylinder 0.1 ms after impact is shown in Fig. 32 for both the polyhedral-dual mesh (left) and
refined hexahedral mesh (right). The pressure field is shown on the top of the figure while the equivalent
plastic strain is shown on the bottom. The pressure field is smooth for the hexahedral mesh with some
evidence of oscillatory behavior for the polyhedral mesh. The hexahedral mesh results in smoother fields
compared to the polyhedral mesh. The internal-state variable exhibits an oscillatory response around the
impact edge for the polyhedral-dual mesh (Fig. 32c). This is possibly due to the F-bar formulation and the
difference in the number of degrees of freedom between the 12-vertex polyhedra and the polyhedra formed
via tetrahedral aggregation. Additional study is needed to understand this behavior.

6.4. Machine part

For the final example, we consider the linear elastic static response of the geometrically complex machine
part shown in Fig. 1a. The type-3 polyhedral-dual mesh was shown in Fig. 9. Each hole is rigidly fixed while
a torque is applied on the bearing surface. The resulting von Mises stress field is shown in Fig. 33b. Here,
the element stresses have been averaged at the nodes to present a continuous stress field. This simulation
was also performed using the max-ent shape functions for the polytet aggregates, with only small differences
observed (less than 1 %).

7. Conclusions

The use of general polyhedra in engineering analysis is hampered by the lack of general-purpose polyhe-
dral meshing algorithms and software. Here, polyhedral meshes were obtained through the use of tetrahedral
subdivisions and dual cells. Each polyhedral-dual cell was formulated as a finite element with shape functions
obtained through the use of both harmonic and maximum-entropy shape functions. The resulting polyhe-
dral discretizations were used for applications in nonlinear solid mechanics using a displacement-based finite
element formulation. A standard F-bar formulation was used for nearly incompressible material response.
Verification examples were presented showing optimal convergence rates. Several nonlinear examples were
also presented and included large deformation and plasticity. Results were comparable to those obtained
using conventional hexahedral meshes. A key research question, not investigated here, is how does the
efficiency and robustness of this polyhedral discretization compare to using the tetrahedral mesh directly.
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Figure 32: Simulation results for the Taylor-bar impact problem with a striking velocity of 300 m/s. (a) Pressure (MPa),
polyhedral mesh, (c) equivalent plastic strain, polyhedral mesh, and (b), (d) results using a conventional hexahedral mesh
(52, 065 nodes, 49, 152 hexahedra).
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Figure 33: Stress resulting from an applied torque to the machine part shown in Fig. 1 and using the type-3 polyhedral-dual
mesh shown in Fig. 9. (a) Loading and boundary conditions, and (c) smoothed von Mises stress field.
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Appendix A. Proof of derivative consistency for corrected derivatives

The process of modifying the shape function derivatives described in Section 4.2 does not corrupt the
consistency properties of the derivatives given in (9). A proof of this result was given in Bishop (2014) for
the case when the quadrature weights in (14) are not included. The proof still holds when the quadrature
weights are included, which is established via the following theorem.

Theorem 1. Let Ωe represent an arbitrary element with volume V , boundary Γe, and vertex coordinates
Xa, a = 1, . . . , Nv. Consider a set of nodal shape functions ψa(X) with linear precision so that

Nv∑
a=1

ψa(X) = 1 , X ∈ Ωe , (A.1)

Nv∑
a=1

ψa(X)Xa = X , X ∈ Ωe . (A.2)

Let {(Xk, wk) , k = 1, . . . , NQ} be a set of quadrature points and positive weights within Ωe with the property

NQ∑
k=1

wk = V . (A.3)

Let {(Xl, w
Γ
l ,Nl) , l = 1, . . . , NΓ

Q} be a set of discrete quadrature points, positive weights, and outward unit
normals on Γe, with properties (discrete divergence theorem)

NΓ
Q∑

l=1

wΓ
l Nl = 0 , (A.4)

NΓ
Q∑

l=1

wΓ
l Xl ⊗Nl = V I . (A.5)

The solutions dak ∈ R3 of the set of constrained minimization problems

min
ξk∈R3

NQ∑
k=1

wk||ξk −∇ψa(Xk)||2 with

NQ∑
k=1

wk ξk −
NΓ

Q∑
l=1

wΓ
l ψa(Xl)Nl = 0 (A.6)

satisfy the consistency conditions
Nv∑
a=1

dak = 0 , (A.7)

Nv∑
a=1

dak ⊗Xa = I . (A.8)
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Proof. Let ψak := ψa(Xk). The constrained minimization problem defined by (A.6) gives the modified
derivatives of an individual shape function of an individual element at its volume quadrature points. This
constrained minimization problem is solved for the gradient of each shape function ∇ψa and for each coor-
dinate direction, independently, using the method of Lagrange multipliers (Luenberger, 2003, Ch. 10). The
Lagrangian L associated with each constrained minimization problem is given by

L(ξk,λa) :=

NQ∑
k=1

wk||ξk −∇ψak||2 + λa ·

NQ∑
k=1

wk ξk −
NΓ

Q∑
l=1

wΓ
l ψalNl

 (A.9)

where λa is the Lagrange multiplier vector for the given shape function. The necessary conditions for a local
minimum are given by

∂L

∂ξk
= 0 . (A.10)

Substituting (A.9) into (A.10) results in

2wk (dak −∇ψak) + λawk = 0 . (A.11)

Additionally, setting to zero the partial derivative of L with respect to the Lagrange multiplier recovers the
integration-consistency constraint

NQ∑
k=1

wk dak −
NΓ

Q∑
l=1

wΓ
l ψalNl = 0 . (A.12)

The proof of the identity (A.7) is given first. Summing (A.11) from a = 1 to a = Nv results in

2wk

[
Nv∑
a=1

dak −
Nv∑
a=1

∇ψak

]
+ wk

Nv∑
a=1

λa = 0 . (A.13)

Taking the gradient of the partition of unity relation (A.1) gives
∑Nv

a=1∇ψa = 0 so that the second term in
the brackets in (A.13) is identically zero resulting in

2wk

Nv∑
a=1

dak + wk

Nv∑
a=1

λa = 0 . (A.14)

Summing (A.14) from k = 1 to k = NQ gives

2

NQ∑
k=1

wk

Nv∑
a=1

dak +

NQ∑
k=1

wk

Nv∑
a=1

λa = 0 . (A.15)

Summing the integration-consistency constraint (A.12) from a = 1 to a = Nv results in

Nv∑
a=1

NQ∑
k=1

wk dak −
Nv∑
a=1

NΓ
Q∑

l=1

wΓ
l ψalNl = 0 .

Rearranging the summations gives

NQ∑
k=1

wk

Nv∑
a=1

dak −
NΓ

Q∑
l=1

wΓ
l Nl

Nv∑
a=1

ψal = 0 . (A.16)
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From the partition of unity relation (A.1), the second summation in the second term in (A.16) is identically
unity resulting in

NQ∑
k=1

wk

Nv∑
a=1

dak −
NΓ

Q∑
l=1

wΓ
l Nl = 0 . (A.17)

By assumption, the discrete version of Gauss’s theorem (A.4) holds so that the second term in (A.17) is

identically zero. Substituting the remaining identity,
∑NQ

k=1 wk

∑Nv

a=1 dak = 0, for the first term in (A.15)
results in

NQ∑
k=1

wk

Nv∑
a=1

λa = 0 .

The fact that
∑NQ

k=1 wk = V > 0 results in the identity
∑Nv

a=1 λa = 0. Substituting this identity into (A.14)

and using the fact that wk > 0 results in
∑Nv

a=1 dak = 0, which is the desired result, (A.7).
The proof of identity (A.8) remains. Taking the outer product of (A.11) with Xa and summing from

a = 1 to a = Nv gives

2wk

[
Nv∑
a=1

dak ⊗Xa −
Nv∑
a=1

∇ψak ⊗Xa

]
+ wk

Nv∑
a=1

λa ⊗Xa = 0 . (A.18)

Taking the gradient of (A.2) results in
∑Nv

a=1∇ψa⊗Xa = I. Substituting this result for the second term in
the brackets in (A.18) gives

2wk

[
Nv∑
a=1

dak ⊗Xa − I

]
+ wk

Nv∑
a=1

λa ⊗Xa = 0 . (A.19)

Summing (A.19) from k = 1 to k = NQ results in

2

NQ∑
k=1

wk

Nv∑
a=1

dak ⊗Xa − I
NQ∑
k=1

wk

+

NQ∑
k=1

wk

Nv∑
a=1

λa ⊗Xa = 0 . (A.20)

From (A.3), the sum in the second term in the brackets in (A.20) is identically V so that

2

NQ∑
k=1

wk

Nv∑
a=1

dak ⊗Xa − V I

+

NQ∑
k=1

wk

Nv∑
a=1

λa ⊗Xa = 0 . (A.21)

Taking the outer product of the integration-consistency constraint (A.12) with Xa and summing from a = 1
to a = Nv gives

Nv∑
a=1

NQ∑
k=1

wk dak ⊗Xa −
Nv∑
a=1

NΓ
Q∑

l=1

wΓ
l ψalNl ⊗Xa = 0 .

Rearranging the summations gives

NQ∑
k=1

wk

Nv∑
a=1

dak ⊗Xa −
NΓ

Q∑
l=1

wΓ
l Nl ⊗

Nv∑
a=1

ψalXa = 0 . (A.22)

From (A.2), the second summation in the second term in (A.22) is identically Xl resulting in

NQ∑
k=1

wk

Nv∑
a=1

dak ⊗Xa −
NΓ

Q∑
l=1

wΓ
l Nl ⊗Xl = 0 . (A.23)
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By assumption, the discrete version of Gauss’s theorem is valid, (A.5), so that the second term in (A.23) is
identically V I. Equation (A.23) then reduces to

NQ∑
k=1

wk

Nv∑
a=1

dak ⊗Xa = V I .

Substituting this expression for the first term in the brackets in (A.21), results in the bracketed term
vanishing. The remaining term gives the identity

NQ∑
k=1

wk

Nv∑
a=1

λa ⊗Xa = 0 .

Again, the fact that
∑NQ

k=1 wk = V > 0 results in
∑Nv

a=1 λa ⊗Xa = 0. Substituting this identity into (A.19)

and using the fact that wk > 0 gives
∑Nv

a=1 dak ⊗Xa = I, which is the desired result given by (A.8).
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