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Summary. In this paper, we present several applications in solid mechanics that
have ties to the Voronoi diagram and the concept of natural neighbours. Material
structure in metallic alloys and biomaterials are naturally described using the ge-
ometric construct known as Voronoi tessellation. For a nodal discretization of a
domain in Rd, the corresponding Voronoi diagram defines natural neighbours, which
determine spatial relationships between nodes and an associated scaling. The use
of natural neighbour interpolants within a meshfree Galerkin method (natural ele-
ment method) for the solution of partial differential equations, the development of
polygonal finite elements, and continuum (extended finite element) and lattice ap-
proaches to modelling crack propagation are emphasized. These diverse applications
demonstrate several advantages of adopting Voronoi grids and natural neighbour
interpolants in computer modelling and simulation of physical phenomena.

1 Introduction

The Voronoi tessellation is a fundamental geometrical construct that has been
widely used to describe the material structure in polycrystalline alloys, cel-
lular foams, geomaterials, trabecular bone, and other materials that exhibit
cell-like features. For such applications, numerical modelling and simulation
on Voronoi meshes is a natural choice. Finite element analyses can be based on
the Delaunay/Voronoi dual tessellations for both defining the computational
mesh and approximating the field quantity within each element. Interpolants
that are based on the Voronoi diagram are of more recent origin, with Sib-
son’s interpolant [48] being the first Voronoi-based interpolation scheme. Over
the past decade, Voronoi-based interpolants have been adopted in diverse
applications in mechanics—in meshfree Galerkin methods (natural element
method) [11, 13, 14, 49, 54, 55], towards the conception of a finite volume or
equivalently a finite difference discretization on Voronoi meshes [41, 50], in
the development of polygonal and polyhedral finite elements [31, 32, 56], and
to model crack propagation using irregular lattice networks [7, 9, 10].
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The remainder of this paper is organized as follows. In the next section,
we provide a short introduction to natural neighbour interpolants and then
focus on two recent applications of Voronoi interpolants in fracture mechan-
ics. Section 2.3 describes the construction of polygonal interpolants using
natural neighbour basis functions and presents applications of barycentric
finite elements for mesh-independent crack growth modelling. In Section 3,
Delaunay/Voronoi-based lattice models are used to simulate cracking in soft-
ening materials. Finally, a few concluding remarks are given in Section 4.

2 Voronoi Diagram and Natural Neighbour Interpolants

Given a set of nodes N = {n1, n2, . . . , nM} in Rd, the Voronoi diagram V (N)
of the set N is a subdivision of the domain into regions Vi, such that any
point in Vi is closer to node ni than to any other node nj ∈ N (j 6= i). The
first-order Voronoi cell, Vi, within the convex hull is a convex polyhedron in
Rd:

Vi = {x ∈ Rd : d(x,xi) < d(x,xj) ∀j 6= i}, (1)

where d(·, ·) is the Euclidean distance.
The dual of the Voronoi diagram, the Delaunay tessellation, is constructed

by connecting nodes that have a common (d–1)-dimensional Voronoi facet. In
Fig. 1, the Voronoi diagram and the Delaunay triangulation are shown for a set
of seven nodes. Delaunay triangles satisfy the empty circumcircle criterion—
if T is any Delaunay triangle of the nodal set N, then the circumcircle of T
contains no other nodes of N (see Fig. 1a).

Consider now the introduction of a point p with coordinates x ∈ R2 into
the domain Ω (Fig. 1b). The Voronoi diagram V or equivalently the Delaunay
triangulation DT for the M nodes and the point p is constructed. Now, if the
Voronoi cell for p and ni have a common facet, then the node ni is said to be
a natural neighbour of the point p [48]. The Voronoi cells for the point p and
its natural neighbours are shown in Fig. 1b.

2.1 Sibson interpolant

The natural neighbour (Sibson) interpolant was introduced by Sibson [48].
The second-order Voronoi diagram of the set of nodes N is a subdivision of
the plane into cells Vi,j , such that Vi,j is the locus of all points that have
ni as the nearest neighbour, and nj as the second nearest neighbour. The
second-order Voronoi cell Vi,j (i 6= j) is defined as [48]

Vi,j = {x ∈ R2 : d(x,xi) < d(x,xj) < d(x,xk) ∀k 6= i, j}. (2)

Consider Fig. 2a, where a point p with coordinate x is inserted into a
tessellation. The natural neighbour shape function of p with respect to a
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Fig. 1. Voronoi diagram and natural neighbours [50]. (a) Voronoi cells and Delaunay
triangulation; and (b) natural neighbours (filled circles) of p.

natural neighbour i is defined as the ratio of the area of the second-order
Voronoi cell (Ai) to the total area of the first-order Voronoi cell of p (A):

φi(x) =
Ai(x)

A(x)
, A(x) =

n
∑

j=1

Aj(x), (3)

where n = 5 for the point p in Fig. 2a. Sibson shape functions are non-negative,
interpolate, form a partition of unity, and satisfy the local coordinate property
(linear precision) [48]. Stemming from the work of Braun and Sambridge [11]
who proposed the natural element method, the Sibson interpolant has been
widely used as an interpolating function in Galerkin meshfree methods. Survey
articles and monographs on meshfree methods are available in the literature
[1, 6, 24, 36, 37, 57]. Farin [21] developed a C1 natural neighbour interpolant,
whereas Hiyoshi and Sugihara [28] proposed a general prescription for higher
order continuous Voronoi interpolants. Farin’s interpolant has been used to
solve fourth-order partial differential equations [53]. Cueto et al. [13] used
the concept of α-shapes [19, 20] to describe nonconvex boundaries within the
natural element method. Boissonnat and Flötotto [8] extended the Sibson
interpolant to smooth approximations on a surface ((d-1)-manifold in Rd).

2.2 Laplace interpolant

The Laplace interpolant was first proposed by Christ et al. [12], and subse-
quently rediscovered by Belikov et al. [4] and Hiyoshi and Sugihara [27]. In
R2, the Laplace shape functions are defined as [12]
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φi(x) =
αi(x)
n
∑

j=1

αj(x)
, αj(x) =

sj(x)

hj(x)
, (4)

where αi(x) is the Laplace weight function, si(x) is the length of the Voronoi
edge associated with p and node i, and hi(x) is the Euclidean distance between
p and node i (see Fig. 2b).
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Fig. 2. Natural neighbour-based interpolants [50]. (a) Sibson interpolant; and (b)
Laplace interpolant.

Sukumar et al. [55] adopted the Laplace interpolant in a Galerkin method
for elasticity. An overview of the applications of natural neighbour Galerkin
methods in solid and fluid mechanics is presented in Reference [14].

2.3 Planar Polygonal Meshes

Rational finite element basis functions on convex polygons were introduced
by Wachspress [63], and in recent years there has been growing interest in the
construction of barycentric coordinates on irregular polygons and polyhedra.
Many new contributions on barycentric polygonal interpolation have been
realized in geometry modelling and graphics, and in finite element methods
[17,22,23,29,38–40,51,52,56]. Barycentric coordinates are non-negative, form
a partition of unity, have linear precision, and are linear on element edges.
This makes them a suitable candidate for use as a basis in finite element
methods. In Reference [56], the Laplace interpolant [12] is used to construct
conforming approximations on polygons. This approach is elaborated below.
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An interpolation scheme for a scalar-valued function u(x) : Ω → R is:

uh(x) =

n
∑

i=1

φi(x)ui, (5)

where ui are the unknowns at the n neighbours of point p, and {φi}ni=1 are the
polygonal basis functions. For convergence in linear elasticity, the desirable
properties of shape functions are: non-negativity, interpolation, partition of
unity, and linear completeness:

0 ≤ φi(x) ≤ 1, φi(xj) = δij ,
n
∑

i=1

φi(x) = 1,
n
∑

i=1

φi(ξ)xi = x, (6)

where x = Φ(ξ) is the isoparametric mapping, and the shape functions φi(ξ)
are defined in a canonical element (see Fig. 5).

Given a set of nodes in the plane, the Laplace shape function at a point
p within the convex hull is determined using the Voronoi diagram of the
nodal set and p. Following the description in Section 2.2, if p lies within the
circumcircle of a Delaunay triangle T , the nodes that define T are natural

neighbours of p [48]. Referring to Fig. 3 and Eq. (4), the shape functions are
written as

φi(ξ) =
αi(ξ)
n
∑

j=1

αj(ξ)
, αj(ξ) =

sj(ξ)

hj(ξ)
, (7)

where hi(ξ) = ‖ξ − ξi‖2 and si(ξ) is the length of the Voronoi edge. Note that
when ξ → ξi, the distance hi → 0, but a limiting argument leads to the result:
φi → 1, φj → 0 (j 6= i) [55]. Sibson shape functions are smooth everywhere
except at the nodes where they are C0(Ω), whereas Laplace shape functions
are C0(Ω) on the boundary of their support [55] (see Fig. 4). Both the Sibson
and Laplace shape functions satisfy all the properties indicated in Eq. (6).

In a simplex-partition of a regular polygon, all triangles have a common
center and the nodes all lie on the same circumcircle. For all the polygons
shown in Fig. 5, the vertex-nodes lie on the same circumcircle, and hence all
the nodes of a polygon are the natural neighbours for any point in Ω0. Since
φi ≡ φi(ξ) is piece-wise linear on the boundary ∂Ω0, we use the isoparamet-
ric mapping, x = Φ(ξ), given in Eq. (6), to obtain the shape functions and
its gradient on arbitrary convex polygons in the physical space. In Fig. 6,
the Laplace basis function φ2(x) is plotted on a Voronoi mesh consisting of
polygonal elements. We point out that on circumscribable polygons, Wachs-
press [63], Laplace [12], and discrete harmonic weights [44] are identical. The
equivalence between Laplace shape functions and discrete harmonic weights
is shown in Reference [52].

Within a Galerkin method, the weak form integrals are numerically com-
puted. Numerical integration is performed by sub-dividing the canonical el-
ement into n triangles and then numerical quadrature is performed on each
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Fig. 3. Laplace shape function.
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Fig. 4. Plots depicting the support and smoothness of natural-neighbour basis
functions [55]. (a) Sibson; and (b) Laplace.

triangle. The above approach of constructing shape functions is a generaliza-
tion of finite elements to convex n-gons of arbitrary order. For further details
on the convergence of the method and its numerical implementation, we point
the reader to Reference [56].
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Fig. 6. Polygonal (Laplace) basis function.

2.4 Quadtree Meshes

Hierarchical grids have a tree-structure [45], which may be represented via a
directed graph. In two-dimensions, recursive decomposition of a square leads
to a quadtree (Fig. 7). In a quadtree, the domain is enclosed by unit squares
(root) that are sub-divided into four equal elements (cells) which are the
children of the root. This process can be repeated several times on each of the
children until a stopping criterion is met. The level of a cell is the number of
refinements needed to obtain that cell; the root is at level zero. In the data
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Fig. 7. Quadtree. (a) level 0; (b) levels 0–2; (c) levels 0–3; and (d) levels 0–3 (2:1
rule).

structure, for each cell, we store its connectivity, refinement level, a pointer
to its parent, and a pointer to its children.

In Fig. 7, different levels in a quadtree data structure are shown, and
the hanging nodes are indicated by filled circles. The presence of hanging

nodes leads to nonconformity across the interface in finite element methods.
Hence, it has been the practice with finite elements to minimize the number of
hanging nodes across cell interfaces—a constraint (2:1 rule) is imposed such
that two adjacent cells can at most differ by one level. Furthermore, Lagrange
multipliers, Nitsche’s method, or use of multipoint constraints are typically
used in finite element methods to address the issue of nonconformity, which
complicates the algorithm. In recent years, directly constructing conforming
approximations on quadtree meshes has been actively pursued [33–35,58].

In References [58, 59], conforming approximations are obtained on any
quadtree mesh by suitably adapting the construction of conforming polygonal
interpolants, which is described in Section 2.3. In Fig. 8a, an isoparametric
map from the pentagon in Fig. 5c to element A is shown. From Fig. 8b, we
see that the shape function φa is continuous, and linear behaviour along 1–a
and a–2 is realized.

As an illustrative adaptive simulation, consider the following Poisson prob-
lem:

∇2u = f in Ω = (0, 1)2, (8a)

u = 0 on ∂Ω, (8b)

where the source f is chosen so that u(x) = x1
10x2

10(1 − x1)(1 − x2) is the
exact solution. In Fig. 9, the initial mesh and a few refinements are shown. The
solution uh (Fig. 9d) on mesh 9c (928 elements) captures the sharp gradients
near (1, 1). The relative L2 error norm was O(10−10) for the patch test on the
mesh shown in Fig. 9c.
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Fig. 8. Shape function φa on a quadtree mesh [58]. (a) mapping; (b) C0 conforming.

2.5 Crack Propagation on Polygonal and Quadtree meshes

In finite element analyses, cracks and discontinuities are often explicitly repre-
sented via the mesh (i.e., cracks form along the boundaries between elements).
For such approaches, mesh regeneration is necessary to follow arbitrary crack
trajectories. To accurately reproduce the singular stress fields according to
linear elastic fracture mechanics, refined meshes are also needed in the vicin-
ity of the crack tip. An alternative approach that has gained prominence in
recent years is mesh-independent modelling of cracks. This is achieved by en-
riching the displacement approximation by a discontinuous function using the
framework of partition of unity [2]. Hence, the mesh no longer needs to con-
form to the crack geometry and, furthermore, no remeshing is needed in crack
propagation simulations. This approach, which is referred to as the extended
finite element method (X-FEM), was introduced for triangular and quadrilat-
eral elements in Moës et al. [42]. In Reference [60], the X-FEM was extended
to polygonal and quadtree meshes.

The enriched displacement approximation for crack modelling in the X-
FEM is [42]:

uh(x) =
∑

i∈I

φi(x)ui +
∑

j∈J

φj(x)H(x)aj +
∑

k∈K

φk(x)

4
∑

α=1

ψα(x)bkα, (9)

where φi(x) is the polygonal basis function of node i; ui are the classical de-
grees of freedom associated with node i; aj are the enriched degrees of freedom
associated with node j and the Heaviside function H(x) (discontinuous across
the crack interior); and bkα are the enriched degrees of freedom associated
with node k and the near-tip enrichment functions ψα(x), which are defined
as [5]
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Fig. 9. Quadtree mesh refinements for steps 0,2,5 in (a)–(c); and (d) uh (step 5).

{ψα(x), α=1–4} =
{√

r sin
θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

}

, (10)

where r and θ are local crack-tip polar coordinates of point x. The index set
I consists of all nodes in the mesh, the set K consists of nodes that contain
the crack tip within their basis function support closure, and J is the set of
nodes whose basis function supports are cut by the crack interior and do not
belong to set K. A standard Galerkin weak form of the equations of linear
elasticity is used to obtain the discrete equations. Further details on the X-
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FEM and its implementation on polygonal and quadtree meshes can be found
in Reference [60].

In what follows, quasi-static crack growth simulation on polygonal and
quadtree meshes are presented. The crack length increment in each step is
equal to twice the length of the element that contains the crack tip, and the
kink angle is obtained using the maximum circumferential stress criterion.

Double cantilever beam

A double cantilever beam with a crack lying slightly off the mid-plane is
considered. The right end is fixed and unit point loads are applied at the top
and bottom of the left end. This problem was solved on a rectangular mesh
using the X-FEM in Reference [30].

The beam dimension is 4 × 1 and the initial crack length is 2 (Fig. 10).
The polygonal mesh consists of 500 elements and 1002 nodes. The quadtree
mesh has 301 elements and 359 nodes and the level of refinement is 4 in
the vicinity of the crack tip. The crack growth simulations are depicted in
Figs. 11 and 12 for the polygonal and quadtree meshes, respectively. The
quadtree refinement around the crack tip can be seen in the plots presented
in Fig. 12. The crack trajectories from the polygonal and quadtree meshes are
in qualitative agreement with each other.

P

P

initial crack

Fig. 10. Pre-cracked double cantilever beam specimen.

Microcrack growth under uniaxial tension

Crack growth of a microstructurally small crack in a rectangular plate under
uniaxial tension in the x2-direction is simulated [60]. The plate dimensions
are L × L ≡ 10 × 10, the angle of the crack with the x1-axis is 30◦ and the
crack length a = 0.1. Since a/L = 0.01, use of a quadtree mesh is beneficial to
capture the initial crack geometry and to facilitate crack growth simulations.
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Fig. 11. Crack growth in double cantilever beam specimen. (a)-(e) Steps 2–6 on a
polygonal mesh).
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Fig. 12. Crack growth in double cantilever beam specimen. (a)-(e) Steps 2–6 on a
quadtree mesh).
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Fig. 13. Crack propagation of a microcrack on a quadtree mesh.
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The quadtree mesh (1108 elements and 1205 nodes) is shown in Fig. 13a; an
enlarged view of the crack region is plotted in Fig. 13b. Since the plate is under
pure mode I loading, crack advance should take place along the x1-direction.
The crack paths are illustrated in Figs. 13c–13f, and the final trajectory is
along the x1-direction, which is in agreement with theory.

3 Irregular Lattice Models

Lattice models are composed of simple, one-dimensional elements intercon-
nected on either a regular or irregular array of nodal points. Although basic
in their formulations, such models have been useful in understanding compli-
cated aspects of material behaviour, including fracture [25,26,47,61]. By virtue
of lattice site symmetry, regular lattices can represent uniform straining of
homogeneous media [46]. Lattices constructed on irregularly positioned nodes
generally do not satisfy this fundamental requirement, but rather exhibit ar-
tificial heterogeneity during straining. For irregular lattice models based on
natural neighbour concepts, however, elastically uniform representations of
homogeneous media are obtained. The topology of the lattice is determined
by the Delaunay tessellation of the lattice nodes, whereas the element stiffness
properties scale according to the dual Voronoi tessellation [7, 9, 10].

This section discusses basic capabilities of irregular lattice models when
simulating fracture of quasi-brittle materials. One primary justification for
these models is the lattice-like discontinuity of materials at fine scales. How-
ever, this section considers modelling at coarser scales for which the material
can be regarded as a continuum. Attention is given to fracture in statisti-
cally homogeneous materials, i.e., heterogeneity is not explicitly modeled, but
rather its effects are simulated via a crack band representation of fracture [3].
One end goal of this work is the development of Delaunay/Voronoi lattice
models of fracture of multiphase composites [65]. The confinement-shear lat-
tice (CSL) models of Cusatis et al. [15, 16] are notable contributions toward
this objective.

3.1 Model discretization and formulation

Domain discretization

The lattice model topology and properties are defined by the Delaunay/Voronoi
dual tessellation of a set of nodal points (Fig. 14). The discretization process
involves the following steps:

• Lattice nodes are inserted in the domain using a process of Random Se-
quential Addition (RSA) [64]. A minimum allowable distance is main-
tained between nodes, so that the domain eventually becomes saturated
with nodal points. The minimum allowable distance can be a function of
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Fig. 14. Domain discretization. (a) Delaunay tessellation of nodal point set; (b)
dual Voronoi tessellation; and (c) lattice element.

the spatial coordinates, enabling gradations of nodal point density. Since
trial points are rejected with increasing frequency as the domain becomes
saturated with nodes, a partitioned domain search is used to accelerate
this computationally expensive process [66];

• Domain boundaries are constructed by associating a set of auxiliary points
with each lattice node [9, 66]. For each lattice node in a convex domain
with M planar surfaces, a corresponding auxiliary point is placed outside
the domain for each of the M surfaces. The positioning of the auxiliary
points is illustrated in Fig. 15a for two nodes inside a planar domain with
M = 5. As the number of nodal points increases, the relative proportion
of active auxiliary points diminishes. This approach for defining domain
boundaries extends naturally to three dimensions (Fig. 15b).

• Voronoi tessellation of the entire point set [43], including auxiliary points
that are actively associated with domain boundary construction. The dual
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Delaunay tessellation defines the lattice element connectivity between the
nodal points (Fig. 14a). Basic non-convex features are discretized by strate-
gically introducing nodes and auxiliary points, prior to the random filling
process.
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Fig. 15. (a) Domain boundary definition using auxiliary points; and (b) Voronoi
subdivision of a three-dimensional Voronoi cell.

Element formulation for elasticity and fracture simulations

A lattice element is defined by two neighbouring nodes, i and j, and their com-
mon Voronoi facet (Fig. 14c). The element stiffness relations are based on a
zero-size spring set, located at the area centroid (point C) of the Voronoi facet,
and connected to the element nodes via rigid-arm constraints. The spring set
consists of three axial springs, oriented normal and tangential to the facet,
and three rotational springs about the same local (n-s-t) axes. The stiffness
coefficients of the axial springs are:
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ks = kt = α1kn = α1α2E
Aij
hij

, (11)

where Aij is the Voronoi facet area; hij is the distance between nodes i and
j; α1 and α2 are parameters, set in conjunction with a uniaxial tension test
simulation, to provide macroscopic representation of both elastic modulus E
and Poisson ratio ν [66]. For the special case of α1 = α2 = 1, the lattice
is elastically homogeneous, although the corresponding ν = 0. The stiffness
coefficients of the rotational springs are:

kφn = E
Jp
hij

, kφs = E
I11
hij

, kφt = E
I22
hij

, (12)

where Jp is the polar moment of inertia of the facet area, and I11 and I22
are the two principal moments of inertia of the facet area. Directions s and t
are aligned with the facet principal axes. The spring constants appear on the
diagonal of the material matrix, D, given by

D = (1− ω) diag
[

kn, ks, kt, kφn, kφs, kφt

]

, (13)

where ω is a scalar damage parameter used to model material fracture, as
described in Section 3.2. Prior to fracture initiation, ω = 0.

The generalized spring displacements d (each corresponding to one of the
six spring constants defined in Eqs. (11) and (12)) are related to the general-
ized nodal displacements in element local coordinates, ue, by

d = Bue, (14)

where B and its submatrices have the following forms:

B =

[

−I B12 I B14

0 −I 0 I

]

, (15a)

B12 =





0 −zC yC
zC 0 −h/2
−yC h/2 0



, B14 =





0 zC −yC
−zC 0 −h/2
yC −h/2 0



 . (15b)

In Eq. (15), I is the identity matrix, and yC and zC are the offsets of the facet
area centroid C from the y and z axes of the element, respectively (Fig. 14c).
Using the principal of virtual work, the element stiffness matrix (with respect
to element local coordinates) is

Ke = BTDB. (16)

After transforming Ke to global coordinates, the direct stiffness approach is
used to assemble element stiffness matrices and internal force contributions
into the structural equation set.
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Fig. 16. (a) Crack band definition for planar analysis; and (b) material softening
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3.2 Crack band model of fracture

The modelling of fracture is based on the crack band concept of Bažant and
Oh [3], which is easiest to visualize in two dimensions (Fig. 16a). Tensile
loading of element ij will generally be skew to the element axis, so that both
the normal and tangential springs are activated (with the normal spring in
tension). The fracture criterion is based on the following measure of stress:

σR =
FR
APij

, (17)

where FR is the resultant of the spring set forces and AP
ij is the projection of

the facet area on a plane perpendicular to the direction of FR. For the two-
dimensional case shown in Fig. 16a, AP

ij = sij cos θRt, where t is the structural
component thickness.

For each iteration of the solution process, the ratio σR/σ(w) is determined
for all of the lattice elements, where cohesive stress σ(w) is a prescribed func-
tion of the crack opening displacement w. A bilinear function is assumed as
shown in Fig. 16b, where σt is the uniaxial tensile strength of the material and
wc is the traction-free crack opening displacement; parameters β and η locate
the break in slope in the bilinear softening diagram. A prismatic crack zone
initiates (or continues to develop) within the element with max (σR/σ(w)) > 1.
The dimensions of crack zone conform to the local geometry of the Voronoi
diagram (Fig. 16a). The solution procedure determines fracture strain εR in
the direction of FR, from which crack opening displacement is obtained:
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w = εR hij cos θR. (18)

As is customary for lattice models, the stiffness properties of (at most) one
element are modified per computational cycle. Element fracture involves an
isotropic reduction of the spring stiffnesses, by incrementing ω in Eq. (13), and
an associated release of spring forces so that σR follows the bilinear softening
relation. The range of the damage parameter is 0 ≤ ω ≤ 1, with ω = 1
corresponding to the traction-free condition. This secant stiffness approach
avoids negative stiffness terms and the numerical instabilities that can arise
from their use. To reduce computational cost, a Cholesky factorization of
the structural stiffness matrix is performed only once at the beginning of
the analysis. Subsequent modifications of the element stiffness matrices (to
account for fracture) are implemented at the system level through low-rank
updating of the Cholesky factorization [65].

3.3 Fracture simulations

Basic capabilities of this irregular lattice model are illustrated in the follow-
ing two examples. The first example demonstrates the ability to reproduce
the prescribed softening behaviour without stress locking; the second exam-
ple concerns the modelling of a series of concrete specimens under uniaxial
tension.

Model tension test

For the model tension test shown in Fig. 17a, the stress σR is uniform through-
out the lattice (and equals σ = P/A, where A is the model cross-section area).
For increasing axial load, σR reaches the tensile strength σt in all elements
simultaneously, so that a minute reduction of σt for any one element initi-
ates fracture within that element. Continued loading leads to the formation
of a traction-free crack through the entire cross-section (Fig. 17b). Model re-
sponse at the structural scale (shown in Fig. 17c) corresponds precisely to the
prescribed softening curve.

For the sake of illustration, consider the fracture criterion to be: max

(σn/σ(w)) > 1, where σn = Fn/Aij . For this case, the crack band is con-
strained to form normal to the element axis and at least two sources of error
are present: 1) σn < σ, unless the element axis is aligned with the direction of
tensile loading; and 2) after fracture initiation, the component of crack open-
ing in the direction of the element axis is smaller than that in the direction
of loading. These inaccuracies cause excess strength and energy consumption,
as indicated by the broken line in Fig. 17c, which can be regarded as a form
of stress locking. The amount of overstrength and excess energy consump-
tion depends on the orientation of the elements crossing the fracture surface.
Further discussion of this example is given in Reference [7].
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Fig. 17. Basic validation of fracture model (figure adapted from [7]).

Uniaxial tension test simulation

The specimen dimensions and boundary conditions (shown as the insert in
Fig. 18a) correspond to one of several series of geometrically similar specimens
tested by van Vliet and van Mier [62]. The nominal size of the specimens isD =
200 mm and the thickness is 100 mm; the gage length over which displacements
are measured is 0.6D. The reported concrete properties, averaged over the
seven specimens in the series, were used as input to the model: elastic modulus
E = 39.8 GPa; tensile strength σt = 2.75 MPa; and specific fracture energy GF

= 124 N/m. The shape of the softening diagram was assumed to be bilinear
with β = 0.25 and η set to provide the reported GF value.

The lattice model results (for both the σR and σn fracture criteria) are
compared with the experimental results in Fig. 18a. For the σR criterion,
the numerical results run within the range of the experimental results and,
for continued loading, approach the traction-free condition. After fracture
localization on one side of the specimen, symmetry of the resisting section
is lost, so that fracture is driven by both the uniaxial tensile load and local
bending (Fig. 18b). For the case where rotation is prevented at the specimen
ends, crack opening is more uniform over the cross-section (Fig. 18c), as was
the case for the model tension test described earlier.

The total energy consumed by the fracture process is equal to the area
under the load-displacement curve. Dividing total energy by the cracked liga-
ment area yields the specific fracture energy, which is 132.3 N/m (or 1.071 GF )
for the σR criterion. The increase in energy consumption over the target GF

is due to the tendency of the incremental loading procedure to overshoot the
fracture strength (i.e. σ > σt for some elements). Smaller load steps and/or
retracting the loads to precisely meet the σR criterion would improve agree-
ment with the target GF . On the other hand, when using the σn criterion,
the average specific fracture energy obtained by simulation is 552.5 N/m (or
4.456GF ). The same form of stress locking of the σn approach was observed
for two-dimensional analyses of crack propagation [10].
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Fig. 18. Uniaxial tension test simulation. (a) load-displacement response; (b) sim-
ulated displacements allowing for support rotation (as per experiment); and (c)
simulated displacements for fixed supports.

4 Concluding Remarks

This paper described recent research on the use of Voronoi-based interpolants
and Voronoi grids in computer modelling and simulation of physical phe-
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nomena. Emphasis was placed on two applications—development of polyg-
onal finite elements for crack propagation simulations, and a Voronoi-based
lattice model of cohesive cracking in quasi-brittle materials. The Laplace in-
terpolant [12] was used to construct basis functions on convex polygons and
quadtree meshes. The polygonal basis functions were used within the frame-
work of partition of unity for crack growth simulations. Numerical examples
were presented to demonstrate the versatility of this approach. In the lattice
model, the Laplace weight, αij = sij/hij , scales the local stiffness terms for
the element connecting nodes i and j. Fracture was represented using a crack
band approach, in which the dimensions of the crack band were also scaled
according to the Voronoi diagram. This enabled grid insensitive, objective
simulations of mode-I fracture to be realized on irregular lattice networks.

Finite elements—with their robustness, accuracy, and rigorous theoretical
underpinnings—remain the most widely accepted choice for continuum frac-
ture and crack propagation simulations. However, over the past decade, mesh-
independent crack modeling using partition-of-unity enrichment techniques
has become in many instances more versatile than traditional finite element
methods for failure modeling. Unlike brittle materials where linear elastic
fracture mechanics principles are applicable, modeling of quasi-brittle mate-
rials such as concrete poses many challenges in computational fracture [18].
The use of discrete (Voronoi) lattice models to describe fracture processes
in multi-phase materials with distinct features (fibers, inclusions, secondary
phases, etc.) is particularly promising. Significant research opportunities ex-
ist for advancing computational fracture modeling to effectively capture the
transition from continua to discontinua at the meso-scale.
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15. G. Cusatis, Z. P. Bažant, and L. Cedolin. Confinement-shear lattice model for
concrete damage in tension and compression: I. Theory. Journal of Engineering
Mechanics, 129:1439–1448, 2003.
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