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Conforming polygonal finite elements
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SUMMARY

In this paper, conforming finite elements on polygon meshes are developed. Polygonal finite elements
provide greater flexibility in mesh generation and are better-suited for applications in solid mechanics
which involve a significant change in the topology of the material domain. In this study, recent
advances in meshfree approximations, computational geometry, and computer graphics are used to
construct different trial and test approximations on polygonal elements. A particular and notable
contribution is the use of meshfree (natural-neighbour, nn) basis functions on a canonical element
combined with an affine map to construct conforming approximations on convex polygons. This
numerical formulation enables the construction of conforming approximation on n-gons (n � 3), and
hence extends the potential applications of finite elements to convex polygons of arbitrary order.
Numerical experiments on second-order elliptic boundary-value problems are presented to demonstrate
the accuracy and convergence of the proposed method. Copyright � 2004 John Wiley & Sons, Ltd.

KEY WORDS: meshfree methods; natural neighbour interpolants; natural element method; Laplace
interpolant; Wachspress basis functions; mean value co-ordinates

1. INTRODUCTION

The finite element method is the ubiquitous choice to solve boundary-value problems in solid
mechanics. In two-dimensions, the constant strain three-node triangular element and the bilinear
four-node quadrilateral element [1, 2] are widely used in research as well as in industrial
practice. The development of finite elements on irregular polygons has not been explored to any
significant depth so far. Wachspress [3] proposed rational basis functions on polygonal elements,
which has only received limited attention so far [4–8]. The advantages and potential benefits of
using polygonal finite elements in computation are striking: greater flexibility (single algorithm
suffices) in the meshing of arbitrary geometries such as those that arise in biomechanics [9, 10];
better accuracy in the numerical solution (higher-order approximation) over that obtainable
using triangular and quadrilateral meshes on a given nodal grid; useful as a transition element
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in finite element meshes [11, 12]; suitable in material design [13] and in the modelling of
polycrystalline materials [14]; and will have less sensitivity to lock (unlike lower-order triangular
and quadrilateral elements which tend to be stiff) under volume-preserving deformation states
which arise in incompressible elasticity as well as in von Mises plasticity. To this end, we
explore the construction of robust and accurate finite element methods that are based on
polygonal elements.

In this paper, we integrate some of the recent advances in meshfree methods, computational
geometry, and computer graphics to construct conforming trial and test approximations on
polygonal meshes. In Section 2, the data interpolation problem on polygonal domains is de-
scribed, and in Section 2.1, natural neighbour shape functions are used to construct conforming
approximations on polygons. Barycentric co-ordinates (Wachspress basis functions and mean
value co-ordinates) are discussed in Section 2.2. The Galerkin formulation and implementation
of the polygonal FEM is presented in Section 3. In Section 4, numerical examples for the patch
test and convergence studies on a Poisson problem are presented to demonstrate the accuracy
of the proposed method, and we close with some concluding remarks in Section 5.

2. CONFORMING INTERPOLANTS ON POLYGONS

Consider a bounded domain � in two dimensions that is described by a set N of M scattered
nodes: N = {p1, p2, . . . , pM}. The Voronoi diagram [15] V(N) of the set N is a sub-division
of the domain into regions V (pi), such that any point in V (pi) is closer to node pi than to
any other node pj ∈ N (j �= i) (Figure 1(a)).

The region V (pi) is the first-order Voronoi cell for a node pi within the convex hull; V (pi)

is a convex polygon (polyhedron) in R2 (R3). The dual of the Voronoi diagram is the Delaunay
tessellation, which is constructed by connecting nodes that have a common Voronoi edge. In
Figure 1(a), the Voronoi diagram and the Delaunay triangulation are shown for a nodal set
consisting of seven nodes (M = 7).

Let us introduce a point p with co-ordinate x ≡ (x1, x2) within the convex hull of the
set N (Figure 1(a)). The problem of defining a suitable interpolant in � for every point p is
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Figure 1. Natural neighbours: (a) Delaunay circumcircles; and (b) Laplace shape function.
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of interest in various applications such as partial differential equations (PDEs), scattered data
approximation, computer graphics, and geometric modelling. We now focus our attention on the
construction of suitable interpolating schemes for the solution of PDEs via a Bubnov–Galerkin
procedure—a weak or variational statement of the governing partial differential equation is
used, and the trial and test functions are represented via the same basis (shape) functions. For
a scalar-valued function u(x) : � → R, a general form of an interpolation scheme is:

uh(x) =
n∑

i=1
�i (x)ui (1)

where ui (i = 1, 2, . . . , n) are the unknowns at the n neighbours of point p, and �i (x) is the
shape function for node i.

From the viewpoint of a conforming Galerkin approximation, the following are some of the
desirable properties of shape functions (barycentric co-ordinates when pi are the vertices of a
polygonal or polyhedral domain �) and of the resulting interpolant:

1. Non-negative, interpolate, and form a partition of unity:

0 ��i (x) � 1, i = 1, 2, . . . , n (2a)

�i (xj ) = �ij (2b)

n∑
i=1

�i (x) = 1 (2c)

where �ij is the Kronecker-delta. Equation (2a) in conjunction with Equation (2c)
ensures that the interpolated result is bounded between the minimum and maximum of
the nodal values: mini ui � uh(x) � maxi ui . This is a statement of the discrete maximum
principle, which is of relevance in the numerical solution of the diffusion equation. In 2D,
three-node (Delaunay) triangular finite elements satisfy the discrete maximum principle,
but bilinear rectangles can violate this requirement [16]. The Kronecker-delta property in
Equation (2b) indicates that the interpolated result at a node is identical to the nodal
data: uh(xi ) = ui , which is of particular relevance in the imposition of essential boundary
conditions. A constant field (rigid-body motion in mechanics) can be exactly represented
if Equation (2c) holds.

2. Linear precision or completeness [1]:
n∑

I=1
�i (�)xi = x (3)

which indicates that the shape functions can exactly reproduce a linear function. In general,
kth-order finite elements in one-dimension satisfy kth-order completeness. For second-
order PDEs, which typically arise in solid mechanics applications, constant and linear
precision are sufficient conditions for convergence [17]. The above equation also defines
an affine mapping (convex combination), and this fact is used to perform isoparametric
mapping from a canonical (reference) element to the physical element in finite element
methods [1].
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3. On the boundary of the domain �, the interpolant must be precisely linear, i.e. interior
shape functions should not contribute if p lies on the convex hull and in addition only
the two adjacent nodes to p must have non-zero values so that a linear interpolant is
realized:

uh(t) = tu1 + (1 − t)u2, x = tx1 + (1 − t)x2, x ∈ ��, t ∈ [0, 1] (4)

The above equation in conjunction with the Kronecker-delta property in Equation (2b)
ensures that linear essential boundary conditions can be imposed as in finite elements.

2.1. Natural neighbour shape functions on polygons

The past decade has seen the emergence of meshfree approximations for the solution of PDEs
in computational mechanics. With an aim to overcome the need to remesh in moving boundary
and large deformation problems, there has been significant interest in these class of methods
[18, 19]. In most meshfree methods, moving least squares approximants (MLS) [20] are used to
construct the trial and test functions. A striking and appealing property of MLS-approximants
is the ease with which Ck(�) approximants can be constructed; however, MLS shape func-
tions are not strictly non-negative nor do they interpolate nodal data. The latter shortcoming
complicates the imposition of essential boundary conditions in a Galerkin implementation. A
unified mathematical analysis of meshfree methods was recently proposed by Babuška and
co-workers [21].

In this study, we use natural neighbour-based schemes, which are a promising alternative
to MLS-approximations; in natural neighbour-based Galerkin methods [22–26], the Sibson
co-ordinate [27] and the Laplace shape function [28–30], which are based on the notion of
natural neighbours, are adopted. An overview with recent advances in this meshfree method is
presented by Cueto and co-workers [31]. In Figure 1(a), the Voronoi cell for p is shown. If
the Voronoi cell for p and that of node pi have a common Voronoi edge, then the node pi is
said to be a natural neighbour of the point p [27]. On using the empty circumcircle property
of Delaunay triangulations, namely if DT(pi, pj , pk) is any Delaunay triangle of the nodal
set N, then the circumcircle of DT contains no other nodes of N, the natural neighbours can
be readily determined. In Figure 1(a), point p does not lie within the circumcircles that are
shown, and hence only nodes 1–5 are neighbours of p. If four nodes lie on a natural neighbour
circumcircle (degenerate case on a regular rectangular mesh), then for any point p, the four
nodes at the vertices of the rectangle containing p will always be natural neighbours for p

[24]. In essence, the natural neighbour circumcircles play a central role in defining the natural
neighbours for a point p.

The Laplace interpolant is simpler and also computationally attractive vis-à-vis the Sibson
interpolant, and in addition, it also provides a natural weighting (scaling) function for irregularly
spaced nodes [32, 33]. We now discuss the construction of the Laplace shape function, mindful
that the Sibson co-ordinate is also applicable within the context of this study; a detailed
description of the Sibson interpolant and its use in a Galerkin method can be found in Reference
[24]. Referring to Figure 1(a), let tij be the Voronoi edge that is common to Vi and Vj , and
m(tij ) denote the Lebesgue measure of tij (length in 2D). If pi and pj do not have a common
facet, then m(tij ) = 0. For the point p with n (n = 5 in Figure 1(a)) natural neighbours, the
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Laplace shape function for node pi can be written as [28]

�l
i (x) = �i (x)∑n

j=1 �j (x)
, �j (x) = sj (x)

hj (x)
, x ∈ R2 (5)

where �i (x) is the Laplace weight function, m(ti) ≡ si(x) is the length of the Voronoi
edge associated with p and node pi , and hi(x) is the Euclidean distance between p and pi

(Figure 1(b)).
The Laplace interpolant is particularly appealing since all the desirable properties indicated

in Equations (2)–(4) are met by the Laplace shape function [25, 28]. As mentioned earlier,
due to the satisfaction of the above properties, essential boundary conditions within a Galerkin
procedure are treated as in finite elements. In a prior study [25], the Laplace interpolant was
shown to reduce to finite element interpolation for certain specific cases: in 1D, the interpolant
is identical to linear finite element interpolation and in 2D, if a point p has three neighbours,
barycentric co-ordinates are obtained and for the case of four natural neighbours (n = 4) at
the vertices of a rectangle, bilinear interpolation on the rectangle is obtained. The Laplace
shape function is C0(�): discontinuities in the derivatives arise at nodal locations as well as on
the boundary of the support of the shape function [25, 34]. The above commonalities between
the Laplace and the finite element interpolants indicate that the finite element interpolant can
be viewed as an instance of the more general Laplace interpolant. This viewpoint provides
motivation for the formulation that follows.

We now present a technique to construct conforming approximations on convex polygons
using natural neighbour (Laplace) shape functions. To this end, similar to three-node triangular
and four-node quadrilateral finite elements, we define the shape functions on a canonical
element with co-ordinate � ≡ (�1, �2) ∈ �0. In Figure 2, the canonical elements for a triangle,
square, pentagon and hexagon are shown; note that in each case the nodes lie on the same
circumcircle and hence all the nodes at the vertices of the polygon are the natural neighbours
for any point in �0. In the computer program, the nodal co-ordinates of an n-gon are set
as: (cos 2�/n, sin 2�/n), (cos 4�/n, sin 4�/n), . . . , (1, 0). Since �l

i is piece-wise linear on the
boundary ��0, we use the isoparametric mapping x = x(�) = ∑n

i=1 �l
ixi with �l

i ≡ �l
i (�)

defined in the reference co-ordinate system. Since the mapping is affine, the shape functions
remain linear on the boundary of a distorted but convex polygon. This ensures that the shape
functions are continuous, i.e. �i ∈ C0(�) ⊂ H 1(�), and therefore a conforming approximation
is realized. In Figure 3, the mapping for a hexagonal element is illustrated. Letting J2 = �x/��

be the Jacobian matrix of the transformation, the shape function derivatives in the physical
co-ordinate system x ≡ (x1, x2) are determined via the relation: ∇�l

i = J−1
2 ∇��

l
i , where ∇�

denotes the gradient with respect to the reference co-ordinates. Note that if the radius of the
circumcircle, r = √

2, then �0 in Figure 2(b) is the bi-unit square on which bilinear finite
element shape functions are defined, whereas if r = 1/

√
2 with nodes located at (0, 0), (1, 0),

and (0, 1), then �0 is the same as the reference element for the three-node constant strain
triangle. In the above two cases, the Laplace and finite element shape functions are identical
[25]. Hence we note that the proposed numerical formulation enables the construction of
conforming approximation on n-gons (n > 3), thereby extending the potential applications of
finite elements to convex polygons of arbitrary order.

The above approach to construct conforming approximations extends to polyhedral meshes
in 3D too. In a recent study, Idelsohn and co-workers [35, 36] used the Laplace shape function
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Figure 2. Canonical elements: (a) triangle; (b) square; (c) pentagon; and (d) hexagon.
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Figure 3. Isoparametric mapping.

to define a conforming interpolant on polyhedral elements in 3D; the motivation in Reference
[35] was towards the simplification of tetrahedral mesh generation. In References [35, 36], the
Laplace shape functions were used on polyhedral elements in the physical space in which the
nodes of the polyhedron (xi ∈ �) were located on the boundary of the same circumsphere
(degenerate case in 3D). In the present work, no such restrictions are placed on the nodal
locations, and hence the proposed method is applicable to any (convex) polygonal or poly-
hedral mesh.
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2.2. Wachspress and mean value shape functions on polygons

In this section, we present the construction of barycentric co-ordinates (Wachspress and mean
value shape functions) on irregular polygons and explore their use in the formulation of polyg-
onal finite elements. On using the principles of perspective geometry [37], Wachspress [3]
proposed rational (ratio of polynomial functions) basis functions on polygonal elements, in
which the algebraic equations of the edges were used to ensure nodal interpolation and lin-
earity on the boundaries. The numerical analysis of these basis functions [4], its use to con-
struct surface patches [5], and its generalization to convex polytopes [38] have been explored.
However, its use within finite element methods has been scarce. Recently, Dasgupta and Malsch
[6–8] have used symbolic computations to compute the Wachspress basis functions and also
explored the construction of shape functions for concave elements. In computational solid me-
chanics, Rashid and Gullett [39] proposed a variable element topology finite element method
(VETFEM), in which shape functions for convex and non-convex elements are constructed in the
physical space (x ∈ �) using a constrained minimization procedure. The VETFEM implemen-
tation falls within the class of non-conforming methods and hence as opposed to conforming
methods, here consistency and the satisfaction of the patch test [40, 41] need to be addressed
[39].

In computer graphics, surface parameterization and morphing are applications in which data
interpolation schemes are of primary importance. It is also desirable in these applications
that the barycentric co-ordinates on polygons satisfy, among others, the properties indicated
in Equations (2)–(4). The Wachspress basis functions have re-surfaced into prominence and
efforts are also underway to develop meshfree parameterization of data sets. We focus on two
recent and important results that are germane to our explorations on polygonal finite elements:
a generalized barycentric co-ordinate for n-gons [42] and mean value co-ordinates [43], which
is particularly striking. In Reference [42], a simple expression is obtained for Wachspress’s
basis functions [3]:

�w
i (x) = wi(x)∑n

j=1 wj(x)
, wi(x) = A(pi−1, pi, pi+1)

A(pi−1, pi, p)A(pi, pi+1, p)
= cot �i + cot �i

‖x − xi‖2 (6)

where the last expression is due to Meyer and co-workers [42]. In the above equation, A(a, b, c)

is the signed area of triangle [a, b, c], and �i and �i are shown in Figure 5(a). Since the
numerator cot �i + cot �i = sin(�i + �i )/(sin �i sin �i ), we note that for �w

i to be non-negative,
the polygon must be convex (�i + �i < �). The evaluation of the Wachspress basis function is
carried out using elementary vector calculus operations. The angles �i and �i are not explicitly
computed (susceptible to round-off errors), and hence as suggested in Reference [42], vector
cross product and vector dot product formulas are used to find the cotangents. For instance,
let the co-ordinates of the vertices of triangle [pi, pi+1, p] be (a1, a2), (b1, b2), and (x1, x2),
respectively. Then,

cot �i = (pi+1 − pi ) · (p − pi )

|(pi+1 − pi ) × (p − pi )| = (b1 − a1)(x1 − a1) + (b2 − a2)(x2 − a2)

(b1 − a1)(x2 − a2) − (x1 − a1)(b2 − a2)
≡ C

S
(7a)

and its derivatives are:

�(cot �i )

�x1
= (b1 − a1) − cot �i (a2 − b2)

S
,

�(cot �i )

�x2
= (b2 − a2) − cot �i (b1 − a1)

S
(7b)
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Figure 4. Equivalence of Laplace and Wachspress shape functions on a regular n-gon (n = 8).

In a similar manner, we compute cot �i , which appears in Equation (6), and thereafter the
Wachspress shape function �w

i and its derivatives are evaluated.
On a regular n-gon (Figure 2), the Wachspress shape functions are identical to Laplace

shape functions; however, on arbitrary convex polygons the two shape functions are distinct.
The above equivalence has been verified through numerical computations, and a proof towards
the same end follows.

Proof
Consider the regular octagon shown in Figure 4, where a point p is located in its interior. For
matter of convenience and ease of exposition, we use Cartesian co-ordinates (rather than the
local �-co-ordinates) to denote the position of p and the nodes. The Voronoi polygon associated
with p is also illustrated. From Equations (5) and (6), we have

�w
i = wi∑n

j=1 wj

, �l
i = �i∑n

j=1 �j

(8)

and hence to show that �w
i = �l

i , it suffices if we prove that

�i

wi

= B ∀i (9)

where B may depend on the co-ordinates of p but is independent of the nodal co-ordinates.
From Equation (6), we have

wi = A(pi−1, pi, pi+1)

A(pi−1, pi, p)A(pi, pi+1, p)
= A

Ai−1Ai

= 4 sin3 �/n cos �/n

Ai−1Ai

(10)

where A ≡ A(pi−1, pi, pi+1) is the area of the isosceles triangle [pi−1, pi, pi+1] with common
edge length s = 2 sin(�/n) and common angle �/n. Now, we use an expression derived in
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Reference [25] for the Laplace weight �i . On reproducing Equation (40) from Reference [25],
we have

2�i = si

hi

= |�i − ri | (11a)

where

�i = (xi − xi−1)(xi−1 − x) + (yi − yi−1)(yi−1 − y)

(xi − x)(yi−1 − y) − (xi−1 − x)(yi − y)
(11b)

ri = (xi − xi+1)(xi+1 − x) + (yi − yi+1)(yi+1 − y)

(xi − x)(yi+1 − y) − (xi+1 − x)(yi − y)
(11c)

In the above equation, the nodes of the triangle [pi−1, pi, pi+1] are oriented in counter clock-
wise order (Figure 4). The factor of two appears in Equation (11a), since here hi = d(x, xi ),
whereas in Reference [25], hi was defined as d(x, xi )/2. Letting 2�i = |qi |, we can write

qi = [(xi − xi−1)(xi−1 − x) + (yi − yi−1)(yi−1 − y)][(xi − x)(yi+1 − y) − (xi+1 − x)(yi − y)]
4Ai−1Ai

−[(xi −xi+1)(xi+1 −x)+ (yi −yi+1)(yi+1 −y)][(xi − x)(yi−1 − y)− (xi−1 − x)(yi − y)]
4Ai−1Ai

(12)

We use polar co-ordinates (unit radius) to write (x, y) ≡ (cos �, sin �) for p and (xm, ym) ≡
(cos 2�m/n, sin 2�m/n) for the nodal co-ordinates. On using symbolic computations to reduce
the numerator in the above equation, we arrive at the following simplified expression:

�i = 2(1 − x2 − y2) sin3 �/n cos �/n

Ai−1Ai

(13)

and hence on using Equation (10), we have

�i

wi

= 1 − x2 − y2

2
≡ B (14)

where B is independent of the nodal co-ordinates, as required. �

The extension of barycentric co-ordinates for non-convex polygons, while retaining the prop-
erties in Equations (2)–(4), is non-trivial. As indicated earlier, if we apply Equation (6) for
non-convex polygons, �w

i < 0 is obtained for a vertex node whose edges are the cause for the
non-convexity. In addition, the construction of an affine mapping from a non-convex polygon
to a convex polygon must ensure that fold-over does not occur. An advance in this direction
was recently obtained in Reference [44], where approximations to harmonic maps over trian-
gulations was studied so that injectivity (one-to-one) of the map is preserved. It was concluded
that �T must be a convex combination map, i.e. every interior vertex of T can be represent
as a weighted sum (with positive weights) of its neighbours on the boundary �T. If �T maps
the boundary T homeomorphically to the boundary of a convex region, then �T is one-to-one;
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Figure 5. Barycentric co-ordinates: (a) Wachspress’s basis function [42]; and
(b) mean value co-ordinates [43].
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Figure 6. Mean value co-ordinates at p (non-convex polygon).

details are provided in Reference [44]. Floater [43] used the mean value theorem for harmonic
functions to develop non-negative weights (barycentric co-ordinate) on polygons. The linearly
precise mean value co-ordinate is [43]

�m
i (x) = wi(x)∑n

j=1 wj(x)
, wi(x) = tan(�i−1/2) + tan(�i/2)

‖x − xi‖ (15)

where the angle �i is shown in Figure 5(b). We first compute the cotangent of the whole-angles
(e.g. t ≡ cot �i) using the formulas presented in Equation (7). Letting w ≡ tan(�i/2), we have
the identity t = (1 − w2)/2w which is a quadratic equation in the unknown w. Once t is
evaluated, we solve the quadratic equation to find w (positive root) and then its derivatives are
evaluated towards the computation of �m

i and its derivatives. In Figure 6, we show a non-convex
four-node element with nodal co-ordinates (0, 0), (1, 0), (1, 1), and (0.7, 0.5). The mean value
co-ordinates are evaluated at the point p with co-ordinate (0.85, 0.3). The point p meets the
requirements stipulated in Reference [44] to ensure a convex combination map; in essence, if
the domain is triangulated with p as an internal point, then the resulting triangulation must not
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contain an edge with node 2 connected directly to node 4. Hence, it is apparent that the mean
value co-ordinates are not valid for all points p that lie inside the element. The linearly precise
shape function values at p are (4-digit precision): �m = {0.0888, 0.5092, 0.1980, 0.2040}. The
shape functions �m

i are distinct from �w
i : the latter is identical to bilinear finite element shape

functions (similar to the Laplace shape function) on a rectangle whereas the mean value shape
functions are not bilinear [43].

The mean value co-ordinates are linear on the boundary of an n-gon, and they also satisfy
the Kronecker-delta property. A proof for the above follows.

Proof
Consider the four-node quadrilateral element shown in Figure 7, where a point p is near the
edge �. The distance between p and node i is denoted by hi ≡ hi(x). The behaviour of
the shape functions �m

i is studied in the limit that p → p� ∈ �. From Equation (15), we
can write:

wi(x) = tan(�i−1/2) + tan(�i/2)

hi

, (i = 1–4, �0 ≡ �4) (16)

and the shape functions are

�m
i (p) = wi(x)

w1(x) + w2(x) + w3(x) + w4(x)
(17)

In the limit that p → p�, the angle �1 → �, whereas �2, �3, �4 < �. From Equation (16),
we note that in this case, w1 → ∞ and w2 → ∞. From the shape function definitions in
Equation (17), we infer that �3 → 0 and �4 → 0, since w3 and w4 are finite. Hence the only
non-zero shape functions are �m

1 and �m
2 :

�m
k (p�) = lim

p→p�

wk(x)

w1(x) + w2(x) + w3(x) + w4(x)
, (k = 1, 2) (18)
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and on dividing the numerator and denominator by wk (k = 1, 2) and noting that in the limit
p → p�, w3/wk → 0 and w4/wk → 0, we obtain

�m
k (p�) = lim

p→p�

wk(x)

w1(x) + w2(x)
, (k = 1, 2) (19)

Without loss of generality, let nodes 1 and 2 be located at (0, 0) and (1, 0), respectively.
If the co-ordinate of p� is (x1, 0), then h1(x) = x1 and h2(x) = 1 − x1. Letting �(p�) =
limp→p� w1(x)/w2(x), we can write

�(p�) = lim
p→p�

(tan �1 + tan �4)h2

(tan �1 + tan �2)h1
= h2

h1
= 1 − x1

x1
(20)

since limp→p� tan �2/ tan �1 = limp→p� tan �4/ tan �1 = 0. On using the above expression for
� in Equation (19), we obtain the desired result:

�m
1 (p�) = 1 − x1, �m

2 (p�) = x1 (21)

�

3. GALERKIN FORMULATION AND IMPLEMENTATION

In this study, applications to the Poisson equation are performed to test the performance and
accuracy of the polygonal finite element method. For simplicity, we focus on the following
Dirichlet problem:

−∇2u(x) = f (x) in � (22a)

u = g(x) on �� (22b)

The weak or variational form is∫
�

∇u · ∇�u =
∫

�
f �u ∀�u ∈ H 1

0 (�) (23)

where u and �u, which are the trial and test approximations, respectively, are of the form
shown in Equation (1), and H 1

0 (�) is the Sobolev space of functions with square-integrable
derivatives and vanishing values on ��. On using the arbitrariness of nodal variations, we
obtain the following system:

Kd = f, Kij =
∫

�
∇�i · ∇�j d�, fi =

∫
�

f �i d�, dT = {u1, u2, . . . , uN } (24)

The domain � = ⋃
i Vi , where Vi are n-gons. The stiffness matrix consists of the integral

over Vi of the product of shape function derivatives. The key ingredient in the proposed
methodology that remains to be addressed is the evaluation of such integrals. The design and
development of quadrature rules over arbitrary polygons has not yet reached a mature stage; for
the difficulties associated with this endeavor and recent progress achieved in this direction, see
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Reference [39]. For the purpose of numerical integration, we present two potential solutions:

1. The first approach is to carry out numerical integration by sub-dividing the physical or
the canonical element into triangles and then using well-known quadrature rules on a
triangle. We point out that the partition of the n-gon into sub-triangles is used solely for
the purpose of numerical integration, and hence within any of the sub-triangles, both the
shape function �i as well as its gradient �i,j (i = 1, 2, . . . , n, j = 1, 2) are non-zero.

2. Cubature rules on a regular hexagon are available [45], and since the canonical element
is a regular n-gon such rules can prove to be useful. On combining elements of group
theory and numerical optimization, a class of cubature rules for triangles in R2 was
proposed by Wandzura and Xiao [46]. The scheme resulted in rapid convergence, had
positive weights, and exhibited symmetry, much like one-dimensional Gaussian quadrature
rules. The approach pursued in [46] can be extended to the design of cubature rules on
arbitrary n-gons [47].

In this study, we use the first approach to perform numerical integration of the bilinear and
linear forms that appear in the weak form. On elements with three nodes, one-point quadrature
is used, whereas on four-node bilinear quadrilateral elements 2 × 2 Gauss–Legendre quadrature
is adopted. For n-gons with n > 4, we use the centroid of the element to partition it into
n triangles for the purpose of numerical integration. The implementation for the Wachspress
and mean value shape functions is straight-forward since these are derived in the physical
x-co-ordinate itself. For the Laplace shape function, two possibilities exist: sub-division of
either the (i) physical element, or the (ii) canonical element, into triangles. If the numerical
integration is conducted by partitioning the physical element, then the integration of a (scalar)
function f over Vi (a n-gon) is written as

∫
Vi

f d� =
n∑

j=1

∫
V

�j
i

f d� =
n∑

j=1

∫ 1

0

∫ 1−�

0
f |Jj

1 | d� d	 (25)

and a nsp-point quadrature rule on each reference right-triangle is used to compute the last
integral. In the above case, for a given quadrature point, we determine x via: x = ∑3

i=1 Nixi ,
where Ni are the finite element shape functions for a three-node triangle. To compute the
Laplace shape function, we need the �-co-ordinates in the canonical element. To this end,
we solve the isoparametric map x = x(�) for � via a Newton–Raphson procedure; a Fortran
code to perform the inverse map is provided in Reference [48]. Once � is determined, the
shape functions are evaluated first in the local co-ordinates and then computed in the physical
x-co-ordinates. If the numerical integration is conducted by partitioning the canonical element,
then the following transformations are performed to integrate f :

∫
Vi

f d� =
∫

�0

f |J2| d� =
n∑

j=1

∫
�

�j
0

f |J2| d� =
n∑

j=1

∫ 1

0

∫ 1−�

0
f |Jj

1 ||J2| d� d	 (26)

In Equation (26), the local co-ordinate � in the canonical element is obtained via the isopara-
metric map � = ∑3

i=1 Ni�i , which enables the Laplace shape functions to be readily computed.
This approach parallels that used in classical finite elements and hence a Newton–Raphson pro-
cedure is not required in the computations. The sequence of transformations used in this scheme
are illustrated in Figure 8.
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Figure 8. Numerical integration scheme based on the partition of the canonical element.

4. NUMERICAL RESULTS

Numerical experiments are performed using the polygonal finite element methods discussed in
Section 3. We first present the shape function (Wachspress, mean value, and Laplace) plots on
different n-gons, and also numerically verify the linearity of the mean value and Laplace shape
functions on the boundary of a polygon. Then, the patch test results for the Laplace equation
are studied on polygonal meshes. Lastly, a convergence study in the L2(�) and energy norms
is carried out for a Poisson problem to demonstrate the accuracy and rate of convergence of
the method. In our analysis, the L2 and energy norms are defined as

‖u − uh‖L2(�) =
√∫

�
(u − uh)2 d�, ‖u − uh‖E(�) =

√∫
�
(u,i − uh

,i)(u,i − uh
,i) d� (27)

where (·),i = �(·)/�xi , and u and uh are the exact and the finite element solutions, respectively.

4.1. Polygonal shape functions

The Laplace shape function plots for a specific node (�i for others can be obtained via
symmetry) on four different regular n-gons are presented in Figure 9. These n-gons are the
canonical elements used for the construction of the Laplace shape functions. The maximum
value of � in each case is unity (figures have been re-scaled for clarity) and the shape
function is observed to be linear along the edges that includes the specific node. Consider the
mesh shown in Figure 12(b), in which three elements are labeled as I, II, and III; node 2 is
common to these three elements. In Figure 10, the Wachspress, mean value, and Laplace shape
function plots for this node are shown. Even though the plots are visually similar, the shape
function values obtained via each scheme is distinct. We observe that the shape function decays
monotonically from unity at x2 to zero on the boundary of the union of the three polygons.
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Figure 9. Laplace shape function on a regular n-gon: (a) n = 5; (b) n = 6; (c) n = 8; and (d) n = 10.

Figure 10. Shape function plots for node 2 in the mesh shown in Figure 12(b):
(a) Wachspress; (b) mean-value; and (c) Laplace.
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Figure 11. Mean value and Laplace shape functions near an element edge (see Figure 12(b)):
(a) along ab; and (b) along a′b′.

In addition, the shape function is linear along all the edges where two of the polygons meet.
Hence we can infer that �i (x) are C0(�) functions; a precise numerical verification of this
observation follows.

The nodes at the vertices of the common edge between elements I and II are labeled as 1
and 2. To study the variation of the shape functions along the edge 1–2, we consider lines
ab and a′b′ that are a distance 
 above and below edge 1–2 (Figure 10(b)). In Figure 11,
the shape functions �1 and �2 are plotted along these two lines, with 
 = 0.001 used in the
numerical computations. In both cases, �1 + �2 ∼ 1 along ab and a′b′, which indicates that
as the edge 1–2 is approached, only these functions are non-zero, and along the edge 1–2,
�1 + �2 = 1 would be rigorously satisfied. This verifies the proof outlined in Section 2.2, in
which the linear behaviour of the mean value shape functions was established. The conformity
of the Wachspress shape function is well-known, and through the above computations, we have
demonstrated that the mean value and Laplace shape functions also lead to conforming trial
and test approximations.

4.2. Patch test

The patch test for the Laplacian operator is carried out: ∇2u = 0 in � = (−1, 1)2, with
u = g(x) = x1 + x2 imposed on the boundary of the bi-unit square. The exact solution is:
u(x) = x1 + x2. In the analyses, four different meshes are considered: the number of elements
(nodes) are 4 (10), 10 (22), 40 (82), and 200 (402), respectively (Figure 12). For a triangular or
quadrilateral element in the mesh, finite element (or equivalently Laplace) shape functions are
always used. The number of quadrature points (nsp) is varied: 3, 6, 13, and 25 sampling points
are used, and results are presented for the two integration schemes (partitioning the physical
element and the reference element) discussed in Section 3. In all cases, the norm computations
are carried out by numerical integration on the physical element. The relative error in the
L2 norm and the energy norm are presented in Tables I and II, respectively. For both the
integration schemes, the errors decrease with increase in the number of quadrature points (nsp).
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Figure 12. Patch test: (a) mesh a (10 nodes); (b) mesh b (22 nodes); (c) mesh c
(82 nodes); and (d) mesh d (402 nodes).

Table I. Relative error in the L2 norm for the patch test.

‖u−uh‖
L2(�)

‖u‖
L2(�)

Wachspress Mean value Laplace Laplace
Meshes nsp (Physical) (Physical) (Physical) (Reference)

3 4.3 × 10−4 3.5 × 10−4 4.0 × 10−4 2.2 × 10−5

a 6 3.5 × 10−5 1.1 × 10−4 5.1 × 10−5 3.9 × 10−7

13 2.6 × 10−6 4.4 × 10−5 1.3 × 10−5 2.0 × 10−8

25 6.8 × 10−9 9.0 × 10−6 1.1 × 10−7 2.0 × 10−11

3 2.6 × 10−3 1.0 × 10−3 1.4 × 10−3 4.4 × 10−4

b 6 2.6 × 10−4 2.1 × 10−4 2.9 × 10−4 2.5 × 10−5

13 2.5 × 10−4 1.1 × 10−4 1.1 × 10−4 7.2 × 10−7

25 4.7 × 10−6 2.4 × 10−5 4.5 × 10−6 4.6 × 10−9

3 1.7 × 10−3 9.7 × 10−4 1.4 × 10−3 2.5 × 10−4

c 6 3.5 × 10−4 1.8 × 10−4 2.6 × 10−4 1.5 × 10−5

13 1.0 × 10−4 7.8 × 10−5 8.0 × 10−5 3.4 × 10−7

25 6.5 × 10−6 3.1 × 10−5 6.7 × 10−6 1.9 × 10−9

3 9.2 × 10−4 5.6 × 10−4 7.2 × 10−4 1.9 × 10−4

d 6 2.5 × 10−4 1.4 × 10−4 1.9 × 10−4 1.6 × 10−5

13 1.1 × 10−4 7.1 × 10−5 8.8 × 10−5 9.9 × 10−7

25 2.4 × 10−5 2.6 × 10−5 2.5 × 10−5 2.5 × 10−9

Numerical integration on the reference (canonical) element provide the most accurate results
with the Laplace shape function; if this integration scheme is used for the mean value or
Wachspress shape functions, there is marginal improvement in accuracy, and hence these results
are not reported. Relative errors in the L2 norm of O(10−6) and O(10−9) are realized with 13-
and 25-point quadrature schemes, respectively. This accuracy is significantly better than that
attained in the natural element method [24] or in most of the other meshfree methods [18].
We attribute this to the conformity of the method, which was shown in Section 4.1, and the
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Table II. Relative error in the energy norm for the patch test.

‖u−uh‖E(�)

‖u‖E(�)

Wachspress Mean value Laplace Laplace
Meshes nsp (Physical) (Physical) (Physical) (Reference)

3 9.9 × 10−4 5.3 × 10−4 9.0 × 10−4 5.8 × 10−5

a 6 8.7 × 10−5 1.7 × 10−4 1.2 × 10−4 1.0 × 10−6

13 6.3 × 10−6 6.7 × 10−5 3.3 × 10−5 5.3 × 10−8

25 1.7 × 10−8 1.6 × 10−5 2.7 × 10−7 5.3 × 10−11

3 1.3 × 10−2 4.6 × 10−3 6.8 × 10−3 2.3 × 10−3

b 6 4.1 × 10−3 8.9 × 10−4 1.4 × 10−3 1.3 × 10−4

13 1.3 × 10−3 4.9 × 10−4 5.5 × 10−4 3.4 × 10−6

25 2.6 × 10−5 1.1 × 10−4 2.3 × 10−5 2.4 × 10−8

3 2.1 × 10−2 1.0 × 10−2 1.6 × 10−2 1.7 × 10−3

c 6 4.6 × 10−3 1.9 × 10−3 3.1 × 10−3 9.4 × 10−5

13 1.4 × 10−3 8.3 × 10−4 9.8 × 10−4 2.9 × 10−6

25 8.0 × 10−5 3.3 × 10−4 9.4 × 10−5 1.5 × 10−8

3 3.0 × 10−2 1.8 × 10−2 2.3 × 10−2 3.1 × 10−3

d 6 8.5 × 10−3 4.7 × 10−3 6.2 × 10−3 2.6 × 10−4

13 3.9 × 10−3 2.4 × 10−3 3.1 × 10−3 1.4 × 10−5

25 9.1 × 10−4 9.4 × 10−4 9.4 × 10−4 5.3 × 10−8

fact that the support of the shape functions coincide with the domains used in the numerical
integration of the bilinear form.

4.3. Convergence study

The accuracy and convergence of the methods are studied for the model Poisson problem
given in Equation (22). We use f (x1, x2) = 2(1−x2

1 )+2(1−x2
2 ), and hence the exact solution

is: u(x1, x2) = (1 − x2
1 )(1 − x2

2 ). Two different types of meshes are used in the convergence
study. In the first instance, to ensure uniform refinement, hexagonal meshes with edge length
of h in the bulk of the domain are used; nodal spacing differs only near the boundary where
essential boundary conditions are imposed. Five meshes with predominantly hexagonal elements
are considered with 74 (h = 1.597 × 10−1), 884 (h = 5.082 × 10−2), 1802 (h = 3.607 ×
10−2), 2740 (h = 2.942 × 10−2), and 9524 (h = 1.597 × 10−2) nodes. In the second case, we
use quasi-regular meshes with a fairly uniform distribution of nodes within the bi-unit square.
Four different meshes with 576, 864, 2123, and 5611 nodes are used. A sample mesh for each
study is depicted in Figure 13. In Figure 14, the relative error in the L2 and energy norms
are plotted versus

√
M (M is the number of nodes) on a log–log scale. The slope of the

plots, �, indicates the rate of convergence of the method. From Figure 14, we obtain � = 2
for the rate of convergence in u and � = 1 for the convergence rate in the energy, which are
consistent with the theoretical predictions for second-order elliptic PDEs with linearly complete
approximations [17].
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(a) (b)

Figure 13. Sample meshes used in the convergence study: (a) hexagonal mesh (884 nodes); and
(b) quasi-regular mesh (864 nodes).
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Figure 14. Rate of convergence in the L2(�) and energy error norms: (a) hexagonal meshes;
and (b) quasi-regular meshes.

5. CONCLUDING REMARKS

In this paper, we presented the construction and numerical implementation of three conform-
ing polygonal finite element methods. The rational finite element basis function proposed by
Wachspress [3], and revisited by Meyer and co-workers [42], was used as a point of reference.
The mean value (barycentric) co-ordinate [43], which was recently introduced in computer
graphics, was considered within a Galerkin procedure, and in addition, the construction of a
conforming approximation using a natural neighbour (Laplace) interpolant [28] was proposed.
In the spirit of three- and four-node finite elements, the Laplace shape functions were defined
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on a canonical (reference) element and an affine map was used to obtain the shape functions
and their gradients on irregular polygons. The attractive properties of the Laplace interpolant
(interpolation, linear completeness, and linear behaviour on the boundary of a convex polygon)
permitted the direct imposition of essential boundary conditions as is done in classical finite
element methods. We proved that the Laplace and Wachspress shape functions were identical
on regular n-gons, and the conformity of the mean value and Laplace interpolants were also
numerically verified.

Numerical results for the patch test and the accuracy and rate of convergence for a Poisson
problem were presented. Patch test results using the Laplace interpolant were the most accurate,
and the error in the L2(�) norm of O(10−9) was obtained when numerical integration was
performed on the canonical element. The rate of convergence in the L2(�) norm was found
to be two, whereas that in the energy norm was unity. These results are consistent with theory
for linearly complete interpolants such as those considered in this study. In conclusion, we are
optimistic that the proposed finite element method can open-up new pathways in finite element
research, and also lead to the wider adoption and advancement of the use of polygonal finite
element methods in solid mechanics and computational materials science. For example, (i)
Polygonal and polyhedral mesh generation algorithms; (ii) Adaptive computations on quadtree
[49] and octree meshes; and (iii) Application of the polygonal FEM in material design and in
the modelling of fracture phenomenon, are some of the potential topics for future research.
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