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Natural neighbour Galerkin methods
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SUMMARY

Natural neighbour co-ordinates (Sibson co-ordinates) is a well-known interpolation scheme for multivariate
data �tting and smoothing. The numerical implementation of natural neighbour co-ordinates in a Galerkin
method is known as the natural element method (NEM). In the natural element method, natural neighbour
co-ordinates are used to construct the trial and test functions. Recent studies on NEM have shown that natural
neighbour co-ordinates, which are based on the Voronoi tessellation of a set of nodes, are an appealing
choice to construct meshless interpolants for the solution of partial di�erential equations. In Belikov et al.
(Computational Mathematics and Mathematical Physics 1997; 37(1):9–15), a new interpolation scheme
(non-Sibsonian interpolation) based on natural neighbours was proposed. In the present paper, the non-
Sibsonian interpolation scheme is reviewed and its performance in a Galerkin method for the solution of
elliptic partial di�erential equations that arise in linear elasticity is studied. A methodology to couple �nite
elements to NEM is also described. Two signi�cant advantages of the non-Sibson interpolant over the Sibson
interpolant are revealed and numerically veri�ed: the computational e�ciency of the non-Sibson algorithm in
2-dimensions, which is expected to carry over to 3-dimensions, and the ability to exactly impose essential
boundary conditions on the boundaries of convex and non-convex domains. Copyright ? 2001 John Wiley
& Sons, Ltd.

KEY WORDS: natural neighbour co-ordinates, non-Sibsonian interpolation, natural element method, mesh-
less Galerkin methods, essential boundary conditions

1. INTRODUCTION

The natural element method (NEM) [1] is a Galerkin method for the solution of partial di�erential
equations. In NEM, the test and trial functions are constructed using natural neighbour (Sibson)
co-ordinates [2]. Natural neighbour co-ordinates are based on well-known geometric concepts such
as the Voronoi diagram and the Delaunay tessellation. The Voronoi diagram and its dual Delaunay
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tessellation are the most fundamental and useful constructs to de�ne an irregular set of nodes.
Recent studies using the natural element method have demonstrated its promise for the solution of
partial di�erential equations that arise in two-dimensional elastostatics [3–5] and elastodynamics
[6]. In a recent study [7], a new interpolant (non-Sibsonian interpolant) based on natural neighbours
was proposed. In this paper, we present the new implementation of NEM using the non-Sibsonian
interpolant.
In NEM [4] as well as other meshless methods [8], the test and trial functions in the Galerkin

implementation are constructed on the basis of a set of scattered nodes in Rd. In these methods, the
numerical integration of the weak form is carried out using a background cell=element structure.
In several meshless methods, moving least squares approximants [9] are used to construct the trial
and test spaces. The properties of interpolation of nodal data, ease of imposing essential boundary
conditions, and neighbour relationships that are based on the local distribution and density of nodes
at a given point are some of the most important advantages of natural neighbour interpolants over
moving least squares approximants.
In Belikov et al. [7], the non-uniqueness of interpolation schemes based on natural neigh-

bours was shown, and the non-Sibsonian interpolant was proposed. The local harmonic property
and construction of higher-order interpolation schemes using the non-Sibsonian interpolant were
introduced in Belikov and Semenov [10]. As opposed to the Sibson interpolant which is based on
the area (volume) of overlap of �rst-order Voronoi polygons (polyhedra) in R2 (R3), the non-
Sibsonian interpolant requires computation of Lebesgue measures of order d−1 in Rd. Since most
of the properties are common to both schemes, the better computational performance and ease of
implementation of the non-Sibsonian interpolation method over the Sibson interpolant renders the
non-Sibsonian interpolant an interesting and computationally attractive choice for the numerical
solution of partial di�erential equations.
The outline of this papers is as follows. In the following section, the notion of natural neigh-

bours is described and the Sibson and non-Sibsonian interpolation methods are introduced. The
computational algorithm used in the two methods is also presented. In Section 3, issues pertaining
to the imposition of essential boundary conditions using the two interpolants are discussed, and
a methodology to couple the natural element method to �nite elements is described in Section 5.
In Section 6, the governing equations of elastostatics together with the Galerkin formulation for
NEM are described. Numerical experiment results in two-dimensional elasticity are presented in
Section 7. We close in Section 8 with some concluding remarks on the performance and accuracy
of the natural element method.

2. NATURAL NEIGHBOURS

The notions of natural neighbours and natural neighbour interpolation were introduced by Sibson
[2] as a means for data �tting and smoothing. The Voronoi diagram and its dual Delaunay triangu-
lation, which are used in the construction of the natural neighbour interpolant, are useful geometric
constructs that de�ne an irregular set of points (nodes). For simplicity of exposition, we consider
two-dimensional Euclidean space R2; the theory, however, is applicable in a general d-dimensional
framework. Given a distribution of points (nodes) in the plane, the Delaunay simplices partition
the convex hull 
 of the points into regions 
i such that 
=

⋃t
i=1 
i. In Delaunay interpolation

(constant strain �nite elements), a linear interpolant is constructed over each Delaunay triangle.
The Delaunay triangulation of a set of nodes is non-unique, and hence the interpolation is sensitive
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NATURAL NEIGHBOUR GALERKIN METHODS 3

Figure 1. Voronoi diagram V (N ) for a set N of seven nodes.

to geometric perturbations of the position of the nodes. As opposed to the Delaunay triangulation,
its dual the Voronoi diagram is unique. We now formally introduce the Voronoi diagram and
thereafter the de�nition of natural neighbours.
Consider a set of distinct nodes N= {n1; n2; : : : ; nM} in R2. The Voronoi diagram (or 1st-order

Voronoi diagram) of the set N is a subdivision of the plane into regions TI (closed and convex,
or unbounded), where each region TI is associated with a node nI , such that any point in TI is
closer to nI (nearest neighbour) than to any other node nJ ∈N (J 6= I)—TI is the locus of points
closer to nI than to any other node. The regions TI are the Voronoi cells of nI . In mathematical
terms, the Voronoi polygon TI is de�ned as [11]

TI = {x∈R2: d(x; xI )¡d(x; xJ ) ∀J 6= I} (1)

where d(xI ; xJ ), the Euclidean metric, is the distance between xI and xJ . The Voronoi diagram
for a set N consisting of seven nodes is shown in Figure 1. The concept of nearest neighbours and
neighbouring nodes is embedded in the �rst-order Voronoi diagram. By a similar extension, one
can construct higher order (k-order, k¿1) Voronoi diagrams in the plane. Of particular interest
in the present context is the case k =2, which is the second-order Voronoi diagram. The second-
order Voronoi diagram of the set of nodes N is a subdivision of the plane into cells TIJ , where
each region TIJ is associated with a nodal-neighbour-pair (nI ; nJ ) (k-tuple for the k-order Voronoi
diagram), such that TIJ is the locus of all points that have nI as the nearest neighbour, and nJ as
the second nearest neighbour. It is emphasized that the cell TIJ is non-empty if and only if nI and
nJ are neighbours. The second-order Voronoi cell TIJ (I 6= J ) is de�ned as [2].

TIJ = {x∈R2: d(x; xI )¡d(x; xJ )¡d(x; xK) ∀K 6= I; J} (2)

In order to quantify the neighbour relation for any point x introduced into the tessellation, Sibson
[2] used the concept of second-order Voronoi cells, and thereby introduced natural neighbours and
natural neighbour co-ordinates. The notion of neighbouring nodes is broadened and generalized
by the de�nition of natural neighbours. In Figure 2(a), a point x is introduced into the Voronoi
diagram of the set N shown in Figure 1. If x is considered as a node along with the set of nodes
N, then the natural neighbours of x are those nodes which form an edge of a triangle with x in
the new tesselation (triangulation). A straight-forward means to arrive at the same end is to use
the empty circumcircle criterion [12]—if DT(nJ ; nK ; nL) is any Delaunay triangle of the nodal set
N, then the circumcircle of DT contains no other nodes of N. By doing so, we arrive at the result
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Figure 2. Construction of natural neighbours: (a) Original Voronoi diagram and x; and
(b) 1st-order and 2nd-order Voronoi cells about x.

that if x lies within the circumcircle of triangle DT(nI ; nJ ; nK), then nI ; nJ , and nK are natural
neighbours of x. In Figure 2(b), the perpendicular bisectors from point x to its natural neighbours
are constructed and the Voronoi cell Tx (closed polygon abcd) is obtained. It is observed that x
has four (n=4) natural neighbours, namely nodes 1, 2, 3, and 4.

2.1. Sibson interpolation

Natural neighbour co-ordinates are used as the interpolating functions in natural neighbour (Sibson)
interpolation. We refer to Figure 2 in order to de�ne the natural neighbour co-ordinates for a
point x in the plane. Let �(x) be a Lebesgue measure (length, area, or volume in 1D, 2D, or
3D, respectively) of Tx, and �I (x) (I =1–4) be that of TxI . In two-dimensions, the measures are
areas, and hence we denote A(x)≡ �(x) and AI (x)≡ �I (x). The natural neighbour co-ordinates
of x with respect to a natural neighbour I is de�ned as the ratio of the area of overlap of the
Voronoi cells TI and Tx to the total area of the Voronoi cell of x:

�I (x)=
AI (x)
A(x)

(3)

where I ranges from 1 to n, and A(x)=
∑n

J=1 AJ (x). The four regions shown in Figure 2(b) are
the second-order cells, whereas their union (closed polygon abcd) is a �rst-order Voronoi cell.
Referring to Figure 2, the shape function �3(x) is given by

�3(x)=
A3(x)
A(x)

(4)

If the point x coincides with a node (x= xI ); �I (x)= 1, and all other shape functions are zero.
The properties of positivity, interpolation, and partition of unity directly follow:

06�I (x)61; �I (xJ )= �IJ ;
n∑

I=1
�I (x)= 1 in 
 (5)

Natural neighbour shape functions also satisfy the local co-ordinate property [2], namely

x=
n∑

I=1
�I (x)xI (6)

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:1–27
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which, in conjunction with Equation (5) imply that the natural neighbour interpolant spans the
space of linear polynomials (linear completeness).
Natural neighbour interpolation has primarily been used in the area of data interpolation and

modelling of geophysical phenomena [13–15]. The support of the shape function �I (x) is the
intersection of the convex hull with the union of all Delaunay circumcircles that pass through node
I [16]. Natural neighbour shape functions are C∞ everywhere, except at the nodes where they
are C0 [2; 16]. Farin [16] proposed a C1 natural neighbour interpolant based on Bernstein–B�ezier
simplices, and Sukumar and Moran [5] developed a computational methodology for its application
to fourth-order elliptic PDEs. In one-dimension, natural neighbour interpolation is identical to
linear �nite elements [4]; in the particular case of three natural neighbours, n-n interpolation is
precisely barycentric co-ordinates; and for four natural neighbours at the vertices of a rectangle,
bilinear interpolation is realized [16]. A detailed description and discussion of the above properties
of natural neighbour interpolants can be found in Sukumar et al. [4].

2.2. Non-Sibsonian interpolation

We give the following rigorous de�nition of the non-Sibsonian interpolant [7]. Let N= {n1; n2;
: : : ; nM} be a set of distinct nodes in Rd. We denote the Voronoi cell of node xI by TI :
TI = {x∈Rd: d(x; xI )¡d(x; xJ ); J 6= I}. In addition, de�ne tIJ = {x∈ �TI ∩ �TJ ; J 6= I}, where
d(· ; ·) is the Euclidean metric, �TI =TI ∪ @TI is the closure of set TI , and tIJ may be an empty set.
If d(xI ; xJ ) 6= 0, then

∑
J

J== I

|tIJ |xJ
d(xI ; xJ )

= xI


∑

J
J== I

|tIJ |
d(xI ; xJ )


 (7)

where | · | denotes the Lebesgue measure in Rd−1. In terms of the notation used above, the
non-Sibsonian shape function �I (x) is de�ned as

�I (x)=

|txI |
d(x; xI )∑n

J=1
|txJ |

d(x; xJ )

(8)

Consider the Voronoi diagram and a point x in the plane as shown in Figure 2(b). The point
x has four natural neighbours, and in Figure 3 the Voronoi cell of the point x and its neighbours
are illustrated. The distance sI (x) is the Lebesgue measure (length in R2) of the Voronoi edge
associated with node I , and hI (x) is the perpendicular distance between the Voronoi edge of node
I to the point x. The non-Sibsonian (nS) shape function �I (x) is de�ned by [7]

�I (x)=
�I (x)∑n

J=1 �J (x)
; �J (x)=

sJ (x)
hJ (x)

(9)

It is noted that in R2, the computational complexity of nS shape function depends only on the ratio
of a Lebesgue measure of R divided by a linear dimension. In a general d-dimensional setting,
the dependence is on the ratio of a Lebesgue measure of Rd−1 divided by a linear dimension. An
immediate comparison with the natural neighbour shape function reveals that the computational
e�ort in Rd for the natural neighbour interpolant is co-dimensional (d-dimensional volumes),
whereas for the non-Sibsonian interpolant it is one order less ((n− 1)-dimensional volumes).

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:1–27
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Figure 3. Non-Sibsonian interpolation. Figure 4. Bilinear interpolation on a
regular grid (n=4).

Consider an interpolation scheme for a vector-valued function u(x) : 
→R2, in the form:

uh(x)=
n∑

I=1
�I (x)uI (10)

where uI (I =1; 2; : : : ; n) are the vectors of nodal displacements at the n natural neighbours,
and �I (x) are the Sibson (see Equation (3)) or the non-Sibsonian shape functions de�ned in
Equation (9). In the natural element method, the trial and test functions are constructed using the
approximation indicated in Equation (10).

2.3. Properties

The non-Sibsonian interpolant is based on the notion of natural neighbours, and hence most of the
properties of the natural neighbour interpolant are also shared by the non-Sibsonian interpolant.
Properties such as partition of unity, positivity, interpolation, and support and regularity of the
shape functions are common to both interpolants. In addition, due to the above properties, both
interpolants ensure the boundedness of the norm of the interpolated result: ‖u‖6max uI . Inter-
polants that are linear combinations of the Sibson and non-Sibsonian interpolants are also valid
natural neighbour-based interpolants that can be used for the solution of PDEs. We address the
linear completeness of the non-Sibsonian interpolant and discuss univariate, bivariate, and higher-
order interpolation within the context of non-Sibsonian interpolation.

2.3.1. Linear completeness. The non-Sibsonian interpolant has linear precision, i.e. it spans the
space of linear polynomials in Rd [7]. In the �nite element literature, the ability of the inter-
polant to reproduce constant and linear displacement �elds is known as linear completeness—a
necessary condition for convergence for second-order elliptic PDEs such as Poisson’s equation and
elastostatics. The proof that the non-Sibsonian interpolation has linear completeness follows:

Proof. Consider a linear displacement �eld in the form:

u(x)= Q+ RTx (11)

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:1–27



NATURAL NEIGHBOUR GALERKIN METHODS 7

where Q and R are constant vectors. The exact nodal displacements are given by

uI = Q+ RTxI (12)

where I is the index for any particular node. Consider the NEM trial function, namely

uh(x)=
n∑

I=1
�I (x)uI (13)

where uI is the vector of nodal displacements for node I . On using Equation (12) in the above
equation, we obtain

uh(x)= Q
n∑

I=1
�I (x) + RT

n∑
I=1

�I (x)xI (14)

By adding and subtracting RTx to the above equation and noting that
∑

I �I (x)= 1, we have

uh(x)= Q+ RTx + RT
n∑

I=1
�I (x)(xI − x) (15)

and hence to complete the proof it su�ces to show that the following equality holds:

n∑
I=1

�I (x)(xI − x)= 0 (16)

We �rst show that the above equality holds in the planar (two-dimensional) case. To this end,
transforming from (x; y) in R2 to z= x + iy in the complex plane C, the above criterion can be
re-written as

n∑
I=1

�I (z)(zI − z)= 0 (17)

which on substituting the explicit form of the non-Sibsonian shape function from Equation (9)
becomes

∑n
I=1(zI − z)

sI (z)
hI (z)∑n

J=1
sJ (z)
hJ (z)

= 0 (18)

To prove the above, we note that the sides of the Dirichlet cell that contain (x; y) are the complex
numbers z̃I . Since the polygon has a closed contour, the following identity holds:

n∑
I=1

z̃I =0 (19)

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:1–27
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Introducing the trigonometric form z̃I = sI (z) exp(i’I (z)), we rearrange the above equation as
follows:

n∑
I=1

z̃I =
n∑

I=1
sI (z) exp(i’I (z))= i

n∑
I=1

sI (z) exp(i’I (z)− i�=2)=0 (20)

and since |zI − z|=2hI (z), we can write

i
n∑

I=1
[hI (z) exp(i’I (z)− i�=2)] sI (z)hI (z)

=
i
2

n∑
I=1
(zI − z)

sI (z)
hI (z)

= 0 (21)

which proves Equation (18) and hence

uh(x)= Q+ RTx= u(x) (22)

which completes the proof for the planar case.
Now, we prove the same for the case of arbitrary Rd. By analogy we consider a linear dis-

placement �eld u(x) in Rd and show that Equation (16) holds for it identically. Following the
2-dimensional case, the criterion to be proved for the d-dimensional case has the following vector
form: ∑n

I=1 (xI − x)
sI (x)
hI (x)∑n

J=1
sJ (x)
hJ (x)

= 0 (23)

To prove the above, consider the closed surface S of the Voronoi polyhedron that encloses x∈Rd

and has the volume V. Now, consider the vector identity (Green’s theorem):∫
V
∇f dV =

∮
S
f dS (24)

On substituting f=1 in the above equation, we obtain∫
V
∇f dV = 0=

∮
S
dS=

n∑
I=1

(xI − x)sI (x)
|xI − x| (25)

and since |xI − x|=2hI (x), we have

n∑
I=1

(xI − x)sI (x)
2hI (x)

= 0 (26)

which proves Equation (23) and hence

uh(x)= Q+ RTx= u(x) (27)

which completes the proof for the general d-dimensional case.

2.3.2. Univariate interpolation. In 1-dimension, the non-Sibsonian shape function given in
Equation (8) is unde�ned since the Lebesgue measure of a point is zero. However, by con-
sidering univariate interpolation as a limiting case of bivariate interpolation, it is readily seen that
linear interpolation is realized in 1-dimension (see Section 3.1 too). Hence the equivalence with
one-dimensional linear �nite elements is obtained, as was the case for the Sibson interpolant [4].

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:1–27
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2.3.3. Bivariate interpolation. Case I: n=3 or n=4. If a point x has three neighbours, then
by a unique argument or by considering the linear reproducing conditions given in Section 2.3.1,
barycentric co-ordinates are realized by nS interpolation. The proof is similar to that outlined in
Sukumar et al. [4] for the Sibson interpolant. For the case of four natural neighbours (n=4) at
the vertices of a rectangle, bilinear interpolation on the rectangle is obtained. The proof follows:

Proof. Consider a point x with four natural neighbours located at the vertices of a unit square:
(x1; y1)= (0; 0), (x2; y2)= (1; 0), (x3; y3)= (1; 1), and (x4; y4)= (0; 1) (Figure 4). The �rst-order
(dark line) Voronoi cell of point x is shown in Figure 4. By de�nition of the non-Sibsonian shape
functions, we can write

�I (x)=

sI (x)
hI (x)∑4

J=1
sJ (x)
hJ (x)

(I =1−4) (28)

where sI (x) and hI (x) are indicated in Figure 4.
By recalling the de�nition of 1st-order Voronoi cells, it is clearly seen that vertex a is the centre

of the circle that circumscribes the triangle 412x, and proceeding likewise, b is the circumcentre
of triangle 423x, c that of 434x, and d that of 441x. These co-ordinates are computed to be

a1 =
1
2
; a2 =

−x + x2 + y2

2y
(29a)

b1 =
1 + y − x2 − y2

2(1− x)
; b2 =

1
2

(29b)

c1 =
1
2
; c2 =

1 + x − x2 − y2

2(1− y)
(29c)

d1 =
−y + x2 + y2

2x
; d2 =

1
2

(29d)

We note that s1(x)= |ãb|, s2(x)= |b̃c|, s3(x)= |c̃d|, s4(x)= |d̃a|, and 2hI =d(x; xI ). By carrying
out simple algebraic calculations, we obtain

s1(x)
h1(x)

=
x + y − x2 − y2

xy
(30a)

s2(x)
h2(x)

=
x + y − x2 − y2

y(1− x)
(30b)

s3(x)
h3(x)

=
x + y − x2 − y2

(1− x)(1− y)
(30c)

s4(x)
h4(x)

=
x + y − x2 − y2

x(1− y)
(30d)

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:1–27
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and hence the non-Sibsonian shape functions are

�1(x) = (1− x)(1− y) (31a)

�2(x) = x(1− y) (31b)

�3(x) = xy (31c)

�4(x) = y(1− x) (31d)

which are bilinear �nite element shape functions. The above derivation is easily generalized to the
rectangle (linear transformation of a square), and hence bilinear interpolation on the rectangle is
realized by the non-Sibsonian interpolant.

Case II: Arbitrary n. We consider the computation of non-Sibsonian shape functions for the
case in which the point x=(x; y) has an arbitrary number of natural neighbours. Let xm=(xm; ym)
and xn=(xn; yn) be two adjacent natural neighbours for the point x, where n=m+1 or n=m−1
(Figure 5). We assume clockwise orientation to be the positive sense. In Figure 5(a), line AB is
perpendicular to xm − x and line CB is perpendicular to xn − x. Any point along the line AB has
the form:

−→
AB : 12 (xm + x) + tm(xm − x)⊥ (32)

where tm is a scalar parameter. In addition,

xm + x= (xm + x; ym + y) (33a)

(xm − x)⊥ = (xm − x; ym − y)⊥=(ym − y;−xm + x) (33b)

where q⊥= q ∧ e3. Now, any point along CB has the form:
−→
BC : 12 (xn + x)− tn(xn − x)⊥ (34)

where tn is a scalar parameter. In addition,

xn + x= (xn + x; yn + y) (35a)

(xn − x)⊥ = (xn − x; yn − y)⊥=(yn − y;−xn + x) (35b)

Now, the condition for line intersection at point B can be stated as

1
2 (xm + x) + tm(xm − x)⊥= 1

2(xn + x)− tn(xn − x)⊥ (36)

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:1–27



NATURAL NEIGHBOUR GALERKIN METHODS 11

Figure 5. Computation of non-Sibsonian interpolant in R2: (a) Geometric construction;
(b) rm¿0 and lm¡0; and (c) rm¿0 and lm¿0.

and hence we obtain the following system of equations for tm and tn:

−(ym − y)tm − (yn − y)tn =
xm − xn
2

(37a)

(xm − x)tm + (xn − x)tn =
ym − yn

2
(37b)

Solving the above system, we obtain

tm =
1
2
(xm − xn)(xn − x) + (ym − yn)(yn − y)
(xm − x)(yn − y)− (xn − x)(ym − y)

(38a)

tn =−1
2
(xm − xn)(xm − x) + (ym − yn)(ym − y)
(xm − x)(yn − y)− (xn − x)(ym − y)

(38b)

Now, we note that

|
−→
AB |

1
2 |xm − x| =2|tm| (39)

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:1–27
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which can be readily inferred from Figure 5(a). By taking into account n=m+ 1 and n=m− 1
(see the cases shown in Figures 5(b) and 5(c)), we can compute sm=hm as

sm=hm= |rm − lm| (40a)

where

rm =
(xm − xm+1)(xm+1 − x) + (ym − ym+1)(ym+1 − y)
(xm − x)(ym+1 − y)− (xm+1 − x)(ym − y)

(40b)

lm =
(xm − xm−1)(xm−1 − x) + (ym − ym−1)(ym−1 − y)

(xm − x)(ym−1 − y)− (xm−1 − x)(ym − y)
(40c)

On using the above relations for all the natural neighbours, the non-Sibsonian shape functions are
evaluated using Equation (9).

2.3.4. Higher-order interpolation. Belikov and Semenov [17] proposed a compact procedure for
the generation of higher-order interpolation using non-Sibsonian interpolants. For kth-order inter-
polation at the point x, it is su�cient that u(x) satis�es the equation 4ku=0, where 4 is the
Laplacian operator. Then, for the neighbours of x, a sequence of values w1; w2; : : : ; wm−1 are com-
puted where the wi satisfy the relations 4u=w1, 4w1 =w2, 4w2 =w3; : : : ;4wk−1 =wk =0. The
computation of u(x) is performed by going through the above sequence of equations in reverse
order.
Let us �rst consider an interpretation of non-Sibsonian interpolation. Using Equation (10), we

can write the non-Sibsonian trial function uh(x) for a scalar-valued function u(x) in the form:

n∑
I=1

uI − uh(x)
2hI (x)

sI (x)= 0 (41)

Thus, the continuous analogue of the above discrete form is∮
S

@u
@n
dS =

∫
V
4u dV =0 (42)

or

4u=0; 4= @2

@x21
+ · · ·+ @2

@x2d
(43)

where Gauss’s (divergence) theorem has been used to convert the surface integral into a volume
integral. Thus, Equation (10) provides an approximate local discrete solution of the harmonic
equation in Rd. We can refer to �I (x) as “harmonic” co-ordinates [17].
Now, for the speci�c case of k =2 (second-order interpolation) we obtain two equations:

4u=w; 4w=0, and hence the �nal formulas for the calculation of the second-order interpolant
have the following form:

wI =
1
VI

pI∑
J=1

uJ − uI

hI
J

s I
J (44a)
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wh(x) =
n∑

I=1
�I (x)wI (44b)

uh(x) =
n∑

I=1
�I (x)uI − wh(x)V (x)∑n

J=1
sJ (x)
hJ (x)

(44c)

Here, n is the number of natural neighbours for point x; pI is the number of natural neighbours
for point xI , and VI is the area (volume) of the corresponding Dirichlet cell. In determining the
natural neighbours for point xI , one considers the nodal set N − nI (see Section 2). Therefore,
the natural neighbours pI for point xI are easily seen to be those nodes which are connected to
node xI in the Delaunay triangulation of the set N. First the parameters wI are evaluated using
Equation (44a), and then wh(x) is obtained from Equation (44b) which is used in Equation (44c)
to compute uh(x) at x.
For the derivation of Equation (44), the following equalities in three di�erent forms are used:

Continuous form: 4u=w (45a)

Integral form:
∮
S

@u
@n
dS =

∫
V
w dV (45b)

Discrete form:
p∑

J=1

uJ − uK

hK
J

sK
J =wKVK (45c)

where p is the number of natural neighbour for the point xK . Comparing the above to Equa-
tion (44), we note that if xK = x, then p= n; VK =V (x), and sK

J = sJ (x) and hK
J = hJ (x); if

xK = xI , then p=pI .
We now proceed to re-cast the second-order non-Sibsonian interpolant in the standard trial

function form:

uh(x)=
m∑

I=1
 I (x)uI (46)

where  I (x) is the second-order non-Sibsonian shape function for node I at x and uI (I =1; 2;
: : : ; m) are the vectors of nodal displacements. Using Equation (44), we can immediately write:

uh(x)=
n∑

I=1
�I (x)[uI − �(x)wI ]; �(x)=

V (x)∑n
J=1

sJ (x)
hJ (x)

(47)

Let Nx= {nx1; nx2; : : : ; nxn} be a set of n natural neighbours for the point x and NI = {nI1; nI2; : : : ;
nIpI } be the pI natural neighbours for the point xI (nxI =∈NI ). The set Ñ of all nodes in the
approximation is: Ñ=Nx ∪

⋃n
I=1NI . The cardinality of Ñ is m. The expression for wI is given

in Equation (44a). We note that for any given node in Nx, there are two distinct sources of
contribution from the second term of the above equation. By some simple algebraic manipulations,
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14 N. SUKUMAR ET AL.

we arrive at the following:

 I (x) =�I (x)
[
1 + �(x)

1
VI

pI∑
J=1

s I
J

h I
J
− �(x)

pI∑
J=1

1
VJ

sJ
I

hJ
I

]
; nI ∈Nx (48a)

 I (x) =−�(x)
n∑

J=1
nI∈NJ

�J (x)
VJ

sJ
I

hJ
I
; nI =∈Nx (48b)

and since s J
I = s I

J and hJ
I = hI

J , we obtain the result

uh(x)=
m∑

I=1
 I (x)uI (49a)

where

 I (x) =�I (x)
[
1 + �(x)

pI∑
J=1

s I
J

h I
J

(
1
VI

− 1
VJ

)]
; nI ∈Nx (49b)

 I (x) =−�(x)
n∑

J=1
nI∈NJ

�J (x)
VJ

sJ
I

hJ
I
; nI =∈Nx (49c)

The above higher-order scheme is simple and computationally attractive in numerical calculations
[17; 18].

2.4. Computational algorithm

In Sukumar et al. [4], Watson’s algorithm [19] was used for the computation of the Sibson
interpolant. A drawback of Watson’s algorithm is that it fails for points that lie on the edge
of a Delaunay triangle. In order to overcome this shortcoming, we adopted the Bowyer–Watson
algorithm [20; 21] as the basis for the evaluation of the Sibson and non-Sibsonian interpolants.
Natural neighbour (Sibson) interpolation is based on the area (volume) of intersection of poly-

gons (polyhedrons) in R2 (R3). The polyhedron intersection problem is a non-trivial task in com-
putational geometry, and hence easy-to-implement algorithms that are computationally attractive
for Sibson computations are still unavailable. Owens [22] proposed a three-dimensional algorithm
for natural neighbour interpolation and Braun and Sambridge [1] used Lasserre’s algorithm [23]
to compute the natural neighbour shape function in their PDE application. See Aftosmis [24] for
a description of the many issues involved in the polyhedron intersection problem. Since the non-
Sibsonian interpolant relies on the evaluation of a Lebesgue measure of one dimension less than the
Sibson interpolant, the implementation of the non-Sibsonian interpolant in, both, 2-dimensions and
3-dimensions is viable. The essential ingredients of the computational algorithm for non-Sibsonian
interpolation are presented in Table I. Standard template library (STL) containers in C++ are
used in the implementation. The STL containers map and multi-map are used, where map is a
container that maps an integer key to another integer or 
oating-point number, and multi-map is a
map from an integer key to many integers or 
oating-point numbers. These containers provide fast
sorting and searching on keys, which eases the implementation and leads to better computational
e�ciency.
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NATURAL NEIGHBOUR GALERKIN METHODS 15

Table I. Pseudo-code for computation of non-Sibsonian interpolant.

• Compute natural neighbour set N and set T of deleted simplices for point x
— Find simplex t containing x and set T← t
— Test all neighbouring simplices ti of t. If ‖x−vi‖2¡R2i , then update T← {T; ti}
— Set N= {nI : nI ∈ ti ; ti ∈T}

• Create boundary facet set F (F← {})
— Let fj be a facet of ti ∈T and t̂j be its neighbouring simplex. For each ti ∈T,

if (t̂j =∈T or t̂j =0) update F← {F; fj}
• Consider new triangles (tetrahedrons) sj ∈S formed by a facet fj ∈F and the point
x. Each sj contains the circumcentre cji and its derivatives cji; k . Create a multi-map
between nI ∈N→ sj for all sj ∈S

• Computations for each nI ∈N (A=0; Ak =0)
— Using the multi-map, the set VI of Voronoi vertices vi for the node nI is

obtained
— If VI : size() 6=2, re-order the vertices in counter-clockwise orientation; in R3,

the re-ordering of the vertices is carried out on the plane which contains all
the vertices.

— Compute sI [length (area) in R2 (R3)] and its derivatives sI; k
— Compute hI =d(x; xI ) and hI; k

— Evaluate �I = sI =hI and its derivatives �I; k

— Update A← A+ �I , Ak ← Ak + �I; k

• Shape function �I (x)= �I =�J �J and its derivatives �I; k(x) are evaluated for all
nI ∈N

In Figure 6(a), a regular 5× 5 grid is shown and in Figures 6(b) and 6(c), the Sibson and
non-Sibsonian shape function associated with node A are illustrated.

3. IMPOSITION OF ESSENTIAL BOUNDARY CONDITIONS

The Sibson interpolant is precisely linear on the boundary of convex domains; however, this
property of linear behaviour is not exactly satis�ed for the Sibson interpolant if the boundary is
part of a non-convex domain [4]. In practice, with su�cient re�nement along such a boundary,
almost linear behaviour is obtained. In most meshless methods that are based on moving least-
squares approximants, the approximations do not interpolate nor yield precisely linear behaviour on
the essential boundary which makes imposition and satisfaction of essential conditions non-trivial
in these classes of meshless methods. In the following sub-sections, we discuss the behaviour of
the non-Sibsonian interpolant on the boundary of convex and non-convex domains. It is shown that
the displacements are precisely linear on the essential boundary in both cases, and hence essential
boundary conditions in NEM using the non-Sibsonian shape functions can be imposed exactly as
in �nite elements.

3.1. Convex domain

The discrete model consists of a set of nodes N that describes a convex domain 
, with @

represented by the boundary of the convex hull CH(N ). On the boundary of the convex hull, the
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16 N. SUKUMAR ET AL.

Figure 6. Sibson and non-Sibsonian shape functions: (a) Nodal grid; (b) Sibson shape
function �S

A(x); and (c) non-Sibson shape function �nSA (x).

trial functions uh(x) are strictly linear between two nodes that belong to an edge of a Delaunay
triangle. The proof follows:

Proof. Consider a typical Delaunay triangle which has one edge (two nodes) along the boundary
of the convex hull, and the trial functions uh(�) are to be evaluated at a point � along the edge
1–2 (Figure 7). For simplicity and for ease of illustration, we assume that � has only three natural
neighbours, namely nodes 1, 2, and 3. We use a local co-ordinate system � along the edge 1–2
such that �=0 at node 1 and �=1 at node 2. The �rst-order Voronoi cell for � is shown in
Figure 7. By de�nition, the non-Sibsonian shape functions can be written as

�I (�)=

sI (�)
hI (�)
3∑

J=1

sJ (�)
hJ (�)

; (I =1−3) (50)

Since the length of the Voronoi edge associated with nodes 1 and 2 on the boundary of the
convex hull is unbounded, we can express the Lebesgue measures s1(�); s2(�), and s3(�)
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NATURAL NEIGHBOUR GALERKIN METHODS 17

Figure 7. Linear behaviour of uh(�) along the boundary of a convex domain.

as

s1(�)= lim
L→∞

L+ �1(�); s2(�)= lim
L→∞

L+ �2(�); s3(�)= �3(�) (51)

where �1(�), �2(�), and �3(�) are �nite. In addition, we also have h1(�)= �=2, h2(�)= (1− �)=2,
and h3(�) is �nite. On using Equation (50), we can write

�1(�) = lim
L→∞

(L+ �1(�))(1− �)h3(�)
(L+ �1(�))(1− �)h3(�) + (L+ �2(�))�h3(�) + �3(�)(1− �)�

(52a)

�2(�) = lim
L→∞

(L+ �2(�))�h3(�)
(L+ �1(�))(1− �)h3(�) + (L+ �2(�))�h3(�) + �3(�)(1− �)�

(52b)

�3(�) = lim
L→∞

�3(�)(1− �)�
(L+ �1(�))(1− �)h3(�) + (L+ �2(�))�h3(�) + �3(�)(1− �)�

(52c)

Taking the limit as L→∞ in the above equations, we obtain

�1(�)= 1− �; �2(�)= �; �3(�)= 0 (53)

and hence along the edge 1–2, the shape function contributions from only nodes 1 and 2 are non-
zero. The above result is in general true, even if more than three natural neighbours are considered.
This is so, since the Lebesgue measure associated with all interior nodes is �nite—similar to �3(�)
in Figure 7. Using the above equation, the trial functions at the point � can be written as

uh(�)= (1− �)u1 + �u2 (54)

which are linear functions, and hence the proof.

3.2. Non-convex domain

Consider a set of nodes N that describes a non-convex domain 
⊂R2. Consider a �1 (�1⊂�= @
)
which renders the domain to be non-convex. For purpose of illustration, we choose a non-convex
domain bounded by two concentric circles. The discrete model (one-quarter) along with the
Voronoi diagram are shown in Figure 8. It is evident that the Voronoi cells for the nodes along �i
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18 N. SUKUMAR ET AL.

Figure 8. Linear behaviour of uh(x) along the boundary of a non-convex domain:
(a) Nodal discretization; and (b) Voronoi diagram.

(i=2–4) are unbounded, whereas the Voronoi cells for the nodes along �1 are bounded and there-
fore have �nite areas (Figure 8(b)). The Sibson interpolant is strictly linear along �̃=�2 ∪�3 ∪�4;
however, the interpolant is not linear between adjacent nodes on the boundary �1 since for x∈�1,
there exists non-zero shape function contributions at x from some interior nodes [4].
Let the essential boundary �u=�1. In Figure 9, we show four contiguous nodes (nodes 1, 2, a,

and b) along �u. Let � be a local co-ordinate system along the edge 1–2 such that �=0 at node 1
and �=1 at node 2. We consider a point �∈�u which is located along the Delaunay edge 1–2. If a
point x lies inside the circumcircle of a Delaunay triangle, then the Delaunay triangle is known as
the circum-triangle of point x. By the Delaunay empty circumcircle criterion, all circum-triangles
of point � must have nodes 1 and 2 as its vertices. This immediately precludes the nodes along
�u that are shown by open circles (Figure 9) to be natural neighbours of �. We assume that � has
four natural neighbours, namely nodes numbered 1–4 and shown by the dark circles in Figure 9.
The Voronoi cell for point � and the length measures sI (x) and hI (x) that appear in the de�nition
of the non-Sibsonian interpolant are shown in Figure 9. We note the Lebesgue measure sI (�)
associated with nodes 1 and 2 are unbounded, and those for the interior nodes 3 and 4 are �nite.
It is apparent that the computation of the shape functions is now similar to the convex case, and
by following similar arguments (see the proof in Section 3.1), we again arrive at the conclusion
that the NEM trial functions using non-Sibsonian shape functions are precisely linear along the
edge 1–2, i.e.

uh(�)= (1− �)u1 + �u2 (55)

A consequence of the above discussion is that by choosing non-Sibson shape function as trial
and test functions in the natural element method, essential boundary conditions can be directly
imposed on the nodes, as in the �nite element method—this is due to the interpolating property
of the shape functions and the linearity of the approximation along the essential boundary of
the domain. It is to be noted that the above inference is rigorously true for convex as well as
non-convex domains. The natural element method with non-Sibsonian shape functions is the only
meshless Galerkin method that we are aware of that will exactly satisfy (linear) essential boundary
conditions.
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Figure 9. Non-Sibsonian interpolation along the
boundary of a non-convex domain.

Figure 10. Finite element and natural element
method coupling.

4. FE AND NEM COUPLING

The coupling between linear �nite elements and the natural element method using the non-
Sibsonian interpolant, is straight-forward. In Figure 10, a domain 
=
FE ∪
NEM is illustrated,
where 
FE is the �nite element domain and 
NEM is the NEM domain. Since the non-Sibsonian
interpolant is precisely linear on the boundary of convex as well as non-convex domains, a seam-
less procedure emerges to implement the coupling. By adopting ‘regional’ interpolation, i.e. �nite
element interpolation carried out in 
FE and NEM interpolation in 
NEM, the trial function in the
domain 
 is given by

uh(x)=




∑
I�
FE
I (x)uI if x∈
FE∑

I�
NEM
I (x)uI if x∈
NEM

(56)

which completes the coupling. As opposed to coupling �nite elements to other meshless methods
(see Belytschko et al. [25] for instance), in the present implementation, the coupling is natural
with no need for a blending domain nor modi�ed shape functions.

5. GOVERNING EQUATIONS

In this section, we present the governing equations of linear elastostatics, together with the weak
form and the discrete system for the natural element method.

5.1. Strong form

Consider a body which is described by an open bounded domain 
⊂R2, with boundary �. The
boundary � is composed of the sets �u and �t , such that �=�u ∪�t and �u ∩�t = ∅. The �eld
equations of elastostatics are

∇ · b + b= 0 in 
 (57a)
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b=C : (U− U∗) (57b)

U=∇su (57c)

where ∇s is the symmetric gradient operator, b is the body force vector per unit volume, ” is the
small strain tensor, ”∗ is an imposed eigenstrain tensor, and C is the material moduli tensor for
a homogeneous isotropic material. The eigenstrain tensor is included in the formulation to permit
the treatment of a transformation strain problem that appears in Section 6.2.
Displacement (essential) boundary conditions are imposed on �u and traction (natural) boundary

condition on �t . The essential and natural boundary conditions are:

u= �u on �u (58a)

b · n= �t on �t (58b)

where n is the unit outward normal to 
, and �u and �t are prescribed displacements and tractions,
respectively.

5.2. Weak form

Let u be the displacement solution for the stated elastostatic boundary value problem, with �(u)
the corresponding Cauchy stress tensor. Let u∈V be the displacement trial solution, and v∈V0 be
any set of kinematically admissible test functions (virtual displacements). The space V=H1(
)
is the Sobolev space of functions with square-integrable �rst derivatives in 
, and V0 =H10(
) is
the Sobolev space of functions with square-integrable �rst derivatives in 
 and vanishing values
on the essential boundary �u. The weak form of the governing equation and associated boundary
conditions can be written as

Find u∈V such that∫


b(u) : U(v) d
=

∫


b · v d
 +

∫
�t

�t · v d� ∀ v∈V0
(59)

5.3. Discrete system

Consider the Bubnov–Galerkin implementation for NEM in two-dimensional linear elasticity. In
NEM, �nite-dimensional subspaces Vh ⊂V and Vh

0⊂V0 are used as the approximating trial and
test spaces. The weak form for the discrete problem can be stated as:

Find uh ∈ Vh ⊂V such that∫

h
b(uh) : U(vh)=

∫

h
b · v d
 +

∫
�h
t

�t · v d� ∀vh ∈ Vh
0⊂V0

(60)

In a Bubnov–Galerkin procedure, the trial functions uh as well as the test functions vh are repre-
sented as linear combinations of the same shape functions. The trial and test functions are

uh(x)=
∑
I
�I (x)uI ; vh(x)=

∑
I
�I (x)vI (61)

where �I (x) are the NEM shape functions.
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On substituting the trial and test functions from Equation (61) in Equation (60), and using the
arbitrariness of nodal variations, the following discrete system of linear equations is obtained:

Kd= f (62)

where

KIJ =
∫

h
BTI CBJ d
 (63a)

fI =
∫
�h
t

�I �t d� +
∫

h

�Ib d
 +
∫

h
BTI CU∗ d
 (63b)

where C is the constitutive matrix for an isotropic linear elastic material, and BI is the matrix of
shape function derivatives which is given by

BI =



�I; x 0

0 �I;y

�I;y �I; x


 (64)

6. NUMERICAL RESULTS

The application of the natural element method to an inclusion problem in small displacement
two-dimensional elastostatics, in the absence of body forces, is presented. First, we conduct an
eigenanalysis to study the properties of the Sibson and non-Sibsonian interpolating spaces. Numer-
ical integration is carried out using symmetric quadrature rules for a triangle. In this paper, three
point quadrature rule is used in the numerical integration of the weak form.

6.1. Eigenanalysis

In order to study the properties of the approximation spaces of NEM, we consider the linear inde-
pendence of the shape functions [26]. To this end, we consider the following discrete eigenvalue
problem:

Mhdh= �hdh (65)

where dh and �h are the eigenvectors and eigenvalues of Mh, and Mh is the mass matrix which
is given by

Mh
IJ =

∫

h

�I�J d
 (66)

The condition number �(Mh) of the matrix Mh is de�ned as the ratio of the maximum eigenvalue
�max to that of the minimum eigenvalue �min. The condition number is used as a measure of the
linear independence of the shape functions, with �=1 indicating optimality. The EISPACK [27]
eigensolver package is used to solve the eigenvalue problem. In Table II, the condition number
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Table II. Linear independence of NEM shape functions.

�h �h
D

Grids Nodes Sibson Non-Sibson FEM

Uniform 25 3.83 3.57 7.00
289 3.83 3.57 7.00
4225 3.83 3.57 7.00

Non-uniform 70 35.65 40.80 43.17
278 2146.44 1887.29 3422.31

is computed for three di�erent nodal discretizations. The condition number is computed for a
regular nodal grid (Figure 11(a)) and uniform re�nements of the same grid; in addition, results
are also computed for a grid with random location of nodes (Figure 11(b)), and for the irregular
focused grid shown in Figure 11(c). The condition numbers obtained for NEM using the Sibson
and non-Sibsonian interpolants are of the same order. The NEM results for both uniform and non-
uniform nodal discretizations are better than those obtained using constant strain �nite elements
which indicates that the matrix system is well-conditioned and the NEM approximation spaces are
linearly independent.

6.2. In�nite plate with an inclusion

We consider the problem of an inclusion (�-phase) with a constant eigenstrain U∗� in an in�nite
matrix (�-phase). In Figure 12, a graphical representation of the problem is illustrated. The exact
displacement vector solution in polar co-ordinates is given by Mura [28]

ur(r) =

{
C1r r6R

C1 R2

r r¿R
(67a)

u� = 0 (67b)

where

C1 =
(�� + ��) ���∗
�� + �� + �� (68)

In the above equation, � and � are the Lam�e constants of the respective phases, and the eigen-
strain ���∗ is a constant dilatational strain. The material properties used in the numerical computation
are [29]: ��=497:16, ��=390:63 in the �-phase, and the constants in the �-phase are ��=656:79,
��=338:35. These correspond to E�=1000, ��=0:28, E�=900, and ��=0:33. A constant di-
latational eigenstrain ���∗=0:01 is assumed in the analysis, and the associated eigenstrain tensor is
U∗� = ��∗� (e1e1 + e2e2).
The numerical model (quarter symmetry) is shown in Figure 13, where the nodal discretization

consists of 647 nodes, with 114 nodes in the inclusion, 520 nodes in the matrix, and 13 nodes
along the interface r=R. The outer radius R0 = 200 is su�ciently large in comparison to the
radius of the inclusion R=5, so as to adequately represent the in�nite matrix. Essential boundary
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Figure 11. Nodal grids for eigenanalysis: (a) uniform grid (25 nodes); (b) random
set (70 nodes); and (c) irregular focused grid (278 nodes).

Figure 12. Inclusion embedded in an in�nite matrix.

conditions are imposed along the lines of symmetry, and the outer radius R0 = 200 is traction free.
Plane strain conditions are assumed in the numerical computations. The numerical computations
are carried out using the Sibson interpolant, non-Sibsonian interpolant, and the FE–NEM coupling
procedure outlined in Section 4. The NEM solution recovered the cylindrical symmetry in the
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Figure 13. Nodal discretization for inclusion in an in�nite matrix
problem: (a) quarter model; (b) inclusion (� phase).

solution, and hence results are presented as a function of only the radial distance. The numerical
results using the Sibson interpolant, non-Sibsonian interpolant, and the FE–NEM coupling technique
compare favourably to each other. In Figure 14, a comparison of the numerical and exact solution
is presented. The results shown in Figure 14 are computed along a radial line (r=0 to r=25)
at �=30◦. Along the radial line, 30 equi-spaced output points are chosen within the inclusion,
and 30 equi-spaced points in the matrix. Excellent agreement between the NEM and the analytical
solution is observed. The strains as well as the stresses are in good agreement with the exact
solution. The oscillations in the radial and hoop strains are negligible; they are, however, a bit
more pronounced in the stress solutions.
In order to show the linear behaviour of the non-Sibsonian interpolant along the boundary ��,

we consider two nodes A and B along �� (Figure 15(a)). In Figure 15(b), the non-Sibsonian
shape functions �A and �B are plotted along the element edge, with � a local co-ordinate along
A–B. The numerical results are computed along the line x̃A to xB, where x̃A=(xA + �; yA) with
�=10−12 being a small tolerance. The tolerance is required in the numerical computations since
for a point x ∈ ��, the length of the Voronoi edges associated with nodes A and B is unbounded.
It is seen from Figure 15 that a linear displacement approximation along A–B is realized in the
numerical computations, which supports the theoretical proof presented in Section 3.2. This shows
that essential boundary conditions in NEM using the non-Sibsonian interpolant can be prescribed
exactly as in �nite elements. In addition, these numerical results validate the FE–NEM coupling
technique that is described in Section 4.

7. CONCLUSIONS

In this paper, we introduced the use of natural neighbour-based interpolants (Sibson and non-
Sibsonian) for the solution of elliptic partial di�erential equations. The numerical implementation
of these interpolants in a Galerkin method is known as the natural element method (NEM). The
notion of natural neighbours relies on the Voronoi diagram which is unique for a given set of
scattered nodes in Rd. The local density and spatial location of nodes is taken into account in the
construction of the natural neighbour-based interpolants. Some of the most important properties

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:1–27



NATURAL NEIGHBOUR GALERKIN METHODS 25

Figure 14. Comparison of NEM and the exact solution for an inclusion with a dilatational eigenstrain
in an in�nite matrix: (a) radial displacement ur(r); (b) radial strain �rr(r); (c) hoop strain ���(r);

(d) radial stress �rr(r); and (e) hoop stress ���(r).

of the non-Sibsonian interpolant were reviewed and new results on the imposition of essential
boundary conditions were presented.
An eigenanalysis of the Sibson and non-Sibsonian interpolants was carried out, and the meshless

interpolating spaces were found to be uniformly linearly independent. The computational e�ciency
of the non-Sibsonian interpolants over the Sibson interpolant was demonstrated and a versatile
algorithm for 2- and 3-dimensional non-Sibsonian computations was presented. The NEM results
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Figure 15. Linear approximation along a non-convex boundary: (a) quarter model;
and (b) non-Sibsonian shape functions along ��.

for the problem of an inclusion with a constant eigenstrain, embedded in an in�nite matrix, were
found to be in good agreement with the exact solution. Essential boundary conditions in NEM
using the non-Sibsonian interpolants can be imposed as in �nite elements, for both, convex, and
non-convex domains. A rigorous proof to this fact was presented, which was numerically veri�ed.
A simple technique to couple �nite elements to the natural element method was also described.
The robust and appealing properties of natural neighbour-based interpolants, together with the
seamless means to couple NEM to FEM and the ease of modelling material interfaces opens up
many exciting areas of mechanics research that can be explored by this new technique.
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