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ABSTRACT

The application of the Natural Element Method (NEM)1; 2 to boundary value problems in two-dimensional
small displacement elastostatics is presented. The discrete model of the domain 
 consists of a set of distinct
nodes N , and a polygonal description of the boundary @
. In the Natural Element Method, the trial and test
functions are constructed using natural neighbour interpolants. These interpolants are based on the Voronoi
tessellation of the set of nodes N . The interpolants are smooth (C∞) everywhere, except at the nodes where
they are C0. In one-dimension, NEM is identical to linear �nite elements. The NEM interpolant is strictly
linear between adjacent nodes on the boundary of the convex hull, which facilitates imposition of essential
boundary conditions. A methodology to model material discontinuities and non-convex bodies (cracks) using
NEM is also described. A standard displacement-based Galerkin procedure is used to obtain the discrete
system of linear equations. Application of NEM to various problems in solid mechanics, which include,
the patch test, gradient problems, bimaterial interface, and a static crack problem are presented. Excellent
agreement with exact (analytical) solutions is obtained, which exempli�es the accuracy and robustness of
NEM and suggests its potential application in the context of other classes of problems—crack growth, plates,
and large deformations to name a few. ? 1998 John Wiley & Sons, Ltd.

KEY WORDS: natural neighbour interpolation; natural element method; 1st- and 2nd-order Voronoi diagrams; Delaunay
triangle; elastostatics

1. INTRODUCTION

The Finite Element Method (FEM) is a well-established numerical method which has been applied
to boundary-value problems in di�erent �elds of engineering and the applied sciences. In spite of
its numerous advantages, there is an on-going thrust in the development and application of new
numerical tools which hold promise for certain classes of problems, such as crack growth, plate
bending, and modelling of multiscale phenomena. In particular, there has been a tremendous surge
in the emergence and development of so-called meshless methods3–10 for the solution of Partial
Di�erential Equations (PDEs). The mesh-free character of these methods is particularly attractive
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in the area of computational fracture mechanics, such as two-dimensional and three-dimensional
crack growth modelling by the Element-Free Galerkin (EFG) method.11

In this paper, we assess the potential and capabilities of a recently developed numerical method—
coined as Natural Neighbour Finite Elements1 or Natural Element Method.2 A detailed description
of its implementation for PDEs is given by Braun and Sambridge,2 who refer to the method as
Natural Element Method (NEM), which is the name we choose to use here. The application of
NEM to the solution of elliptic boundary value problems in solid mechanics, governed by the equa-
tion of equilibrium in elastostatics, is explored. The interpolation scheme used in NEM is known
as Natural Neighbour (n–n) interpolation. Natural neighbour interpolation12; 13 is a multivariate
data interpolation scheme,14 which has primarily been used in data interpolation and modelling
of geophysical phenomena. For some of the previous works and typical applications of natural
neighbour interpolation, see References 1, 2 and 15–28. Natural neighbour interpolation relies on
concepts such as Voronoi diagrams29 and Delaunay tessellations30 in computational geometry,31–33

to construct the interpolant. In spite of its fairly simple and appealing structure, sound theoret-
ical basis for construction, and desirable smoothness properties, n–n interpolation has received
little attention in the area of multivariate data interpolation, when compared to other schemes
such as Shepard’s interpolant,34 moving least-squares approximants,35 radial basis functions,36; 37

or Hardy’s multiquadrics.38 Recent work on n–n interpolation27 and its application to the modelling
of complex 
uid-structure interaction phenomena2 does indicate the merits of the method for the
solution of PDEs and suggests that it could be a promising numerical tool in the realm of solid
mechanics.
The NEM interpolant is constructed on the basis of the underlying Voronoi tessellation, which

is unique for a given set of distinct points (nodes) in the plane. The Delaunay triangles which
are the dual of the Voronoi diagram are used in the numerical computation of the NEM in-
terpolant. However, unlike the �nite element method where angle restrictions are imposed on
the triangles for the convergence of the method,39 there are no such constraints on the shape,
size, and angles of the triangles in NEM. This facilitates random con�guration of nodes in
space regardless of whether the associated Delaunay triangles are acceptable from a �nite ele-
ment perspective. In the application of NEM to the solution of the equilibrium equation of elas-
tostatics, a displacement-based Galerkin implementation is used. The trial and test functions in
the weak (variational) form are constructed using natural neighbour interpolants. The solution of
the discrete system of linear equations (Kd= f) is carried out to obtain the nodal displacement
vector d.
The outline of this papers is as follows. In the following section, a brief description of the

rudiments of Voronoi diagrams and Delaunay triangles in the context of natural neighbour inter-
polation is delineated. In Section 3, an extensive discussion of natural neighbour interpolants—its
construction, properties, and computational procedure—is presented. The treatment of material dis-
continuities is addressed in Section 4, while the modelling of non-convex bodies (straight cracks)
using NEM is described in Section 5. In Section 6, the governing equations of elastostatics to-
gether with the Galerkin formulation for NEM are described. In Section 7, various applications of
NEM in two-dimensional solid mechanics, which include problems with homogeneous deforma-
tion (patch tests), steep gradients, strain discontinuity (bimaterial interface), as well as those with
singularities (crack-tip �elds) are presented. The results for the �eld variables as well as conver-
gence studies are compared to exact (analytical) solutions and to the FEM, wherever appropriate.
Finally, in Section 8, some concluding remarks and promising future applications of NEM are
mentioned.
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2. VORONOI DIAGRAM AND DELAUNAY TESSELLATION

The Voronoi diagram and its dual Delaunay tessellation (covering of a surface with tiles) are
one of the most fundamental and useful geometric constructs that de�ne an irregular set of points
(nodes). For simplicity, and in keeping with the applications that are pursued in this paper, we
consider two-dimensional Euclidean space R2; the theory, however, is applicable in a general
d-dimensional framework. Consider a set of distinct nodes N = {n1; n2; : : : ; nM} in R2. The Voronoi
diagram (or 1st-order Voronoi diagram) of the set N is a subdivision of the plane into regions TI
(closed and convex, or unbounded), where each region TI is associated with a node nI , such that
any point in TI is closer to nI (nearest neighbour) than to any other node nJ ∈N (J 6= I)—TI is
the locus of points closer to nI than to any other node. The regions TI are the Voronoi cells (also
known as Thiessen or Voronoi polygons) of nI . In mathematical terms, the Voronoi polygon TI
is de�ned as40

TI = {x∈R2: d(x; xI )¡d(x; xJ ) ∀J 6= I} (1)

where d(xI ; xJ ), the Euclidean metric, is the distance between xI and xJ .
The Voronoi cell for node A and the Voronoi diagram for a set N consisting of seven nodes

are shown in Figures 1(a) and 1(b), respectively. In Figure 1(a) it is seen that each Voronoi cell
TI is the intersection of �nitely many open half-spaces, each being delimited by the perpendicular
bisector (hyperplane in Rd). Consequently, for all nodes nI that are inside the convex hull,¶ the
Voronoi cells are closed and convex, while the cells associated with nodes on the boundary of
the convex hull are unbounded (see Figure 1(b)). The nearest neighbour problem and many of
its variants in computational geometry are prototypical examples that illustrate the use of Voronoi
diagrams. However, the implications of Voronoi diagrams are far-reaching, with many applications
in the natural sciences, physical sciences, and engineering. A detailed description of the proper-
ties and applications of Voronoi diagrams can be found in Boots41 and Okabe et al.,42 while
Aurenhammer43 presents a comprehensive review on Voronoi polygons.
The Delaunay triangulation, which is the straight-line dual of the Voronoi diagram, is constructed

by connecting the nodes whose Voronoi cells have common boundaries—see Figure 1(c). The
duality between the two implies that there is a Delaunay edge between two nodes in the plane if
and only if their Voronoi cells share a common edge. Among all triangles, the Delaunay triangles
maximize the minimum angle.44 Another important property of Delaunay triangles is the empty
circumcircle criterion44—if DT(nJ ; nK ; nL) is any Delaunay triangle of the nodal set N , then the
circumcircle of DT contains no other nodes of N . In the context of natural neighbour interpolation,
these circles are known as natural neighbour circumcircles.20 The centre of the natural neighbour
circumcircle is a vertex of the Voronoi cell. If the nodal set N is such that only three nodes lie on
the circumcircle of any Delaunay triangle (non-degenerate case), then precisely three edges meet
to form a Voronoi vertex. In Figure 1(d), the natural neighbour circumcircles and the associated
Delaunay triangulation are shown.
From an algorithmic viewpoint, since the Voronoi diagram and the Delaunay triangulation share

a common bond (duality), the combinatorial structure of either structure is completely determined
from its dual. The Voronoi diagram in Rd is also closely related to the convex hull in Rd+1,45
which is also the basis for computing the Voronoi diagram in Rd. The importance of the

¶The convex hull CH(N ) of the set of nodes N is the smallest convex set containing N

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 43, 839–887 (1998)



842 N. SUKUMAR, B. MORAN AND T. BELYTSCHKO

Figure 1. Geometric structures for a set N of seven nodes. (a) Voronoi cell for node A; (b) Voronoi diagram V (N );
(c) Delaunay triangulation DT(N ); and (d) natural neighbour circumcircles

Delaunay triangulation in the context of the solution of PDEs stems from its use in mesh generation
for the �nite element method. Incremental insertion44 and point insertion46; 47 are among the early
algorithms developed to compute Delaunay triangulations. Today, some of the prominent Delau-
nay triangulation algorithms are those based on incremental insertion,44 divide-and-conquer,48 and
plane sweep.49 The optimum time complexity of Delaunay triangulation algorithms is O(n log n).
Shewchuk50 has carried out a comparison of the computational costs and speeds of the above three
algorithms. In this paper, we use the package Triangle;51 the nodal discretization and Delaunay
triangles are displayed using the package Show Me.52 In three-dimensions and higher, the qhull
package53; 54 which is based on the quickhull algorithm is considered the most versatile. A discus-
sion on randomized algorithms to compute Voronoi diagrams and Delaunay tessellations can be
found in Mulmuley.55 For details on Delaunay triangulation and mesh generation, see Fortune56

and the review article by Bern and Eppstein.57

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 43, 839–887 (1998)



THE NATURAL ELEMENT METHOD IN SOLID MECHANICS 843

Figure 2. Construction of natural neighbour co-ordinates: (a) original Voronoi diagram and x; and (b) 1st-order and
2nd-order Voronoi cells about x

3. NATURAL NEIGHBOUR INTERPOLATION

In this section, a detailed description of the construction, properties, and numerical computations
of natural neighbour shape functions is presented. Issues pertaining to the imposition of essential
boundary conditions and the exact correspondence of NEM with �nite elements in one-dimension
are also discussed. In the sub-sections that follow, unless stated otherwise, it is implicitly assumed
that the distinct set of nodes N represents a convex domain 
.

3.1. Construction

Natural neighbour co-ordinates were introduced by Sibson12 as a means for data interpolation
and smoothing. The concept of nearest neighbours and neighbouring nodes is embedded in the
�rst-order Voronoi diagram (Section 2). By a similar extension, one can construct higher order
(k-order, k¿1) Voronoi diagrams in the plane. Of particular interest in the context of natural
neighbour co-ordinates is the case k =2, which is the second-order Voronoi diagram. The second-
order Voronoi diagram of the set of nodes N is a subdivision of the plane into cells TIJ , where
each region TIJ is associated with a nodal-neighbour-pair (nI ; nJ ) (k-tuple for the k-order Voronoi
diagram), such that TIJ is the locus of all points that have nI as the nearest neighbour, and nJ as
the second nearest neighbour. It is emphasized that the cell TIJ is non-empty if and only if nI and
nJ are neighbours. The second-order Voronoi cell TIJ (I 6= J ) is de�ned as12

TIJ = {x∈R2: d(x; xI )¡d(x; xJ )¡d(x; xK); ∀ K 6= I; J} (2)

In order to quantify the neighbour relation for any point x introduced into the tessellation,
Sibson12 used the concept of second-order Voronoi cells, and thereby introduced natural neighbours
and natural neighbour co-ordinates. The notion of neighbouring nodes is broadened and generalized
to yield a new measure of ‘neighbourliness’ by the de�nition of natural neighbours. In Figure 2,
a point x is introduced into the Voronoi diagram of the set N discussed in Section 2. If x is
tessellated along with the set of nodes N , then the natural neighbours of x are those nodes which
form an edge of a triangle with x in the new triangulation. A straight-forward means to arrive at

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 43, 839–887 (1998)
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the same end is to use the empty circumcircle criterion (see Section 2). By doing so, we arrive at
the result that if x lies within the circumcircle of triangle DT(nI ; nJ ; nK), then nI ; nJ , and nK are its
natural neighbours. In Figure 2, the perpendicular bisectors from point x to its natural neighbours
are constructed and the Voronoi cell Tx (closed polygon abcd) is obtained. It is observed that x
has four (n=4) natural neighbours, namely nodes 1–4.
Let �(x) be a Lebesgue measure (length, area, or volume in 1D, 2D, or 3D, respectively) of

Tx, and �I (x) (I =1–4) be that of TxI . In two dimensions, the measures are areas, and hence we
denote A(x)≡ �(x) and AI (x)≡ �I (x). The natural neighbour co-ordinates of x with respect to
a natural neighbour I is de�ned as the ratio of the area of overlap of their Voronoi cells to the
total area of the Voronoi cell of x:

�I (x)=AI (x)=A(x) (3)

where I ranges from 1 to n, and A(x)=
∑n

J=1 AJ (x). The four regions shown in Figure 2 are the
second-order cells, while their union (closed polygon abcd) is a �rst-order Voronoi cell. Referring
to Figure 2, the shape function �1(x) is given by

�1(x)=
Aabfe
Aabcd

(4)

The derivatives of the n–n co-ordinates are obtained by di�erentiating equation (3):

�I; j(x)=
AI; j(x)− �I (x)A; j(x)

A(x)
(j=1; 2) (5)

where equation (3) has been used to arrive at the above expression.
Consider an interpolation scheme for a vector-valued function u(x): 
⊂R2→R2, in the form

uh(x)=
n∑
I=1
�I (x)uI (6)

where uI (I =1; 2; : : : ; n) are the vectors of nodal displacements at the n natural neighbours, and
�I (x) are the shape functions associated with each node. In the context of natural neighbour
interpolation, the shape functions �I (x) are taken as the n–n co-ordinates of the point x in the
plane. It is noteworthy to point out here that since the shape functions have compact support
(Section 3.2), equation (6) is a local interpolation scheme. Hereafter, in the context of the Natural
Element Method, for the purpose of clarity and in keeping with �nite element usage, the expressions
‘natural neighbour shape function’ or simply ‘shape function’ are used synonymously for natural
neighbour co-ordinates.

3.2. Properties

In this section, the properties of natural neighbour shape functions as well as the NEM interpolant
(trial function) are presented. A succinct and elegant discussion on the properties of Sibson’s
interpolant can be found in Farin.18

Interpolation
By de�nition of the shape function given in equation (3), the following property is self-evident:

06�I (x)61 (7)

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 43, 839–887 (1998)
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Now, referring to Figure 2(b), we note that if x were to coincide with any node, say node 1 for
instance, then it is readily seen that �1(x)= 1 and �I (x)= 0; I 6=1. Therefore, the NEM and FE
shape functions share the following property:

�I (xJ )= �IJ (8)

which implies that the NEM interpolant passes through the nodal values. A consequence of this
in a Galerkin implementation is that the nodal unknowns uI are the nodal displacements, which
is in contrast to most meshless approximations, where the nodal parameters uI are not the nodal
displacements.

Partition of unity
By construction (see equation (3)), we have the following relation:

n∑
I=1
�I (x)= 1 in 
 (9)

where n is the number of natural neighbours, and 
 is the convex hull CH(N ) of the set of nodes
shown in Figure 1(c). Hence, by virtue of equation (7) and the above property, we note that the
shape functions form a partition of unity.9 The implication is that the interpolant constructed on the
basis of these shape functions can exactly reproduce constant functions. In addition, they can also
be used to enrich the interpolant by enlarging the trial function space to include additional terms
that have embedded in them functions from the solution space. In Section 5.1, this is discussed at
greater length in the context of enriching the NEM interpolant for crack problems.

Linear consistency
For a second-order PDE such as elastostatics, linear consistency or completeness58 is the ability

of the interpolant to exactly reproduce constant and linear displacement �elds. Sibson12 has shown
(see also Reference 22) that the natural neighbour shape functions satisfy the local co-ordinate
property, namely

x=
n∑
I=1
�I (x)xI (10)

which indicates that the shape functions can exactly reproduce the geometrical co-ordinates. The lo-
cal co-ordinate property in conjunction with equation (9) together imply that the linear consistency
conditions are satis�ed.

Supports and natural neighbours
Consider a set of distinct nodes N , and let us choose a particular one, say node I , where

I ∈N . The support or domain of in
uence of the shape function �I (x) associated with node
I is de�ned as the closed sub-domain 
sI such that �I (x)¿0 in 
sI , �I (x)= 0 on @
sI , and
�I (x)= 0 in CH(N ) − 
sI . By the circumcircle criterion, it is evident that for �I (x) to have a
non-zero contribution at x, the point x must lie within the circumcircle of a Delaunay triangle that
has node I as one of its vertices. It immediately follows from the above argument that the support
of the shape function �I (x) is the intersection of the convex hull CH(N ) with the union of all
Delaunay circumcircles that pass through node I .18 In Figure 3(a), a unit square is discretized by
25 (5× 5) equi-spaced nodes. The support for node A is illustrated in Figure 3(b)—node A is
located at the centre where �A(xA) takes on the value of unity. The support is clearly seen to be

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 43, 839–887 (1998)
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Figure 3. Support for NEM shape function: (a) nodal grid; and (b) shape function �A(x) for node A

the union of Delaunay circumcircles about node A. The surface of the shape function �A(x) is
analogous to a taut rubber sheet that is stretched so as to meet the nodal data.20

By comparing the supports of the interpolating functions in NEM to those in some of the widely-
used surface approximation schemes, much is revealed about the nature of NEM interpolation and
its inherent merits. Consider Shepard’s interpolant34 or moving least-squares approximations,35

which are both based on distance-based weights. The weight function is usually isotropic (circular
in 2D and spherical in 3D), non-negative within a circle or ball of some �xed radius, and monoton-
ically decreasing with distance from the point x. The rationale in these approaches is that nodes that
are closer to x are given a higher weight at x than those that are at farther distances. Natural neigh-
bour interpolation assumes a totally di�erent viewpoint. The weight at a point x is not dictated by
the same length measure in all dimensions, but by the appropriate Lebesgue measure of the space-
dimension. This allows for anisotropic supports, where the support size in direction r is not given by
a L2-metric but is ascertained based on a geometric construct that de�nes the region-of-interaction
between the nodes. In meshless methods, most of which are based on distance-based weights, the
handling of irregular arrangement of nodes is non-trivial since contributions at a point x tend to be
disproportionately biased towards areas of higher nodal density. In n–n interpolation, by virtue of
construction, the distribution and density of nodes are taken into account in assigning weights to the
nodes at a point x. The above geometric relationship between objects (nodes) is referred to as spa-
tial adjacency.59; 17 Ahuja59 delineates the merits of using Voronoi neighbourhoods in the analysis
of dot patterns in pattern recognition, while Gold17 discusses this property in the context of surface
interpolation. An instructive illustration that illuminates the above concept is shown in Figure 4.
The number of natural neighbours n is a function of position x as well as the nodal density. In

k-dimensions, the number of natural neighbours is at least k+1, with an attainable lower bound.13

In Figure 5, the variation of n within the convex hull of a uniform grid (5× 5) is shown. Clearly,
for a regular grid, due to degeneracy, any point has at least four (minimum) natural neighbours.
Moreover, there are only two possible values for n, namely, n=4 or 6, with n=6 attained in the
lens-shaped regions shown in Figure 5. In Plate 1(a), an irregular arrangement of nodes is shown,

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 43, 839–887 (1998)
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Figure 4. Voronoi neighbours. B, C, and D are neighbours of A, but E and F are not, even though d(A; E)¡d(A; D)¡
d(A; C) and d(A; F)¡d(A; D)¡d(A; C)

Figure 5. Variation of natural neighbours for a regular grid

and the associated variation in n is presented as a contour plot in Plate 1(b). In this case, one can
see the dependence on nodal arrangement and nodal density.

Smoothness
The smoothness (or regularity) of the NEM shape functions is discussed. Natural neighbour

shape functions are C∞ everywhere, except at the nodes where they are C0.12; 18; 24 Referring to
Figure 2, and based on earlier observations and inferences, we see that �I (x) is a continuous
function of x. The only points of note are the nodes, but since �I (xI )= 1 as x→ xI from any

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 43, 839–887 (1998)
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direction, the continuity of �I (x) is established. The di�erentiability of the shape function �I (x)
at all points, but for the nodes, is also evident. Since �I (x) has compact support and is smoothly
varying at all points except when approaching the nodes, its derivatives are C∞ in 
\xI . This
fact is also seen if one considers the computational procedure for the evaluation of NEM shape
functions (Section 3.3). Consider a point x (x 6= xJ ) which lies on a natural neighbour circumcircle
of node I such that x∈ @
sI . Then, only one circum-triangle contributes to the area calculations in
equation (38). Since cj(x)= v for j=1–3, the area of the sub-triangles and all its derivatives are
identically zero. Hence the shape function �I (x) and all its derivatives (�rst-order and higher) are
identically equal to zero at x, and consequently �I (x)∈C∞ in 
\xI . On the basis of the locus of
the point x as it traces out a straight line, Farin18 showed that �I (x) is only C0 at the nodes. This
fact is also seen when one considers the support of the shape functions (Figure 3). The boundary
@
sI is C0 with slope discontinuities at the nodes only, which contributes to the jumps in the �rst
derivatives of �I (x) at the nodal locations.
Smooth (C1(
)) forms of natural neighbour interpolation have been proposed by many

authors.13; 18; 21 Sibson13 used a weighted least-squares �t to modify the original n–n interpolation
scheme12 to obtain a C1(
) interpolant everywhere. In one-dimension, it reduces to a Hermite
cubic polynomial. Farin18 recognized Sibson’s interpolant to be a building block for higher-order
surface schemes, and uses Hardy’s multiquadric38 interpolation scheme as a particular example for
such an application. A new C1(
) scheme based on B�ezier simplices is also proposed. Traversoni
and Palacios60 reformulated Sibson’s interpolant in terms of Bernstein polynomials, and using the
notion of covering spheres,60 showed how it can be incorporated into spline theory. These mod-
i�ed forms of Sibson’s interpolants which possess C1(
) continuity are suitable candidates for
application in Kirchho� plate bending theory.

Interpolation in one-dimension
In one-dimension, natural neighbour interpolation as described earlier, is identical to linear �nite

elements. This fact is proven below.

Proof
Consider a 1-D bar of length L which is discretized by M unequally spaced nodes (Figure 6(a)).

It is evident that the Voronoi vertices lie at the mid-point between any two adjacent nodes. In
Figure 6(a), the dark circles represent the nodes, while the open circles are the Voronoi vertices.
A consequence of the above observation is that all points in the open set (0; L) have two natural
neighbours, while the points on the boundary have only one natural neighbour. In order to compute
the shape functions, we consider the domain (element in FEM) 
I between any two adjacent
nodes, say nI and nI+1. Let us use a reference co-ordinate �=(x−xI )=(xI+1−xI ), where �∈ [0; 1],
and a local node numbering system: nI→ 1 and nI+1→ 2 (Figure 6(b)). Consider a point �∈
I .
The second-order Voronoi cells about � are shown in Figure 6(b). Using equation (3), the shape
functions can be written as

�I (�)=
L�I

L�1 + L�2
(I =1; 2) (11)

where L�1 = (1− �)=2 and L�2 = �=2. On using these in the above equation, we obtain the result:
�1(�)= 1− �; �2(�)= � (12)

which are precisely 1-D linear �nite element shape functions.

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 43, 839–887 (1998)
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Figure 6. NEM shape functions in one dimension: (a) physical space; and (b) reference space

Interpolation in two-dimensions
The equivalence of NEM shape functions to barycentric co-ordinates and bilinear interpolation,

for the special cases of n=3 and n=4 (regular grid), respectively, are shown. For irregular
quadrilaterals and n¿4, the shape functions are rational quartic functions.18

Three natural neighbours
If a point x has three natural neighbours (n=3), then the NEM shape functions are precisely

the barycentric co-ordinates, or constant strain triangle �nite element shape functions.

Proof
By an argument of uniqueness for barycentric as well as NEM shape functions (n=3), this

equivalence is immediately seen.18 Here we use the linear reproducing conditions to prove the
correspondence. Let the natural neighbours of point x=(x; y) be nodes 1, 2, and 3, with co-
ordinates (xI ; yI ); I =1–3 (Figure 7). Using equations (9) and (10), the following conditions must
be met by the NEM shape functions:

3∑
I=1
�I (x)= 1 (13)

3∑
I=1
�I (x)xI = x (14)

3∑
I=1
�I (x)yI =y (15)

which in matrix form can be written as

1 1 1

x1 x2 x3
y1 y2 y3





�1(x)

�2(x)

�3(x)


=



1

x

y


 (16)

The solution of the above system of linear equations is

�1(x)=
D1(x)
D(x)

; �2(x)=
D2(x)
D(x)

; �3(x)=
D3(x)
D(x)

(17)
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Figure 7. Barycentric co-ordinates (n=3)

where

D(x)=

∣∣∣∣∣∣∣
1 1 1

x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
1 0 0

x1 x2 − x1 x3 − x1
y1 y2 − y1 y3 − y1

∣∣∣∣∣∣∣=2A(x) (18)

and D1(x)= 2A1(x), D2(x)= 2A2(x), and D3(x)= 2A3(x) (Figure 7). In equation (18), A(x) is
the area of 4123. Hence we can write the shape functions as

�1(x)=
A1(x)
A(x)

; �2(x)=
A2(x)
A(x)

; �3(x)=
A3(x)
A(x)

(19)

which are precisely the barycentric co-ordinates for the point x.

Four natural neighbours (regular grid)
For a regular rectangular nodal grid, if a point x has four natural neighbours (n=4), then

bilinear interpolation on the rectangle is obtained. A geometric proof is provided by Farin.18 Here
we use the de�nition of natural neighbour shape functions and explicitly carry out the computations
to show the equivalence. It is to be noted that the above claim does not hold for the general case
of four natural neighbours that are located at the vertices of a quadrilateral.

Proof
Consider a point x with four natural neighbours located at the vertices of a unit square:

(x1; y1)= (0; 0), (x2; y2)= (1; 0), (x3; y3)= (1; 1), and (x4; y4)= (0; 1) (Figure 8). The �rst-order
(dark line) and second-order Voronoi cells about x are shown in Figure 8. By de�nition of the
NEM shape functions, we can write

�I (x)=
AI (x)
A(x)

(I =1− 4) (20)

where A1(x), A2(x), A3(x), and A4(x) are the areas of 4eda, 4eab, 4ebc, and 4ecd, respectively.
In the above equation, A(x) is the area of the �rst-order Voronoi polygon abcd and e is the centre
of the unit square with co-ordinates (1=2; 1=2).
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Figure 8. Bilinear interpolation on a regular grid (n=4)

We proceed by computing the area of the second-order Voronoi cells. To this end, by recalling
the construction of 2nd-order Voronoi cells, it is clearly seen that vertex a is the centre of the
circle that circumscribes the triangle 412x, and proceeding likewise, b is the circumcentre of
triangle 423x, c that of 434x, and d that of 441x—see Section 3.3 also. Using equation (32),
these co-ordinates are computed to be

a1 =
1
2
; a2 =

−x + x2 + y2
2y

b1 =
1 + y − x2 − y2

2(1− x) ; b2 =
1
2

c1 =
1
2
; c2 =

1 + x − x2 − y2
2(1− y)

d1 =
−y + x2 + y2

2x
; d2 =

1
2

(21a)

Using the formula for the area of a triangle given in equation (30), we obtain

A1(x)=
(x2 + y2 − x − y)2

8xy
(22a)

A2(x)=
(x2 + y2 − x − y)2

8y(1− x) (22b)

A3(x)=
(x2 + y2 − x − y)2
8(1− x)(1− y) (22c)

A4(x)=
(x2 + y2 − x − y)2

8x(1− y) (22d)

Since A(x)=
∑4

I = 1 AI (x), we have

A(x)=
(x2 + y2 − x − y)2
8xy(1− x)(1− y) (23)

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 43, 839–887 (1998)



852 N. SUKUMAR, B. MORAN AND T. BELYTSCHKO

and hence on using equations (22) and (23) in equation (20), the NEM shape functions can be
written as

�1(x) = (1− x)(1− y) (24a)

�2(x) = x(1− y) (24b)

�3(x) = xy (24c)

�4(x) = y(1− x) (24d)

which are precisely bilinear FE shape functions. The above derivation is easily generalized to the
rectangle (linear transformation of a square), and hence bilinear interpolation on the rectangle is
realized by the NEM interpolant.

Interpolation in multi-dimensions
On the basis of earlier discussions and results, it is observed that natural neighbour interpolation

in higher dimensions is a generalization of univariate interpolation in one dimension.18 This appears
to be a natural means of extending an interpolation scheme since the interpolant is constructed
on the basis of an appropriate Lebesgue measure (volume of polytopes) in the space dimension
of interest. This is in stark contrast to �nite element interpolation in higher dimensions which is
constructed on the basis of the product of 1-D Lagrange interpolation rules. From a mathematical
and geometric viewpoint, the natural-neighbour approach is appealing in more ways than one:
a sound mathematical- and geometrical-basis for construction, neighbour relationships that re
ect
the spatial adjacency between nodes, and a computationally feasible and attractive choice. In the
remainder of this paper, we show by examples, how these properties of n–n interpolation are also
of merit as a paradigm for the numerical solution of PDEs.

Linear precision on the boundary @

Issues pertaining to the imposition of essential boundary conditions in NEM for convex and

non-convex bodies are addressed here. For convex domains, the discrete representation of @
 is
the boundary of the convex hull CH(N ) for a set of distinct nodes N , while for a non-convex
domain, the discrete representation of the continuous boundary @
 is through a Planar Straight
Line Graph (PSLG).‖

Convex domains
The discrete model consists of a set of nodes N that describes a convex domain 
, with @


represented by the boundary of the convex hull CH(N ). On the boundary of the convex hull, the
trial functions uh(x) are strictly linear between two nodes that belong to an edge of a Delaunay
triangle. The proof follows:

Proof
Consider a typical Delaunay triangle which has one edge (two nodes) along the boundary of

the convex hull, and the trial functions uh(�) are to be evaluated at a point � along the edge 1–2
(Figure 9(a)). For simplicity and for ease of illustration, we assume that � has only three natural
neighbours, namely nodes 1–3. We use a local co-ordinate system � along the edge 1–2 such that
�=0 at node 1 and �=1 at node 2. The 1st-order and 2nd-order Voronoi cells about � are shown

‖ A PSLG is a collection of nodes and edges, whose presence is preserved in the partitioning of the domain
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Figure 9. Linear behaviour of uh(�) along the edge of a boundary Delaunay triangle (convex domain): (a) original Voronoi
cells (n=3) and �; and (b) 1st-order and 2nd-order Voronoi cells about �

in Figure 9(b). By de�nition, the shape functions can be written as

�I (�)=
AI (�)
A(�)

(I =1; 2; 3) (25)

where A(�)=
∑3

J=1 AJ (�). Since the Voronoi cell for each node on the boundary of the convex
hull is unbounded, we can express A1, A2, and A3 as

A1(�)= lim
L→∞

L�1 + �1; A2(�)= lim
L→∞

L�2 + �2; A3(�)= �3 (26)

where �1 = (1− �)=2, �2 = �=2 and �1, �2, and �3 are �nite. For instance, �3 is given by the area
of 4abc in Figure 9(b). On using equation (25), we can write

�1(�) = lim
L→∞

L(1− �) + 2�1
L+ 2�1 + 2�2 + 2�3

(27a)

�2(�) = lim
L→∞

L�+ 2�2
L+ 2�1 + 2�2 + 2�3

(27b)

�3(�) = lim
L→∞

2�3
L+ 2�1 + 2�2 + 2�3

(27c)

Taking the limit as L→∞ in the above equations, we obtain

�1(�)= 1− �; �2(�)= �; �3(�)= 0; (28)

and hence along the edge 1–2, the shape function contributions from only nodes 1 and 2 are non-
zero. The above result is in general true, even if more than three natural neighbours are considered.
This is so, since the 2nd-order Voronoi cell about � for all interior nodes are closed polygons and
hence the overlapping areas are �nite, similar to A3(�) in Figure 9(b). Using the above equation,
the trial functions at the point � can be written as

uh(�)= (1− �)u1 + �u2 (29)

which are linear functions, and hence the proof.
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Figure 10. Linear behaviour of uh(x) along the boundary of a non-convex domain: (a) nodal discretization, and (b) Voronoi
diagram

Non-convex domains
The discrete model consists of a set of nodes N that describes a non-convex domain 
. Consider

a �1 (�1⊂ @
) which renders the domain to be non-convex. For purpose of illustration, we choose
a non-convex domain bounded by two concentric circles. The discrete model (one-quarter) along
with the Voronoi diagram is shown in Figure 10. It is evident that the Voronoi cells for the
nodes along �i (i=2–4) are unbounded, while the Voronoi cells for the nodes along �1 are
bounded and therefore have �nite areas (Figure 10(b)). The proof outlined for the case of convex
domains holds for �=�2 ∪�3 ∪�4 but fails for �1. Therefore, the approximation is not strictly
linear between adjacent nodes on the boundary �1. For a point x located on �1, there exists non-
zero contributions from some interior nodes. However, numerical simulations indicate that with
adequate discretization of the boundary �1, the shape function contribution of interior nodes are
two orders or less in magnitude in comparison to the boundary node values. Consider the nodal
grid shown in Figure 10 which consists of 49 nodes with seven nodes along �1. For a point located
on �1, the shape function contributions of interior nodes are about 2 per cent of those due to the
boundary nodes on �1. Further discretization of the boundary �1 would lead to better accuracy
in the imposition of the essential boundary conditions. In general, for non-convex domains, the
linearity of the trial function along �1 depends on the nodal discretization as well as the local
radius of curvature of �1.
A consequence of the above discussion is that essential boundary conditions in the NEM can be

directly imposed on the nodes, in accordance with the �nite element method—this is due to the
interpolating property of the NEM shape functions and the linearity of the trial functions along
the edge of a boundary Delaunay triangle. It is to be noted that the above inference is rigorously
true for convex domains; however, for non-convex domains, numerical simulations needs to be
carried out on a per problem basis to determine the appropriate nodal discretization of �1 which
is required to yield accurate results.
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3.3. Numerical computational procedure for NEM shape functions

In this work, Watson’s algorithm23 is used to compute the natural neighbour shape functions. The
algorithmic details and computational procedure is described in Watson23 as well as Braun et al.27

First, we provide well-known geometric formulas for the area, circumcentre, and circumradius
of a triangle, and then go on to present the computational implementation of the shape function
algorithm.

Area of a triangle
Consider a triangle t(A; B; C) with vertices A(a), B(b), and C(c), where a=(a1; a2), b=(b1; b2),

and c=(c1; c2). The signed area of 4ABC is given by

A=
(a1 − c1)(b2 − c2)− (b1 − c1)(a2 − c2)

2
(30)

If a≡ a(x)= (a1(x); a2(x)), b≡ b(x)= (b1(x); b2(x)), and c1 and c2 are independent of x, then
the derivatives of A can be written as

A; i(x)=
(a1(x)− c1)b2; i(x) + (b2(x)− c2)a1; i(x)

2

− (b1(x)− c1)a2; i(x) + (a2(x)− c2)b1; i(x)
2

(31)

where i=1; 2, and a comma denotes di�erentiation with respect to the appropriate spatial co-
ordinate.

Circumcentre and circumradius of a triangle
Consider a triangle t(A; B; C) with vertices A(a), B(b), and C(c), where a=(a1; a2), b=(b1; b2),

and c=(c1; c2) (Figure 11). The circumcircle of 4ABC is the circle that passes through the three
vertices of the triangle. Its centre is the circumcenter v(v1; v2) and radius R is the circumradius.
The co-ordinates of the circumcentre are the perpendicular bisectors of the edges of the triangle.
Its co-ordinates are found by either: (a) considering the equation of a plane though three points,
where each point (xi; yi; x2i +y

2
i ) is the map of x onto (x; ‖x‖2), or (b) solving for the intersection

point of the perpendicular bisector of any two edges of the triangle. We use the latter approach to
obtain the co-ordinates of the circumcentre. By considering the edges AC and BC in Figure 11, a
system of two linear equations is obtained. On carrying out the solution and after some algebraic
manipulations, we obtain the following expressions for the circumcentre of 4ABC :

v1 =
(a21 − c21 + a22 − c22)(b2 − c2)− (b21 − c21 + b22 − c22)(a2 − c2)

D
(32a)

v2 =
(b21 − c21 + b22 − c22)(a1 − c1)− (a21 − c21 + a22 − c22)(b1 − c1)

D
(32b)

where D which is four times the area of 4ABC (refer to equation (30)), is given by
D=2[(a1 − c1)(b2 − c2)− (b1 − c1)(a2 − c2)] (32c)

From the viewpoint of computational e�ciency (reduced multiplication operations), the squared
di�erence of two terms in the above equations is represented as the product of their sums and
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Figure 11. Circumcentre and circumradius of a triangle

di�erences in the numerical implementation. For instance, a21 − c21 in equation (32a) is computed
as (a1 − c1)(a1 + c1), etc.
If the vertex C(c) coincides with the point x, where x=(x1; x2), then c1 = x1 and c2 = x2.

Assume the co-ordinates a1, a2, b1, and b2 are independent of x1 and x2. The derivatives of the
co-ordinates of the circumcentre can then be written in the following simpli�ed form:

v1;1(x) =
(x1 − v1(x))D;1(x)

D(x)
(33a)

v1;2(x) =
(�+ x2D;1(x)− v1(x)D;2(x))

D(x)
(33b)

v2;1(x) =
(−�+ x1D;2(x)− v2(x)D;1(x))

D(x)
(33c)

v2;2(x) =
(x2 − v2(x))D;2(x)

D(x)
(33d)

where v1(x), v2(x), and D(x) are given in equation (32) and

�= (b1 + a1)(b1 − a1) + (b2 + a2)(b2 − a2) (34a)

D;1(x) = 2(a2 − b2) (34b)

and

D;2(x)= 2(b1 − a1) (34c)

By de�nition, the circumradius is the distance from the circumcentre to a vertex of 4ABC . Hence
the square of the circumradius can be written as

R2(x)= (a1 − v1(x))2 + (a2 − v2(x))2 (35)

Shape function computations
The algorithm proposed by Watson23 is used to compute the shape functions. In order to present

the algorithm and its numerical implementation, we consider Figure 2(b), where the construction
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Figure 12. Computation of natural neighbour shape functions

of natural neighbour shape functions is illustrated. In Figure 12, the original nodal set, the Voronoi
diagram (dashed lines), and the natural neighbour circumcircles are shown. The point x is intro-
duced into the set, and the natural neighbours of x as well as the values of the natural neighbour
shape functions and their derivatives at x are to be computed.
The computational methodology for the shape function evaluation is based on the fact that the

second-order Voronoi cells about x (Figure 2(b)) can be computed as a summation of signed area
of triangles. In the implementation of the NEM, a preprocessing step is the computation of the
circumcentre and square of the circumradius of the natural neighbour (Delaunay) circumcircles. It
is assumed that the nodal connectivity for each Delaunay triangle is stored in counter-clockwise
orientation, and consequently the appropriate sign is automatically chosen when the area of a
triangle is computed. The formulas for the area, circumcentre, and circumradius of a triangle
are presented in Section 3.3. In the assembly-step, prior to the shape function computation, the
number of natural neighbours n and their global nodal numbers along with the number of triangles
tn associated with the natural neighbours as well as their global triangle numbers, are computed.
A simple means to determine if a node is a natural neighbour of a point x is to use the empty
circumcircle criterion indicated in Section 2—if the square of the Euclidean distance from x to the
centre of a natural neighbour circumcircle (associated with nodes nI , nJ , and nK) is less than the
square of the radius of the circumcircle, then nodes nI , nJ , and nK are natural neighbours of the
point x:

‖v − x‖2¡R2 (36)

where v=(v1; v2) is the centre of the natural neighbour circumcircle and R, which is given in
equation (35), is its radius. Braun and Sambridge2 used Lawson’s algorithm44 as part of the
neighbour-search, which is a computationally sound choice if interpolation of a very large nodal
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set is considered. This is so, since otherwise the condition given in equation (36) needs to be
checked for all the Delaunay triangles. In this work, since relatively few nodes (M¡2500) are
considered in the nodal discretization of a domain, the above condition is checked for all the
Delaunay triangles.
Let the 3-tuple (p; q; r) represent a triangle with vertices p=(p1; p2), q=(q1; q2), and r=(r1; r2).

Now, for each Delaunay triangle t with circumcentre v=(v1; v2) that is selected on the basis of
equation (36), we form a new set of three triangles {t1; t2; t3}, where each has x and two of the
vertices of the Delaunay triangle t as its vertices. Consider a local numbering system (i=1; 2; 3)
for the vertices ai of the new triangles ti, and associate each local node i with its opposite edge
(j–k). We can write the circumcentre of the new triangles so constructed and their derivatives in
the following compact form:

ci(x)=�(aj; ak ; x) (37a)

ci;m(x)=�; m(aj; ak ; x) (37b)

where m=1; 2 and i, j, and k assume cyclic counter-clockwise permutations of 123. In the above
equations, � and �; m are functional representations for the circumcentre of a triangle and its
derivatives which are given in equations (32) and (33), respectively. To elaborate, c1 refers to the
circumcentre of the triangle with vertices (2; 3; x), c2 that for the triangle with vertices (3; 1; x),
and c3 is the circumcentre of the triangle with vertices (1; 2; x).
The next step involves the construction of sub-triangles using combinations from the collection
{c1(x); c2(x); c3(x); v}, such that v appears in all the sub-triangles. Here too cyclic permutation of
123 is maintained. Clearly, three such sub-triangles can be constructed, namely (c1(x); c2(x); v)
[node 3], (c2(x); c3(x); v) [node 1], and (c3(x); c1(x); v) [node 2], where the nodal association is
indicated within the square bracket. Now, the area of these sub-triangles and their derivatives can
be written as

�it(x)=	(cj(x); ck(x); v) (38a)

�it;m(x)=	; m(cj(x); ck(x); v) (38b)

where m=1; 2 and i, j, and k assume cyclic counter-clockwise permutations of 123. In the above
equations, 	 and 	; m are functional representations for the area of a triangle and its derivatives
which are given in equations (30) and (31), respectively. By the local → global nodal associativity,
the area contribution to each global node and its update is made through the following conceptual
symbolic assignments:

�I (x)← �I (x) + �it(x) (39a)

�I;m(x)← �I;m(x) + �it;m(x) (39b)

where �I (x) and �I;m(x) are set to zero for all natural neighbours prior to the shape func-
tion computations. The above procedure is carried out for all the Delaunay circum-triangles t
(t=1; 2; : : : ; tn). Hence the area of the second-order Voronoi cell and its derivatives are now given
by

AI (x)= �I (x) (40a)

AI;m(x)= �I;m(x) (40b)
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Table I. Pseudo-code for natural neighbour shape function computations at a point x

1. Determine natural neighbours I (I =1→ n) and Delaunay circum-triangles t (t=1→ tn) for
x—see equation (32);

2. Initialize �I =d�I1 =d�I2 = 0 ∀I ; A=dA1 =dA2 = 0;
3. for t=1→ tn {
• set v = circumcentre of 4t—see equation (32);
• for i=1→ 3 {
– set j and k using cyclic order;
– compute ci and ci; m based on equation (37) and store;
}
• for i=1→ 3 {
– set g=global node number of local node i;
– set I =position of g in the natural neighbour nodal array (16I6n);
– compute �it and �it; m based on equation (38);
– set �= �it , d�1 = �it;1, d�2 = �it;2;
– update �I←�I + �, d�I1←d�I1 + d�1, d�I2←d�I2 + d�2;
– update A←A+ �, dA1←dA1 + d�1, dA2←dA2 + d�2;
}
}

4. for I =1→ n {
• set �I← �I

A
, d�I1← d�I1 − �IdA1

A
, d�I2← d�I2 − �IdA2

A
;

}

for m=1; 2 and I =1; 2; : : : ; n. Let

A(x)=
n∑
I=1
AI (x) (41a)

A;m(x)=
n∑
I=1
AI;m(x) (41b)

We reproduce equations (3) and (5) below for the natural neighbour shape functions and their
derivatives:

�I (x) =
AI (x)
A(x)

(42a)

�I;m(x) =
AI;m(x)− �I (x)A;m(x)

A(x)
(42b)

Substituting for AI (x), AI;m(x), A(x), and A;m(x) from equations (40a), (40b), (41a), and (41b),
respectively, in the above equations, the shape function �I (x) and its derivatives �I;m(x) are
computed for all the natural neighbours. A pseudo-code for the shape function computations is
presented in Table I.
We use Figure 12 to illustrate the application of the shape function computations. In order to

keep the notations to a minimum, we let the position vector of the circumcentre of a triangle also
serve as a label for the point. It is seen in Figure 12 that the point x lies within only two circles
(dark lines), namely v123 and v134 which are the position vectors for the circumcentre (open circle)
of the natural neighbour circumcircles. Hence the natural neighbours of x are nodes 1, 2, 3, and 4,
with the associated circumcircles v123 and v134 that correspond to 4123 and 4134, respectively. Let
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us �rst consider 4123 and carry out the steps indicated in the shape function computations. We form
new triangles, namely the triplets (2; 3; x), (3; 1; x) and (1; 2; x) with circumcentres (open circles)
c23x, c31x, and c12x, respectively. Now, from the set {c23x; c31x; c12x; v123}, we can construct three
sub-triangles (c23x; c31x; v123), (c31x; c12x; v123), and (c12x; c23x; v123). The area of the above three sub-
triangles is indicated by �it (i=1–3) in equation (38). By following a similar procedure for 4134,
we obtain the following three sub-triangles: (c34x; c41x; v134), (c41x; c13x; v134), and (c31x; c34x; v134).
We note that the triplets (c41x; c31x; v134) and (c13x; c34x; v134) are oriented in the counter-clockwise
direction, and hence contribute as negative areas. In addition, by noting the local → global nodal
associations, we obtain the following results:

A1(x) =	(c31x; c12x; v123) + 	(c41x; c31x; v134) ≡ Area ( 12x−123−134−41x) (43a)

A2(x) =	(c12x; c23x; v123) ≡ Area (412x−23x−123) (43b)

A3(x) =	(c23x; c31x; v123) + 	(c13x; c34x; v134) ≡ Area ( 134−123−23x−34x) (43c)

A4(x) =	(c34x; c41x; v134) ≡ Area (434x−41x−134) (43d)

A(x) =
4∑
I=1
AI (x) (43e)

�I (x) =
AI (x)
A(x)

(I =1; 2; 3; 4) (43f)

It is immediately seen that the areas computed for each node in Figure 12 are precisely those seen
in Figures 2(b) and 12. As indicated in the above equation, the shape functions for each node are
just the areas normalized with respect to the total area.
Watson’s algorithm23 for the computation of NEM shape functions is foolproof for any point

that does not lie along an edge of a Delaunay triangle, since the circumcenters of all triangles
that need to be constructed are unique. It does, however, fail if a point x lies along the edge of
a Delaunay triangle. This is so, since if the point x lies along an edge, say A–B of a triangle
(A; B; C), then the new triangle (A; B; x) formed in the algorithm has a non-unique circumcentre
(R(x)= ±∞). In the numerical integration of the weak form, since all points are interior to the
triangle, this situation never arises.
There are alternative means to carry out the area computations. A straight-forward approach is

to compute the area of the polygons (2nd-order Voronoi cells) directly. Since the vertices of the
polygon are the circumcentre of triangles formed from the natural neighbour nodal set and the
point x, one can use the algorithm mentioned in O’Rourke33 to compute the area of the polygon.
An additional step involved in this is that the vertices of the polygon need to be sorted in counter-
clockwise orientation. Lasserre’s algorithm61 for volume of convex polytopes in Rd is based on
solving a constraint (bounded hyperplanes) linear programming problem to compute the volume of
the polytopes. Braun and Sambridge2 used this algorithm to compute the natural neighbour shape
function in their PDE application. This approach is robust, and is applicable at any point in the
domain for shape function computations.

Computational costs
The computational costs incurred in the implementation and execution of any numerical method

is a critical component in the evaluation of its feasibility, usability, and potential for mid- to
large-scale applications. Finite elements, apart from their nice local (polynomial) properties, are a
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computationally attractive choice because of the very fast execution times that are attainable. The
key di�erences that demarcate NEM from FEM is in the construction and numerical computation of
the shape functions, and in the methodology used to assemble the sti�ness matrix K. All other steps
are common to both, and hence we focus our attention on just the above two di�erences. In the
�nite element method, all shape function computations involve basic linear algebraic calculations.
In NEM, the key time-consuming steps are:

1. Dirichlet tessellation (Voronoi diagram) of the nodes. As indicated in Section 2, the optimum
time-complexity of triangulation algorithms in 2-D is O(n log n). The Delaunay triangulation
of up to a million nodes can be carried out in less than one minute, and hence in two
dimensions, this step is not burdensome.

2. The search for natural neighbours for a sampling point x. If the total number of triangles is
only in the few thousands, searching through all the triangles, which is a O(n2) algorithm, is
not prohibitively expensive and is a feasible approach. If the number of triangles is of O(105)
or greater, the walking-triangle algorithm due to Lawson44 which is a O(n) algorithm, is a
suitable choice.

3. The numerical computations of the NEM shape functions is outlined in Section 3.3. All
the steps involved in the algorithm are purely algebraic in nature, with no matrix or vector
computations.

4. The assembly of the sti�ness matrix K in NEM is carried out on a nodal basis. In �nite
elements, an element sti�ness matrix structure which is common to all elements is used in
the assembly of the global sti�ness matrix K. In NEM, since the number of neighbours for a
point x is fairly small (nmax = 11 for the irregular grid in Plate 1), the nodal-based assembly
is not overly time intensive.

On the basis of the numerical results that are presented in Section 7, the shape function timings
on a HP9000=s700 workstation are about a factor of 1–2 slower than that for constant strain �nite
elements. In two dimensions, since the solution phase dominates for a problem with signi�cant
number of degrees of freedom (104 or higher), the overall timing comparison of NEM to FEM is
even smaller.

4. TREATMENT OF MATERIAL DISCONTINUITIES

The treatment of material discontinuities in a two-dimensional setting using NEM is presented.
Some typical examples of material discontinuities are encountered in composite materials, phase
transformations, and inclusions in a matrix with di�erent material properties. A nice exposition
on the underlying variational formulation and �nite element computations for this problem can be
found in Mackinnon and Carey.62

Consider a two-dimensional body 
, such that 
=
1 ∪ 
2, where 
1 and 
2 have di�erent
material properties. The interface between the two regions is � (Figure 13). Since kinematically
admissible displacement �elds must be C0, it is evident that displacement continuity must be met
along the interface: u1 = u2 on �. An additional condition arises out of the variational principle—
apart from the Euler–Lagrange equations, the natural interface condition is to be satis�ed (in a
weak sense), namely t1 = t2 along �. The above two conditions are automatically satis�ed by
the �nite element interpolant if element boundaries are coincident with the discontinuity inter-
face �. This is so, since the displacements are C0, which allows for displacement gradients to be
discontinuous in the normal direction (n) to �.
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Figure 13. Bimaterial con�guration (
=
1 ∪
2)

The modelling of material discontinuities in the context of NEM follows. If the interface �
is straight, then the description on convex domains in Section 3.2 holds, and the displacement
�eld u along � is strictly linear between adjacent nodes. Therefore, for this case, the interface
displacement and traction continuity conditions are met. Of course, here, unlike FEM, one must
explicitly disallow points in 
1 to be in
uence by nodes in 
2 and vice versa. A line-of-sight or
visibility criterion,11 similar to that used by Cordes and Moran63 is invoked to meet the above
requirement. Now, let us consider the case where either 
1 or 
2 is a non-convex domain. A
plate consisting of a quarter-circle is considered. The circular domain 
1 is convex, while 
2
is non-convex. The circular arc is the material interface � that demarcates the two regions. The
displacements along � are linear when approaching the interface from 
1, but are not so when
approaching from 
2. In Section 3.2, the linearity of the displacement �eld along � for the domain

2 is discussed. As indicated in Section 3.2, with su�cient nodal discretization of the interface �,
the linearity of the displacement �eld can be met to within a desired tolerance �. Since the trial
functions are no longer C0, the numerical implementation assumes the form of a non-conforming
method. In Section 7.5, the problem of an inclusion in an in�nite matrix is solved using NEM.
For the grid shown in Figure 30 with 13 nodes along �, the displacement discontinuity is less
than 1% across �.

5. MODELLING OF NON-CONVEX BODIES

The modelling of non-convex bodies, such as two-dimensional straight or curved cracks using the
Natural Element Method is addressed. Cracks are straight or curved lines of discontinuity in a
two-dimensional body. From a modelling perspective, the numerical formulation must permit a
displacement discontinuity to exist across the crack line. In �nite elements, this is facilitated by
having coincident nodes with independent degrees of freedom along the line of discontinuity.
Consider a non-convex domain with a straight edge-crack, which is modelled using two distinct

crack faces LC and MC (Figure 14). The �nite separation between the crack faces is illustrated
for ease of exposition. Akin to the �nite element method, one can also use coincident nodes with
independent degrees of freedom along the crack line. In Figure 14(a), the nodes and the crack
surfaces are shown while in Figure 14(b), the Delaunay triangles and the natural neighbour cir-
cumcircles for two triangles are presented. The triangulation of non-convex planar domains can be
carried out using either conforming or constrained triangulation.64; 65 In a conforming triangulation,
the empty circumcircle property is preserved, and the triangulation is the strict dual of the Voronoi
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Figure 14. Crack modelling: (a) nodes; and (b) conforming triangulation

diagram, while in a constrained triangulation, the duality property does not hold. In Figure 14(b),
the triangulation shown is a conforming one, which ensures the duality with the Voronoi diagram.
In order to include the crack surfaces in the numerical modelling, the crack faces LC and MC are
treated as boundaries for the upper and lower regions, respectively. In e�ect, for the domain above
the crack line, the Voronoi cells for the nodes along LC are unbounded, while for the domain
below the crack line, the Voronoi cells for the nodes along the boundary MC are unbounded. If we
construct the circumcircles for 4ABC and 4CDE as shown in Figrue 14(b), the above description
of crack modelling implies that nodes C, D, and E are natural neighbours of point x, while nodes
A and B are not. The above approach preserves the continuity of the trial function, and hence
does not introduce any non-conformities in its implementation. In the modelling of crack problems
where symmetry (two-fold or four-fold) can be invoked such that the domain of interest is convex,
no modi�cations in NEM are required.

5.1. Enriching the interpolant for crack problems

The shape functions �I (x) form a partition of unity. As indicated in Section 3.2, this facilitates
the enrichment of the NEM trial function for crack problems, along similar lines as suggested
by Melenk and Babu�ska.9 In �nite elements, the quarter-point element results in

√
r behaviour

in the displacement �eld along rays emanating from the crack-tip. Since the exact displacement
�eld solution for crack problems is O(

√
r), this enhancement permits accurate modelling of the

radial dependence of the crack-tip �eld in two dimensions. In the context of NEM, one can
extrinsically enhance the trial function by adding terms that have local

√
r behavior. Let 
0⊂


be a sub-domain in a region around the crack-tip where the crack-tip singularity dominates. Then
the enriched trial function for two dimensional crack problems assumes the form:

uhi (x)=
n∑
I=1
�I (x)uIi +

√
r

m∑
j=1

xj∈
0

�J (x)aJi (i=1; 2) (44)
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where aJi are additional nodal coe�cients assoicated with the m modes in 
0. The construction
of the discrete system of linear equations using a Galerkin procedure is parallel to that indicated
in Section 6. In this paper, the enriched interpolant is not used for the crack problem presented
in Section 7.6; the NEM trial function given in equation (6) is used.

6. GOVERNING EQUATIONS AND WEAK FORM

We consider two-dimensional small displacement elastostatics, which is governed by the equation
of equilibrium:

∇ · b + b=0 in 
 (45)

where 
⊂R2 is the domain of the body, ∇ is the gradient operator, b is the Cauchy stress for
a kinematically admissible displacement �eld u, and b is the body force per unit volume. The
constitutive relation is given by

b=C : (U− U∗) (46)

where U is the small strain tensor, U∗ is the imposed eigenstrain tensor, and C is the material
moduli tensor. The eigenstrain tensor is included in the formulation to permit the treatment of
a transformation strain problem that appears in Section 7.5. The kinematic relation between the
small strain tensor and the displacement vector u is

U=∇su (47)

where ∇s is the symmetric gradient operator. The essential and natural boundary conditions are

u= �u on �u; n · b= �t on �t (�=�u ∪ �t) (48)

where � is the boundary of 
, n is the unit outward normal to 
, and �u and �t are prescribed
displacements and tractions, respectively.
The weak or variational form (principle of virtual work) associated with equation (45) is

Find u∈H 1(
)3
∫


∇s�v : b d
=

∫


�v · b d
 +

∫
�t
�v · �t d� ∀�v∈H 10 (
) (49)

where H 1(
) is the Sobolev space of functions with square-integrable �rst derivatives in 
, and
H 10 (
) is the Sobolev space of functions with square-integrable �rst derivatives in 
 and vanishing
values on the essential boundary �u.
On substituting the trial and test functions in the above equation and using the arbitrariness of

nodal variations, the following discrete system of linear equations is obtained:

Kd= fext (50)

where

KIJ =
∫


BTI CBJ d
 (51a)

fextI =
∫
�t
�I �t d� +

∫


�Ib d
 +

∫


BTI CU∗ d
 (51b)
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In the above equations, BI is the matrix of shape function derivatives which is given by

BI =



�I; x 0

0 �I;y
�I; y �I; x


 (52)

The constitutive matrix C for an isotropic linear elastic material is

C=
E

(1− 2�)(1 + �)



1− � � 0

� 1− � 0

0 0
1− 2�
2


 (plane strain) (53a)

C=
E

(1− �2)



1 � 0
� 1 0

0 0
1− �
2


 (plane stress) (53b)

6.1. NEM implementation

In the context of the Natural Element Method, the sti�ness matrix K and external force vector
fext given in equation (51) are assembled on a nodal basis. This choice is necessitated due to the
absence of an inherent element structure in NEM akin to the �nite element method. In addition,
the sti�ness matrix in NEM is symmetric and sparse, but not necessarily banded. The Delaunay
triangles are used as the background integration cells for the numerical integration computations.
An alternative approach proposed by Traversoni1 involves carrying out the numerical integration
over the area of intersection of circumcircles. The idea is appealing since tensor product terms
such as �I; i�J; j are non-zero over the area of intersection of circumcircles about nodes nI and nJ .
In spite of its merits, the mappings and transformations involved appear to be non-trivial, with no
cubature scheme currently known for such domains. Hence this approach is not pursued in this
paper, and the Delaunay triangles themselves are used in the numerical integration of the weak
form.

7. NUMERICAL RESULTS AND DISCUSSIONS

The application of NEM to problems in small displacement two-dimensional elastostatics, in the
absence of body forces, is presented. Unless stated otherwise, the material properties chosen in
the analyses are: E=3×107 psi and �=0·25. Numerical integration is carried out using symmetric
quadrature rules for a triangle.66; 67 In this paper, three point quadrature rule is used in the numerical
integration of the weak form. The error norm computations are carried out using 25 point quadrature
rule in each triangle.

7.1. Patch tests

The patch test68; 69 is the ubiquitous test for the convergence of non-conforming �nite element
methods. Even though there remains signi�cant disagreement as to whether it is a necessary
condition for convergence, its merit and use as a benchmark for the evaluation and validation of
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non-conforming elements is unquestionable. For a historical perspective and review of the patch
test, see Felippa et al.70 In the context of meshless methods, the relevance of the patch test from
the viewpoint of convergence is still an open issue, which needs to be addressed and understood
in a better light.

Displacement
In the displacement patch test, a linear displacement �eld is imposed on the boundary �u

(�u= @
) of a domain 
. If the patch test is passed, the linear displacement �eld is approxi-
mated exactly, and the numerical solution at the interior nodes must be in exact (within machine
precision) agreement with the linear solution. This validates, apart from the consistency condition,
the accuracy of the numerical integration of the weak form in the Galerkin implementation. In
Figure 15, three di�erent nodal discretizations for a unit square are shown. In Figure 15(a), a
uniform grid with 16 nodes is considered, and in Figure 15(e), a random set of 70 nodes is cho-
sen. It is noted that for the uniform nodal grid shown in Figure 15(a), the Delaunay triangles are
non-unique, even though the Voronoi diagram for the set of nodes is unique. A valid Delaunay
triangulation for the regular nodal discretization is shown in Figure 15(b). For the displacement
patch test, a linear displacement �eld ui= xi is imposed on the boundary nodes of the unit square.
The NEM displacement patch test results for the relative L2(
) error norm and relative H 1(
)

error norm are presented in Table II. The L2(
) and H 1(
) error norms are de�ned as follows:

‖u − uh‖L2(
) =
(∫



(ui − uhi )(ui − uhi ) d


)1=2
(54a)

‖u − uh‖H 1(
) =
(∫



[(ui − uhi )(ui − uhi ) + (ui; j − uhi; j)(ui; j − uhi; j)] d


)1=2
(54b)

where u and uh are the exact and numerical (NEM) displacement solutions, respectively. In
Table II, the results are shown for both, 3 point, as well 25 point quadrature within each Delaunay
triangle. For the error norm computations, a 25 point quadrature rule is used within each triangle.
The error norm results indicate that the displacements and strains in the patch test are accurate to
within 10−4 and 10−3, respectively. Thus, since machine precision (double precision arithmetic) on
a HP9000=s700 workstation is 10−16, the patch test is not met with respect to this measure. Since
the NEM interpolant can exactly reproduce a linear displacement �eld (Section 3.2), the numerical
integration of the weak form is the source for the above discrepancy. Inexact numerical integration
of the weak form (potential energy functional) is one of the variational crimes.71 In NEM, two
factors lead to the inexact numerical integration, namely, the non-polynomial form of the shape
functions and the use of Delaunay triangles for numerical integration which are not coincident with
the supports of the shape functions (Section 3.2). As indicated in Section 6.1, the natural domain
for the numerical integration is the area of intersection (
c) of natural neighbour circumcircles.
There exist cubature rules with polynomial precision for two-dimensional domains such as, square,
circle, triangle, and the plane.72; 73 In addition, adaptive numerical integration procedures for other
planar domains that are a�ne transformation of the above primitives are also available.74 How-
ever, no general polynomial precision scheme for the domain 
c is known. It is envisaged that
an easy-to-implement and robust numerical cubature scheme over 
c that is speci�cally tailored
to the rational quartic form of NEM interpolants could lead to signi�cant improvements in the
numerical integration. The above shortcoming of NEM with respect to the patch test is also seen
in meshless methods. For instance, in EFG, typical relative L2(
) error norms in displacements

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 43, 839–887 (1998)



THE NATURAL ELEMENT METHOD IN SOLID MECHANICS 867

Figure 15. Displacement patch test: (a) and (b) uniform grid (25 nodes); (c) and (d) irregular grid (8 nodes); and
(e) and (f) random set (70 nodes)

are obtained to within 10−6 accuracy with high Gauss–Legendre product rules over quadrilaterals
for numerical integration. This again, is due to the fact that the numerical integration of the weak
form is inexact.

Equilibrium
The ability to represent a uniaxial plane stress �eld is veri�ed by the equilibrium patch test.

Consider a unit square plate under a uniaxial stress �=1psi (plane stress conditions) in the
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Figure 15. (Continued)

Table II. Relative error norms for the displacement patch test

Grids Quadrature

‖u − uh‖L2(
)
‖u‖L2(
)

‖u − uh‖H1(
)
‖u‖H1(
)

3 7·5×10−4 4·0×10−3
a 25 8·4×10−5 4·5×10−4

3 9·3×10−3 4·1×10−2
c 25 1·1×10−3 4·3×10−3

3 4·4×10−3 9·2×10−2
e 25 4·8×10−4 7·9×10−3

x2-direction (Figure 16). The essential boundary conditions are indicated in Figure 16. The exact
displacement solution is:

u1 =
�
E
(1− x1) (55a)

u2 =
x2
E

(55b)

The three di�erent nodal grids shown in Figure 15 are considered for the equilibrium patch test,
and the relative error norm results are presented in Table III. In Table III, the energy norm
‖u − uh‖E(
) is de�ned as:

‖u − uh‖E(
) =
(
1
2

∫


(U− Uh)TC(U− Uh) d


)1=2
(56)
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Figure 16. Equilibrium (uniaxial tension) patch test

Table III. Relative error norms for the equilibrium patch test

Grids Quadrature

‖u − uh‖L2(
)
‖u‖L2(
)

‖u − uh‖E(
)
‖u‖E(
)

3 1·8×10−3 4·5×10−3
a 25 1·7×10−4 4·4×10−4

3 8·2×10−3 3·2×10−2
c 25 1·4×10−3 4·0×10−3

3 6·1×10−3 9·5×10−2
e 25 8·8×10−4 6·9×10−3

In Table III, it is seen that the relative error norms in displacement and in energy are 10−4 and
10−3, respectively. These are comparable to the patch test results obtained in Section 7.1, and
again, the disagreement with the exact solution is due to inexact numerical integration of the weak
form.

7.2. In�nite plate with a circular hole

An in�nite plate with a traction free circular hole under unidirectional tension along x1 is
considered (Figure 17). The exact solution to this problem is given in Timoshenko and Goodier75

as well as Szab�o and Babu�ska.76 The domain ABCDE shown in Figure 17 is modelled with the
exact tractions imposed along BC and CD. Due to symmetry, the essential boundary conditions
are: u2 = 0 along AB, and u1 = 0 along DE.
In polar co-ordinates (r; �), the exact stress distribution for �0 = 1 psi is given by

�11(r; �) = 1− a
2

r2

(
3
2
cos 2�+ cos 4�)

)
+
3
2
a4

r4
cos 4� (57a)
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Figure 17. Plate with a circular hole under tension

�22(r; �) =−a
2

r2

(
1
2
cos 2�− cos 4�)

)
− 3
2
a4

r4
cos 4� (57b)

�12(r; �) =−a
2

r2

(
1
2
sin 2�+ sin 4�)

)
+
3
2
a4

r4
sin 4� (57c)

where a is the radius of the circular hole. The displacement components (rigid-body displacement
and rotation set to zero) are

u1(r; �) =
a
8�

[
r
a
(� + 1) cos �+ 2

a
r
((1 + �) cos �+ cos 3�)− 2a

3

r3
cos 3�

]
(58a)

u2(r; �) =
a
8�

[
r
a
(� − 3) sin �+ 2a

r
((1− �) sin �+ sin 3�)− 2a

3

r3
sin 3�

]
(58b)

where � is the shear modulus and � (Kolosov constant) is de�ned as

�=



3− 4� (plane strain)

3− �
1 + �

(plane stress)
(59)

In the numerical computations, a=1 in, L=5 in, and plane strain conditions are assumed. The
nodal discretizations used in the computations are shown in Figure 18.
In Figure 20, the rates of convergence (R) in displacement and energy for NEM and constant

strain �nite elements are presented. The theoretical convergence rates for the displacements and
strains using �nite elements (non-singular problems) are R=2 and R=1, respectively. It is ob-
served from Figure 20 that the rates of convergence of NEM and FE are about the same, with
NEM showing better absolute accuracy in displacements and strains. In Figure 20(a), the stress
concentration factor (�exact11 =�0 = 3) at point E is indicated within braces. It is seen that NEM is
able to accurately capture the stress concentration at point E. In Figure 19, the numerical and exact
normal stress �11 are plotted along the edge ED (see Figure 17). The grid shown in Figure 18(c)
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Figure 18. Nodal discretization for the plate with a hole problem: (a) 41 nodes; (b) 108 nodes; (c) 361 nodes; and
(d) 1345 nodes

is used, and 240 equi-spaced output points between r=1 in and r=5 in are chosen in the compu-
tations. Agreement between the NEM and the exact stress solution is excellent. The displacement
along the edge is linear between two adjacent nodes, and hence one observes the jumps in the
stress �11 at the nodes.
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Figure 19. Comparison of �11 for NEM and the exact solution along a radial line (�=90◦)

7.3. Cantilever beam

In Figure 21, a cantilever beam subjected to a parabolic end load is illustrated. The beam has
characteristic length L, height D and unit thickness, and is assumed to be in a state of plane stress.
The displacement vector solution is given by75

u1 =
−Px2
6EI

[
(6L− 3x1)x1 + (2 + �)x22 −

3D2

2
(1 + �)

]
(60a)

u2 =
P
6EI

[3�x22(L− x1) + (3L− x1)x21] (60b)

while the stresses are

�11 =
−P(L− x1)x2

I
(61a)

�22 = 0 (61b)

�12 =
P
2I

(
D2

4
− x22

)
(61c)

where I is the moment of inertia, which for a beam with rectangular cross-section and unit
thickness is:

I =D3=12 (61d)

In the numerical model, the analytical displacement solution from equation 60 is prescribed on the
boundary �u: x1 = 0, −D=26x26D=2 (Figure 21). On the remaining boundaries, exact tractions
are speci�ed. The following parameters are used in the numerical computations: P=−1000 psi,
D=1 in, L=4 in, and plane stress conditions are assumed.
Convergence studies are carried out using four di�erent nodal discretizations, namely 85 nodes,

297 nodes, 1105 nodes, and 1701 nodes. Equal nodal spacing in the x1- and x2-direction is used
in each of the above grids. In Figure 22, a sample nodal discretization (85 nodes) is shown. The
L2(
) and energy error norms are calculated on the basis of equations (54a) and (56), respectively.
In Figure 23, the relative displacement and energy error norms are plotted against the nodal spacing
h on a log–log plot. The rate of convergence is indicated by the value of R. The convergence
rate for NEM is close to the theoretical rate for �nite elements, namely R=2 and R=1 for
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Figure 20. Rate of convergence for the plate with a hole problem: (a) displacement; and (b) energy

displacements and strains, respectively. The absolute accuracy of NEM is observed to be better
than that of the �nite element solution.
The NEM and analytical stress �elds are compared near the mid-line (x=2·03 in) of the beam.

Since the shape function algorithm fails for points along x=2 in (Delaunay edges), such a choice
is necessitated. In Figure 24, the normal and shear stresses at x=2·03 in are plotted as a function
of y. The nodal grid consisting of 1105 nodes is used, and the stress outputs are carried out at
200 equi-distant points between y=−0·5 in and y=0·5 in. The NEM and the analytical solution
are in good agreement. The maximum error in the normal stress �11 is less than 1 per cent, and
the shear stress pro�le also matches the analytical solution well.
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Figure 21. Cantilever beam model

Figure 22. Regular nodal discretization for cantilever beam model (85 nodes)

7.4. Hollow cylinder under internal pressure

Consider a hollow cylinder of internal and external radius of a and b, respectively (Figure 25).
A uniform pressure pi is applied to the inner surface (r= a), while the outer surface (r= b) is
traction free. Due to axi-symmetry, the stresses are independent of �, and hence only have a radial
dependence. The exact solution for the stress components in polar co-ordinates (r; �) is:75

�r(r) =
a2pi
b2 − a2

(
1− b

2

r2

)
(62a)

��(r) =
a2pi
b2 − a2

(
1 +

b2

r2

)
(62b)

�r� = 0 (62c)

Under plane stress conditions, the components of the small strain tensor are

�r(r) =
a2pi

E(b2 − a2)
{
1− �− b

2

r2
(1 + �)

}
(63a)

��(r) =
a2pi

E(b2 − a2)
{
1− �+ b

2

r2
(1 + �)

}
(63b)

�r� = 0 (63c)

while the radial and tangential displacements are given by

ur(r) =
a2pir

E(b2 − a2)
{
1− �+ b

2

r2
(1 + �)

}
(64a)

u� = 0 (64b)
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Figure 23. Rate of convergence for the cantilever beam problem: (a) displacement; and (b) energy

In the numerical computations, the following parameters are chosen: a=1 in, b=5 in, pi=3×
104 psi, and plane stress conditions are assumed. Due to symmetry, only one-quarter of the spec-
imen is modelled. In the analyses, six di�erent nodal discretizations are considered, namely, 169
nodes, 361 nodes, 625 nodes, 1369 nodes, 1849 nodes, and 2401 nodes. In Figure 26, the nodal
grids for 169 and 625 nodes are illustrated. A convergence study is carried out using the above
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Figure 24. Comparison of normal stress and shear stress for the cantilever beam model: (a) normal stress �11; and
(b) shear stress �12

six nodal discretizations. The exact L2(
) and energy norms are given by

‖u‖L2(
) = �
√
�
2

√
(1− �)2(b4 − a4)

4
+ (1− �2)b2(b2 − a2) + b4(1 + �)2 log b

a
(65a)

‖u‖E(
) = �
√
�E
4

√
(1− �)(b2 − a2) + b4(1 + �)

(
1
a2
− 1
b2

)
(65b)

where

�=
a2pi

E(b2 − a2) (65c)
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Figure 25. Hollow cylinder under internal pressure pi

Figure 26. Sample nodal discretizations for the hollow cylinder under internal pressure problem: (a) 169 nodes; and
(b) 625 nodes

For the specimen dimensions, internal pressure pi, and material properties that are considered here,
‖u‖L2(
) = 2·462× 10−3 in2 and ‖u‖E(
) = 5·605 psi1=2 in1=2: In Figure 27, the convergence rate (R)
in displacement and energy are presented for NEM and constant strain �nite elements. The trends
are similar to that observed in the earlier examples, with similar rates for NEM and FE, with
NEM showing better absolute accuracy in displacements and strains.
A comparison of the NEM and exact stress �elds is carried out using the grid consisting of 1369

nodes. The numerical solution recovered the rotational symmetry of the solution, and hence for the
purpose of comparison, we plot the stresses along a radial line (�=30◦). In Figure 28, the NEM
and exact solutions for the radial stress and the hoop stress are presented. In the computations,
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Figure 27. Rate of convergence for the hollow cylinder under internal pressure problem: (a) displacement; and (b) energy

180 equi-distant output points between r=1 in and r=5 in are considered. The NEM and exact
stress �elds are in good agreement. Since the NEM displacement �eld is C0 at the nodes, the
oscillatory character of the numerical stresses is present. However, the oscillations are bounded,
and they 
uctuate about the exact solution, which is analogous to the �nite element method, where
the stresses are discontinuous across element boundaries.
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Figure 28. Comparison of the radial and hoop stresses for the hollow cylinder under internal pressure problem: (a) radial
stress �rr(r); and (b) hoop stress ���(r)

7.5. In�nite plate with an inclusion

We consider the problem of an inclusion (�-phase) with a constant eigenstrain U∗� in an in�nite
matrix (�-phase). In Figure 29, a graphical representation of the problem is illustrated. The exact
displacement vector solution in polar co-ordinates is given by77

ur(r) =
{
C1r r6R
C1 R

2

r r¿R
(66a)

u� = 0 (66b)
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Figure 29. Inclusion embedded in an in�nite matrix

Figure 30. Nodal discretization for inclusion in an in�nite matrix problem

where

C1 =
(�� + ��) ��∗�
�� + �� + ��

(67)

In the above equation, � and � are the Lam�e constants of the respective phases, while the eigen-
strain ��∗� is a constant dilatational strain. The material properties used in the numerical computation
are:63 ��=497·16, ��=390·63 in the �-phase, while the constants in the �-phase are ��=656·79,
��=338·35. These correspond to E�=1000, ��=0·28, E�=900, and ��=0·33. A constant
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Figure 31. Comparison of NEM and the exact solution for an inclusion with a dilatational eigenstrain in an in�-
nite matrix: (a) radial displacement ur(r); (b) radial strain �rr(r); (c) hoop strain ���(r); (d) radial stress �rr(r); and

(e) hoop stress ���(r)
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Figure 31. (Continued)

dilatation eigenstrain ��∗� =0·01 is assumed in the analysis, and the associated eigenstrain tensor is
U∗� = ��∗� (e1e1 + e2e2).
The numerical model (quarter symmetry) is shown in Figure 30, where the nodal discretization

consists of 647 nodes, with 114 nodes in the inclusion, 520 nodes in the matrix, and 13 nodes
along the interface r=R. The outer radius R0 = 200 is su�ciently large in comparison to the
radius of the inclusion R=5, so as to adequately represent the in�nite matrix. Essential boundary
conditions are imposed along the lines of symmetry, while the outer radius R0 = 200 is traction
free. Plane strain conditions are assumed in the numerical computations.
The NEM solution recovered the cylindrical symmetry in the solution, and hence results

are presented as a function of only the radial distance. The maximum error in the numerically
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Figure 32. Edge-cracked plate under tension: (a) regular nodal discretization (99 nodes); and (b) re�ned nodal discretization
(278 nodes)

computed tangential displacement u� and shear stress �r� are O(10−5) and O(10−4), respectively. In
Figure 31, a comparison of the NEM and exact solution is presented. The results shown in
Figure 31 are computed along a radial line (r=0 to r=100) at �=30◦. Along the radial line,
30 equi-spaced output points are chosen within the inclusion, and 150 equi-spaced points in the
matrix. Excellent agreement between the NEM and the analytical solution is observed. The slight
discrepancy in ur(r) at r¿25 is due to the �nite-dimension of the matrix as opposed to the theo-
retical solution which is based on an in�nite matrix. The strains as well as the stresses are in good
agreement with the exact solution. The oscillations in the radial and hoop strains are negligible;
they are, however, a bit more pronounced in the stress solutions.

7.6. Edge-cracked plate under tension

An edge-cracked plate under pure mode I loading is considered. Due to symmetry, only the
upper-half is modelled. In Figure 32(a), the specimen dimensions and loading are indicated; the
crack length a is half of the plate width w. Since the domain is convex, no modi�cations are
required in the implementation of NEM. The mode I stress intensity factors (SIFs) are computed
using the domain integral78 form of the contour J -integral.
Two di�erent nodal discretizations are considered: a regular grid consisting of 99 nodes shown

in Figure 32(a) and an irregular grid of 278 nodes with focused array of nodes in the vicinity of the
crack-tip (Figure 32(b)). In Table IV, the normalized mode I stress intensity factors for both grids
are presented. The reference solution for this edge-crack problem is: K refI =�

√
�a=2·8264:79 From

Table IV it is seen that the SIFs computed using NEM are more accurate than the corresponding
values evaluated by constant strain �nite elements. Domain independence is also clearly observed
for the NEM results. The SIFs obtained using NEM for the re�ned grid (Figure 32(b)) are within
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Table IV. Normalized KI : Edge-cracked plate under tension

Domains

KI
�
√
�a

KI
�
√
�a

Nodal Error Error
grid a1 b1 (NEM) percentage (FE) percentage

2·8 3·0 2·5241 10·7 2·1159 25·1
2·8 5·0 2·5360 10·3 2·1691 23·3

Regular 3·5 5·0 2·5310 10·5 2·1664 23·3
3·5 6·0 2·5339 10·4 2·1806 22·8
3·5 8·0 2·5375 10·2 2·1989 22·2
1·0 2·0 2·7867 1·4 2·6567 6·0
1·0 4·0 2·7893 1·3 2·6569 6·0

Re�ned 1·0 6·0 2·7905 1·3 2·6586 5·9
1·0 8·0 2·7911 1·2 2·6597 5·9
3·5 8·0 2·7867 1·4 2·6752 5·3

1·5 per cent of the reference solution results. The domain independence of the SIFs using NEM
and the excellent agreement with the reference solution results are encouraging and promising
indicators for the application of NEM to SIF evaluation for 2-D crack problems.

8. CONCLUSIONS

In this paper, the application of the Natural Element Method (NEM) to elliptic boundary-value
problems in two-dimensional solid mechanics has been studied. In NEM, the interpolants used
to construct the trial and test functions are known as natural neighbour (n–n) interpolants. These
interpolants are based on the Dirichlet or Voronoi tessellation of a set (N ) of distinct nodes in the
plane. The Voronoi tessellation is a unique and geometrically fundamental construct that de�nes
a set of nodes. Natural neighbour interpolants have optimum spatial adjacency properties, and
are sensitive to the position and the density of nodes. Natural neighbour interpolants are smooth
(C∞) everywhere, except at the nodes where they are C0. In one-dimension, NEM interpolation
is identical to linear �nite elements. In NEM, a standard Galerkin procedure is used to obtain
the discrete equations. Several problems in solid mechanics have been presented and comparisons
made to results obtained using constant strain �nite elements as well as to reference solutions
to validate the accuracy and convergence of NEM. In the patch tests, issues pertaining to the
exact integration of the weak form were raised. Benchmark problems, such as the cantilever beam,
plate with a hole, and hollow cylinder under internal pressure, which have gradients in the strain
and stress solutions were solved using NEM. The NEM results were in excellent agreement with
exact and analytical solutions for these problems. The ability to model material discontinuities was
illustrated by applying NEM to the bi-material problem of an inclusion with a constant eigenstrain,
embedded in an in�nite matrix. The numerical results showed good agreement with the exact
solution. The modelling of non-convex bodies, such as crack surfaces, was also described. The
benchmark problem of an edge-crack under mode I loading was considered to test the accuracy of
NEM in stress intensity factor computations. The stress intensity factors computed using NEM were
within 1·5 per cent of the reference solution, and very good domain independence was achieved.
The timings involved in evaluating natural neighbour shape functions are only about twice that
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of constant strain �nite elements, which renders NEM as a very feasible and attractive choice
from the computational cost and time viewpoint. The various problems presented in this paper
demonstrate the capabilities, versatility, accuracy, and robustness of the Natural Element Method,
and provides impetus for its application to other classes of problems such as crack growth, plates,
and large deformations in solid as well as 
uid mechanics.
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Plate 1. Variation of natural neighbours for an irregular grid: (a) nodal grid;
(b) contour plot of natural neighbours

(a)

(b)


