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Sibson and non-Sibsonian interpolants for elliptic partial
differential equations
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Abstract

The Natural Element Method (NEM) is a meshless Galerkin method which has shown promise in the area of
computational mechanics. In earlier applications of NEM [1–3], natural neighbor (Sibson) coordinates [4] were used
to construct the trial and test functions. Recently, Belikov and co-workers [5] proposed a new interpolation scheme
(non-Sibsonian interpolation) based on natural neighbors. In this paper, we present the Sibson and the non-Sibsonian
interpolants, and discuss their use in a Galerkin scheme for the solution of elliptic PDEs. In particular, by choosing the
non-Sibsonian interpolant, the exact imposition of essential boundary conditions in a meshless method is realized.
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1. Introduction

In the natural element method [1], Sibson coordinates
[4] are used to construct the trial and test functions. Recent
studies on NEM [2,3] have shown that natural neighbor
coordinates, which are based on the Voronoi tessellation
of a set of nodes, are an appealing choice to construct
meshless interpolants. In [5], a new interpolation scheme
(non-Sibsonian interpolation) based on natural neighbors
was proposed. In this paper, we discuss the construction
and use of the Sibson and the non-Sibsonian interpolation
schemes for the solution of elliptic PDEs. Two signifi-
cant advantages of the non-Sibsonian interpolant over the
Sibsonian interpolant are its computational efficiency in 2
dimensions, which is expected to carry over to 3 dimen-
sions, and the ability to exactly impose essential boundary
conditions on the boundaries of convex and non-convex
domains [6].
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2. Sibson and non-Sibsonian interpolation

2.1. C0 shape function

Natural neighbors and natural neighbor (Sibson) inter-
polation was introduced by Sibson [4] as a means for data
fitting and smoothing. Consider a set of distinct nodes
N D fn1; n2; : : :; nM g in R2. The Voronoi diagram of the
set N is a sub-division of the plane into regions TI , such
that any point in TI is closer to nI (nearest neighbor) than
to any other node n J 2 N (J 6D I ). The region TI is the
Voronoi cell of nI :

TI D fx 2 R2 : d.x; xI / < d.x; xJ / 8 J 6D I g; (1)

where d.xI ; xJ / is the Euclidean distance between xI and
xJ . The Delaunay triangulation is the geometric dual of
the Voronoi diagram (Fig. 1a). If we insert a point x
into the set N, then the natural neighbors of the point
x are defined as follows. If the point x lies within the
circumcircle of a Delaunay triangle t with vertices nI –n J –
nK , then nI , n J , and nK are natural neighbors of x. Natural
neighbor (Sibson) shape function is based on the first- and
second-order Voronoi diagram and is defined by the ratio
of polygonal areas (polyhedral volumes) in 2 dimensions (3
dimensions): �I .x/ D AI .x/=A.x/, where A.x/ is the area
of the first-order Voroni cell about x and AI .x/ is the area
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Fig. 1. Construction of natural neighbors and the non-Sibso-
nian interpolant: (a) original Voronoi diagram and x, and (b)
first-order Voronoi cell of point x.

of overlap between the first-order Voroni cell about node I
and A.x/. For details on the construction and properties of
the Sibson interpolant, the interested reader can see [1,2,4].

In addition to Eq. (1), define tI J D fx 2 STI \STJ ; J 6D I g,
STI D TI [ @TI is the closure of set TI , and tI J may be an
empty set. If d.xI ; xJ / 6D 0, then [5]X

J
J 6DI

jtI J jxJ

d.xI ; xJ /
D xI

�X
J

J 6DI

jtI J j
d.xI ; xJ /

½
; (2)

where j Ð j denotes the Lebesgue measure (length) in R. In
terms of the notation used above, the non-Sibsonian shape
function �I .x/ is defined as

�I .x/ D
jtxI j

d.x; xI /
nX

JD1

jtxJ j
d.x; xJ /

: (3)

In 2 dimensions, the non-Sibsonian shape function �I .x/
takes the form:

�I .x/ D ÞI .x/
nP

JD1
ÞJ .x/

; ÞJ .x/ D sJ .x/
h J .x/

; (4)

where sI .x/ is the length of the Voronoi edge associated
with node I , and h I .x/ is the perpendicular distance be-
tween the Voronoi edge of node I to x (Fig. 1b). In Fig. 2,
the non-Sibsonian shape function is shown for the center

Fig. 2. Non-Sibsonian shape function.

node in a 5 ð 5 regular grid. For a scalar-valued func-
tion u.x/, the interpolation scheme using the non-Sibsonian
shape function takes the form:

uh.x/ D
nX

ID1

�I .x/uI : (5)

The computational complexity of non-Sibsonian shape
function in 2 dimensions depends only on the ratio of
length measures, whereas the Sibson shape function is
based on the ratio of polygonal areas. The computations
becomes even more favorable and tractable in 3 dimensions
for the non-Sibsonian interpolant. The non-Sibsonian shape
functions are strictly positive, interpolate nodal data, and
are also linearly complete [5].

The Sibsonian interpolant is precisely linear on the
boundary of convex domains, but not exactly so if the
boundary is part of a non-convex domain [2]. For the
non-Sibsonian interpolant, there are no such restrictions.
This is so, since for a point x 2 @Ω, sI .x/ is always finite
for interior nodes, whereas it is unbounded for nodes on
@Ω; hence the nodal shape functions of interior nodes are
zero. Hence, by choosing the non-Sibsonian interpolant,
the exact imposition of essential boundary conditions in a
meshless method is realized. An alternative approach using
Þ-shapes in NEM to satisfy the imposition of essential
boundary conditions was proposed in [7].

2.2. C1 shape function

By embedding Sibson coordinates in the Bernstein–
Bézier representation of a cubic simplex, Farin [8] pro-
posed a C1.Ω/ natural neighbor interpolant. By using the
Sibson coordinate in Farin’s construct, and carrying out
the transformations outlined in [3], we arrive at a C1.Ω/

Sibson interpolant for PDEs.
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Fig. 3. Cubic Bernstein–Bézier triangular patch.

Let i D .i1; i2; : : :; in/ be a multi-index with norm j i j D
i1 C i2 C : : : C in . In addition, let Φ D .�1; �2; : : :; �n/,
where �I are the Sibson shape functions, be the barycentric
coordinate of a simplex Ž 2 Rn�1. A C1.Ω/ Bernstein–
Bézier surface interpolant of degree-3 over the simplex Ž
can be written as [8]

uh.Φ/ D
X
j i jD3

B3
i .Φ/bi; (6)

where bi is the Bézier ordinate associated with the control
point i=3, and

.�1 C �2 C Ð Ð Ð C �n/
3 D

X
j i jD3

B3
i .Φ/;

B3
i .Φ/ D

�
3

i

�
�

i1
1 �

i2
2 : : : �

in
n ;

(7)

where
�m

i

Ð
is the multinomial coefficient, and it is noted that

there are n2 C �n
3

Ð
terms on the right-hand side of Eq. (6).

The control points (circles) and Bézier ordinate values (bi)
for a cubic Bernstein–Bézier triangular patch are shown in
Fig. 3.

The interpolant in Eq. (6) is suitable for surface data ap-
proximation; however, for the numerical solution of PDEs
by a Galerkin procedure this is not the case since nodal
function and nodal gradient values are unknowns, which
are to be determined from the solution of the discrete sys-
tem. To meet the desired goal, we re-cast Eq. (6) in the
following form (matrix–vector notation):

uh.Φ/DfB.Φ/gTfbgD fB.Φ/gT[T]fugD fΨ.Φ/gTfug: (8)

In Eq. (8), fΨ.Φ/gT D f 1.Φ/;  2.Φ/;  3.Φ/; : : :;

 3n�2.Φ/;  3n�1.Φ/;  3n.Φ/g, and fugT D fu1; �1x ; �1y;

: : :; un; �nx ; �nyg, where uI D u.xI / are the nodal function
values, and �I x D u;x .xI / and �I y D u;y.xI / are the nodal
gradient values. The transformation matrix [T] maps the
nodal function and gradient values to the Bézier ordinates
[3].

On constructing [T] and carrying out the matrix–vector
multiplication indicated in Eq. (8), we can express the

C1.Ω/ trial function in standard shape function notation as:

uh.x/ D
3nX

iD1

 i.x/ui ; (9)

where  3I�2.x/,  3I�1.x/, and  3I .x/ are the shape func-
tions for node I that are associated with the nodal degrees
of freedom uI , �I x , and �I y , respectively. Further details
on the transformation matrix [T] and the shape function
computations can be found in [3].

In the Galerkin implementation for the Poisson equation
or linear elastostatics (second-order), the trial and test
functions take the form shown in Eq. (5), whereas for the
biharmonic equation (fourth-order), Eq. (9) is used. On
using the weak form and a standard Galerkin procedure,
the discrete system is obtained.
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