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Numerical Computation of Discrete Differential Operators on Non-Uniform Grids

N. Sukumar1 and J. E. Bolander1

Abstract: In this paper, we explore the numerical ap-
proximation of discrete differential operators on non-
uniform grids. The Voronoi cell and the notion of natu-
ral neighbors are used to approximate the Laplacian and
the gradient operator on irregular grids. The underlying
weight measure used in the numerical computations is
the Laplace weight function, which has been previously
adopted in meshless Galerkin methods. We develop a dif-
ference approximation for the diffusion operator on irreg-
ular grids, and present numerical solutions for the Pois-
son equation. On regular grids, the discrete Laplacian is
shown to reduce to the classical finite difference scheme.
Two techniques to compute the nodal (gradient) flux are
presented, and benchmark computations in 2-d are per-
formed to demonstrate the accuracy of the schemes. The
numerical approximations developed herein are of rele-
vance in the solution of partial differential equations, in
methods where local (Laplacian) smoothing is desired,
and for applications such as mesh adaptivity in which
a posteriori error estimates using stress-based recovery
schemes are used.

keyword: meshless methods, natural neighbor,
Voronoi diagram, Laplace interpolant, finite volume,
irregular lattice, diffusion, supraconvergence

1 Introduction

The numerical computation of difference approximations
on non-uniform (unstructured) grids is used for the solu-
tion of partial differential equations, as a means for local
smoothing, in a posteriori error estimation using stress-
based recovery schemes, and during post-processing of
secondary (flux) variables in Galerkin methods. Classical
finite difference schemes are typically based on regular
grids, and hence are restricted to problem domains with
regular geometry. Building on prior work due to Jensen
(1972), Liszka and Orkisz (1980) proposed a generalized
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finite difference method (GFDM) on irregular grids. The
central issue addressed in Liszka and Orkisz (1980) was
the appropriate selection of the computational cell (star-
shaped domain) that surrounds a node, so as to yield a
well-conditioned discrete system of equations. Baty and
Villon (1997) used a least-squares method, whereas Bre-
itkopf, Touzot, and Villon (2000) adopted moving least
squares (MLS) approximants [Lancaster and Salkauskas
(1981)] to solve elliptic problems on arbitrary irregular
grids. Typically, in these approaches, a system of linear
equations is solved to obtain the discrete differential op-
erators [Liszka and Orkisz (1980)].

In this paper, we adopt the Voronoi cell and the notion of
natural neighbors to study difference approximations for
the diffusion and gradient operators on unstructured grids
in multi-dimensions. The advantages of the proposed ap-
proach over MLS-based schemes are two-fold:

� For irregularly-spaced nodes, the concept of natu-
ral neighbors provides a simple means to determine
(uniquely) the neighbors for a point. The geometric
properties of the Voronoi cell also provide a weight
function for each neighbor.

� Natural neighbor-based interpolation is a local ap-
proximation that is well-defined at all points in
the domain. The computational costs involved in
the construction of the interpolant are also minimal
since only algebraic calculations (no matrix inver-
sion or numerical integration) are required in the
evaluation of the discrete differential operators.

It was recently brought to our attention [Arroyo (2003)]
that a discrete theory of exterior calculus [Hirani (2003);
Mathieu, Hirani, Leok, and Marsden (2003)] provides a
discrete approximation for the Laplace operator that is
identical to the one used here. The calculus of differen-
tial forms (see Warnick, Selfridge, and Arnold (1997) for
an introduction) rests on foundations in algebraic topol-
ogy and geometric integration theory, and there has been
significant progress in computational mathematics and
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physics towards the construction of discrete counterparts
of continuum equations of field theories [Hyman and
Shashkov (1997); Teixeira and Chew (1999); Hiptmair
(2001); Hirani (2003)]; in a recent workshop2, some of
these topics are discussed. In solid mechanics, efforts
are also underway to develop discrete formulations [Tonti
(2001); Cosmi (2001); Ferretti (2003)].

In Section 2, an introduction to natural neighbors and nat-
ural neighbor-based (Sibson and Laplace) interpolants is
provided. The computational algorithm for the Laplace
interpolant is discussed in Section 2.2. Then, in Section
3.1, we describe the construction of a Voronoi cell-based
difference approximation for the diffusion equation. Is-
sues pertaining to consistency and convergence of differ-
ence schemes on non-uniform grids are discussed in Sec-
tion 3.1.1. Numerical examples for the Poisson equation
in 1-d and 3-d are presented in Section 3.1.3. Discrete
approximations for the gradient operator are described in
Section 3.2, and benchmark computations in 2-d are pre-
sented in Section 3.2.3. A discussion of the main results
from this study, and a few concluding remarks, are given
in Section 4.

2 Natural Neighbor-Based Interpolants

With an aim to overcome the need to remesh in mov-
ing boundary and large deformation problems, there has
been significant interest in the development and appli-
cation of meshless Galerkin methods [Belytschko, Kro-
ngauz, Organ, Fleming, and Krysl (1996)]. For re-
cent overviews on meshless and particle methods, the
interested reader can refer to Li and Liu (2002) and
Atluri and Shen (2002a). In the early developments of
meshless methods, moving least squares approximants
[Lancaster and Salkauskas (1981)] were used to con-
struct the trial and test functions. To improve the speed
and cost-effectiveness of meshless computations vis-à-
vis finite elements, Atluri and Shen (2002b) have re-
cently examined the use of various combinations of trial
and test approximations. Towards the goal of a truly
meshless method, Atluri and Shen (2002a,b) have de-
veloped the meshless local Petrov-Galerkin method in
which elements or background cells are not required ei-
ther for interpolation or for the integration of the weak
form. Natural neighbor-based schemes are a promising
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alternative to MLS-approximations; in natural neighbor-
based Galerkin methods [Sukumar (1998); Sukumar,
Moran, Semenov, and Belikov (2001)], the Sibson co-
ordinate [Sibson (1980)] and the Laplace interpolant
[Christ, Friedberg, and Lee (1982); Belikov, Ivanov,
Kontorovich, Korytnik, and Semenov (1997); Hiyoshi
and Sugihara (1999)] are adopted. An overview of natu-
ral neighbor Galerkin methods with applications in solid
and fluid mechanics is presented in Cueto, Sukumar,
Calvo, Cegoñino, and Doblaré (2003).

Consider a bounded domain Ω in d-dimensions (d �1–3)
that is described by a set N of M scattered nodes:
N � �n1�n2� � � � �nM�. The Voronoi diagram [Aurenham-
mer (1996)] V �N� of the set N is a sub-division of the
domain into regions V �nI�, such that any point in V �nI�
is closer to node nI than to any other node nJ �N (J �� I).
The region V �nI� is the first-order Voronoi cell for a node
nI within the convex hull; V �nI� is a convex polygon
(polyhedron) in R2 (R3):

V �nI� � �x �Rd : d�x�xI�� d�x�xJ� �J �� I�� (1)

where d��� �� denotes the Euclidean distance.

The dual of the Voronoi diagram is the Delaunay tessella-
tion, which is constructed by connecting nodes that have
a common (d–1)-dimensional Voronoi facet. In Fig. 1a,
the Voronoi diagram and the Delaunay triangulation are
shown for a nodal set consisting of seven nodes (M � 7).
The Voronoi vertex and edge are also indicated in Fig. 1a.
A noteworthy property of Delaunay triangles is the empty
circumcircle criterion—if DT �nJ �nK �nL� is any Delau-
nay triangle of the nodal set N, then the circumcircle
of DT contains no other nodes of N. In Fig. 1b, the
Delaunay circumcircles for three triangles are shown.
Consider the introduction of a point p with coordinate
x � R2 into the domain Ω (Fig. 1b). The Voronoi dia-
gram V �n1�n2� � � � �nM� p� or equivalently the Delaunay
triangulation DT �n1�n2� � � � �nM � p� for the M nodes and
the point p is constructed. Now, if the Voronoi cell for
p and nI have a common facet (line segment in R2 and
a polygon in R3), then the node nI is said to be a natu-
ral neighbor of the point p [Sibson (1980)]. The Voronoi
cell for point p and its natural neighbors are shown in
Fig. 1c.

The Sibson coordinate is based on the first- and second-
order Voronoi diagram [Aurenhammer (1996)] and is de-
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Figure 1 : Geometric constructs. (a) Voronoi diagram
and Delaunay triangulation; (b) Delaunay circumcircles;
and (c) Natural neighbors (filled circles) of point p.

fined by the ratio of area measures in 2-d [Sibson (1980)]:

φI�x� �
AI�x�
A�x�

� A�x� �
n

∑
J�1

AJ�x�� (2)

where A�x� is the area of the first-order Voronoi cell of
p and AI�x� is the area of overlap between the first-order
Voronoi cells of p and node I. In Fig. 2a, the areas A1�x�
(node 1) and A�x� are shown.

The Laplace interpolant was first proposed in Christ,
Friedberg, and Lee (1982), with its recent re-discovery
in two distinct research groups [Belikov, Ivanov, Kon-
torovich, Korytnik, and Semenov (1997); Hiyoshi and
Sugihara (1999)]. In Belikov, Ivanov, Kontorovich, Ko-
rytnik, and Semenov (1997), the new natural neighbor-
based interpolant was referred to as the non-Sibsonian
interpolant, whereas Hiyoshi and Sugihara (1999) coined
it as the Laplace interpolant which is the name we choose
to use here. We now define the Laplace shape function.
Let N denote a nodal set which was defined previously,
with VI the Voronoi cell associated with node I. Let tIJ
be the �d–1�-dimensional facet (line segment in 2-d and
polygon in 3-d) that is common to VI and VJ , and m�tIJ�
denote the Lebesgue measure of tIJ , i.e., a length in 2-
d and an area in 3-d. If I and J do not have a common
facet, then m�tIJ� � 0. Now, consider the introduction
of a point p with coordinate x � Rd into the tessellation.
If the point p has n natural neighbors, then the Laplace
shape function for node I is defined as [Christ, Friedberg,
and Lee (1982); Belikov, Ivanov, Kontorovich, Korytnik,
and Semenov (1997)]:

φI�x� �
αI�x�

n
∑

J�1
αJ�x�

� αJ�x� �
m�tJ�x��

hJ�x�
� x � Rd� (3)

In 2-d, the shape function takes the form:

φI�x� �
αI�x�

n
∑

J�1
αJ�x�

� αJ�x� �
sJ�x�
hJ�x�

� x � R2� (4)

where αJ�x� is the Laplace weight function, sI�x� is the
length of the Voronoi edge associated with p and node I,
and hI�x� is the Euclidean distance between p and node
I (Fig. 2b).

The Voronoi diagram of the nodal set N defines the topol-
ogy of a random lattice, such as those used to study
breakdown processes in disordered materials [Herrmann
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Figure 2 : Natural neighbor-based interpolants. (a) Sib-
son interpolant; and (b) Laplace interpolant.

and Roux (1990)]. The nodes act as lattice sites and
are interconnected with their natural neighbors via sim-
ple lineal elements. For diffusion problems, the lattice
elements can be viewed as conduits that transmit poten-
tial flow. Here, the quantity αJ � sJ�hJ in Equation (4)
is used to scale the local diffusivity relations for the el-
ement connecting nodes I and J. The notion of a lat-
tice network of conduit elements is discussed more fully
in Section 3.2.2, which concerns the extraction of nodal
gradient information based on the conservation of vol-
ume of the transmitted medium.

2.1 Properties

If the point x � xI , then φI�x� � 1 and all other shape
functions are zero. The properties of positivity, interpo-
lation, and partition of unity are true for the Sibson and
the Laplace shape functions [Sukumar (1998); Sukumar,
Moran, Semenov, and Belikov (2001)]:

0 � φI�x�� 1� φI�xJ� � δIJ�
n

∑
I�1

φI�x� � 1� (5)

The Laplace shape functions also form a linearly com-
plete approximation [Christ, Friedberg, and Lee (1982)]:

x �
n

∑
I�1

φI�x�xI � (6)

which indicates that the Laplace shape function can ex-
actly reproduce a linear function. In a Galerkin im-
plementation [Sukumar, Moran, Semenov, and Belikov
(2001)], the Laplace interpolation scheme for a scalar-
valued function u�x� is written as:

uh�x� �
n

∑
I�1

φI�x�uI � (7)

where uI (I � 1� 2� � � � � n) are the unknowns at the n nat-
ural neighbors. On taking the derivative of Equation (7),
we obtain:

∂uh

∂xi
�x� �

n

∑
I�1

φI�i�x�uI �i � 1–3�� (8)

2.2 Computational Algorithm

Simple geometric computations are required to compute
the Lebesgue measure (sIJ) that appears in the Laplace
weight function. In 2-d, sIJ is the Voronoi edge length,
which is equal to the distance between adjacent Voronoi
vertices. Algebraic formulas (see Sukumar (1998)) for
the circumcenter of a triangle are used to evaluate the co-
ordinate of the Voronoi vertices. For a triangle t�A�B�C�
with vertices A�a�, B�b�, and C�c�, the circumcenter
�v1�v2� of t is:

v1 �
�a2

1	 c2
1 �a2

2	 c2
2��b2	 c2�

D

	 �b2
1	 c2

1 �b2
2	 c2

2��a2	 c2�

D
� (9a)

v2 �
�b2

1	 c2
1 �b2

2	 c2
2��a1	 c1�

D

	 �a2
1	 c2

1 �a2
2	 c2

2��b1	 c1�

D
� (9b)
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where D which is four times the area of triangle t�A�B�C�
is given by

D � 2��a1	 c1��b2	 c2�	 �b1	 c1��a2	 c2��� (9c)

In Equation (9), a � �a1�a2�, b � �b1�b2�, and
c � �c1�c2� are the coordinates of the vertices (oriented
counter-clockwise) of t.

In 3-d, the Voronoi facet is a polygon, and the coordinates
of the vertices are defined by the centers of the Delaunay
circumspheres. The polygonal area is the Lebesgue mea-
sure sIJ . From a sequential listing of the polygon ver-
tices, the polygon area can be computed as follows. The
polygonal domain is partitioned into a collection of trian-
gles. The polygon area is then the sum of triangle areas,
where the area of a triangle t�A�B�C� in 3-d is given by

∆ �



E2 �F2 �G2

2
� (10)

where

E � �b2	a2��c3	a3�	 �b3	a3��c2	a2��

F � �b1	a1��c3	a3�	 �b3	a3��c1	a1�� (11)

G � �b1	a1��c2	a2�	 �b2	a2��c1	a1��

Here, a � �a1�a2�a3�, b� �b1�b2�b3�, and c � �c1�c2�c3�
are the coordinates of the vertices of t in counter-
clockwise order.

3 Discrete Differential Operators

First, we consider the approximation of the diffusion op-
erator on unstructured grids and present numerical so-
lutions for elliptic equations in 1-d and 3-d. Then, two
different schemes for the extraction of the discrete nodal
gradient are described, and numerical examples are pre-
sented to demonstrate the accuracy of the two schemes.

3.1 Difference Approximation for the Diffusion Oper-
ator

The Voronoi tessellation and its dual the Delaunay trian-
gulation are often used to discretize a continuum. The
Voronoi cell provides a natural domain of influence for
a given node, and hence it is commonly used in numeri-
cal methods such as the finite volume and the finite ele-
ment method. In the Voronoi cell finite element method
(VCFEM) [Ghosh and Moorthy (1995)], the Voronoi tes-
sellation is used to represent the material microstruc-
ture and a finite element formulation is developed on the

Voronoi cells. The numerical method is used for multi-
scale analysis of heterogeneous materials.

In this work, we use an integral balance law on the
Voronoi cell (finite-volume averaging) to derive a finite
difference scheme for the diffusion operator. The moti-
vation for the above is derived from prior work on the
Laplace interpolant [Belikov, Ivanov, Kontorovich, Ko-
rytnik, and Semenov (1997); Sukumar, Moran, Semenov,
and Belikov (2001)] and from Friedberg and Ruiz (1984),
in which prescriptions are presented for vector identities
on a random lattice. The proposed approach was intro-
duced in Sukumar (2003), but the authors recently be-
came aware of the work of Börgers and Peskin (1985,
1987)], who have used the same scheme on Voronoi grids
to approximate the Laplacian. In Börgers and Peskin
(1985, 1987), the discrete Laplacian is used within a La-
grangian fractional step method for the solution of the
Navier-Stokes equation. As our model problem, we con-
sider the following d-dimensional steady-state diffusion
equation with Dirichlet boundary conditions:

	Lu�x� �	∇∇∇ � �κ�x�∇∇∇u�x�
�
� f �x� in Ω (12a)

u�x� � g�x� on ∂Ω� (12b)

where ∇∇∇ is the gradient operator, Ω is an open set in
Rd, and ∂Ω is the boundary of Ω. If κ � 1, then L
is the Laplacian operator. The model diffusion prob-
lem in Equation (12) is solved using a finite differ-
ence method, or equivalently a point collocation scheme
[Aluru (2000)]. The discrete form of Equation (12) is:

	Lhu�xI� � f �xI�� I � 1�2� � � � �M �xI �Ω� (13a)

u�xI� � g�xI� xI � ∂Ω� (13b)

where M is the number of the nodes in the domain, Lh is
the discrete diffusion operator, and uh is the finite differ-
ence approximation (h is a measure of the nodal spacing).

For ease of exposition, we focus on the 2-d case. Con-
sider the domain Ω shown in Fig. 1c which is reproduced
in Fig. 3a. The point p that was added to the tessellation
is now assumed to denote a node. We can write the bal-
ance law for the divergence of the flux (q �	κ∇∇∇u) over
the Voronoi cell AI (see Fig. 3b) in the form:

	�Lu�I �	 lim
AI�0

�

AI

∇∇∇ � �κ�x�∇∇∇u
�

dΩ

AI
� (14)
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or

	�Lu�I �	 lim
AI�0

�

∂AI

κ�x�
∂u
∂n

dΓ

AI
� (15)

where AI is the area of the Voronoi cell of node I, and
Gauss’s (divergence) theorem has been invoked to con-
vert the volume integral to a surface integral.

On using a cell-based central difference scheme for the
normal derivative of u (see Fig. 3b), and the harmonic av-
erage [Narasimhan and Witherspoon (1976)] of the nodal
diffusivities for the diffusive coefficient κ�x�, the above
equation can be written as:

	�Lhu�I �	 1
AI

n

∑
J�1

κIJ
�uJ 	uI�

hIJ
sIJ � (16a)

2
κIJ

�
1
κI

�
1
κJ

� (16b)

where n is the number of natural neighbors for node I
(n � 5 in Fig. 3b), hIJ is the distance between nodes I
and J, and sIJ is the length of the Voronoi edge associ-
ated with nodes I and J (Fig. 3b). On using Equation
(4) with κ � 1 and after some algebraic simplification,
the approximation for the negative Laplacian operator is
[Börgers and Peskin (1985); Sukumar (2003)]:

	�Lhu�I �	 1
AI

��
n

∑
J�1

αIJuJ

�
	αIuI

�
� (17a)

αI �
n

∑
J�1

αIJ� AI �
1
4

n

∑
J�1

sIJhIJ � (17b)

where αIJ � sIJ�hIJ is the Laplace weight. The above ex-
pression is consistent with the prescription introduced for
the discrete Laplacian on a random lattice [Friedberg and
Ruiz (1984)]. The right-hand side of Equation (13a) is
just fI . Hence, the discrete system for the Poisson equa-
tion can be written as:

Ku � f̃�

KII � αI � KIJ �	αIJ�I �� J�� xI �Ω�

f̃I � fIAI � xI �Ω�

uI � g�xI�� xI � ∂Ω�

(18)
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Figure 3 : Finite difference approximation at node I. (a)
Node I in the triangulation; and (b) Voronoi cell of node
I and its natural neighbors.

3.1.1 Consistency and Convergence

Consider the 1-d grid shown in Fig. 4. The stiffness ma-
trix for the difference scheme is:

KII �
1
hI

�
1

hI�1
� KIJ �	 1

hI
�J � I	1�� (19a)

KIJ �	 1
hI�1

�J � I�1�� (19b)

which is readily shown to be identical to that obtained
using linear finite elements. In Börgers and Peskin (1985,
1987), the equivalence in 2-d is also shown. However, the
right-hand side f is treated differently in both methods—
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in finite elements, a weighted-integral value
�

Ω f NI dV
is assigned to the Ith row in the external force vector,
whereas in the difference scheme, collocation at the node
is used. Hence, the solution obtained by the two methods
will in general be different (see Section 3.1.3).

I
x

I−1 I+1

l I

h I h I+1

Figure 4 : Voronoi cell for a non-uniform grid in 1-d.

An interesting theoretical aspect is that of consistency on
non-uniform grids, which has been extensively studied
for cell- and vertex-centered difference schemes. Con-
sistency in finite difference schemes ensures that in the
limit when the grid spacing tends to zero, the difference
between the finite difference scheme for the differential
operator and the continuous form of the same is zero. We
use the Taylor series expansion to study consistency in
1-d for the Laplace operator. Consider a direction n with
unit vector n � ��1�0� in 1-d and let h be a scalar (grid-
spacing). The Taylor series approximation for a function
u�x� at x̃ � x�h is written as:

u�x�h� � u�x��u��x�h�u���x�
h2

2
�u����x�

h3

6
�O�h4��

(20)

Now, on using the above Taylor series expansion at
neighbors I	1 and I �1, we can write:

uI�1 � uI 	u��xI�hI �u���xI�
h2

I

2
	u����xI�

h3
I

6
�O�h4

I �� (21a)

uI�1 � uI �u��xI�hI�1 �u���xI�
h2

I�1

2
�u����xI�

h3
I�1

6
�O�h4

I�1�� (21b)

On multiplying both sides of Equations (21a) and (21b)
by 1�hI and 1�hI�1, respectively, and adding the result,
we obtain

uI�1

hI
�

uI�1

hI�1
� uI

�
1
hI

�
1

hI�1

�
�u���xI�

�
hI �hI�1

2

�

�u����xI�
h2

I�1	h2
I

6
�O�h3

mI�� (22)

where hmI � max�hI �hI�1�. On using the definition
of αIJ and αI that appear in Equation (17), and since
�I � �hI �hI�1��2, Equation (22) simplifies to

1
�I

�
2

∑
J�1

αIJuJ 	αIuI

�
� u���xI��u����xI�

�
hI�1	hI

3

�

�O�h2
mI�� (23)

On using Equation (17) and noting that Lu � u���xI�
(Laplacian at node I), the above equation can be re-
written as

Lu	Lhu �	u����xI�

�
hI�1	hI

3

�
	O�h2

mI� (24)

and if hI �� hI�1 (non-uniform grid), then

Lu	Lhu �	O�hmI� (25)

and hence in the limit that the grid spacing tends to zero,
we have

lim
hmI�0

Lu	Lhu � 0 (26)

which shows that first-order consistency is obtained on
non-uniform grids. If the nodal spacing is uniform (say
h), then from Equation (24) we note that the coefficient
of u��� also vanishes, and hence second-order consistency
is established.

The traditional treatment of consistency and convergence
via a Taylor series expansion on regular grids is not read-
ily extendable to non-uniform grids. The notion of flux
consistency appears to be important in the development
of error estimates [Jones and Menzies (2000)] for dif-
ference schemes on Cartesian grids. Kreiss, Manteuffel,
Swartz, Wendroff, and White, Jr. (1986) coined the term
supraconvergence for schemes that converge at a higher-
order than the local truncation error; supraconvergence
has received a lot of attention in the numerical analy-
sis literature for node- and cell-centered finite difference
schemes. We point out that the supraconvergence phe-
nomenon that is observed in finite-difference schemes
on irregular grids is distinct from superconvergence in
Galerkin finite element methods (see Wahlbin (1995)). In
2-d, the difference scheme is inconsistent (zeroth-order)
on irregular grids, but second-order convergence in u is
attained. A detailed theoretical analysis with supportive
convergence tests is presented in Sukumar (2003).
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3.1.2 Comparisons to Classical Finite Differences

Referring to the 1-d grid in Fig. 4 and on using Equa-
tion (17), the discrete approximation for the Laplacian
(Lu � u��) at node I can be written as:

�Lhu�I �
2

hI �hI�1

�
1
hI

uI�1 �
1

hI�1
uI�1

	
�

1
hI

�
1

hI�1

�
uI

	
� (27)

If hI � hI�1 � h (uniform grid), we obtain the classical
central-difference approximation:

�Lhu�I �
uI�1 �uI�1	2uI

h2 � (28)

and if for example hI � 3∆x�4, hI�1 � 3∆x�2, then

�Lhu�I �
16

27∆x2 �2uI�1 	3uI �uI�1�� (29)

which is identical to the expression given in Thomas
(1995), where cell-centered finite difference schemes are
derived on non-uniform grids.

The Voronoi cell finite difference approximation for the
Laplacian is identical to the classical finite difference
scheme on rectangular and hexagonal grids in 2-d [Suku-
mar (2003)]. Here, we show the correspondence on a
regular cubic lattice in 3-d. Consider a cubic lattice with
nodal spacing h in the coordinate directions. We can
write the finite difference approximation for the Lapla-
cian at an interior node I as:

∇2
hu �

1
AI

�
6

∑
J�1

αIJuJ 	αIuI

�
� (30)

where αIJ is the Laplace weight, and node I has six
neighbors (two in each coordinate direction). In this case,
AI � h3, sIJ � h2� hIJ � h, and since αIJ � sIJ�hIJ , we
have αIJ � h �J. The above equation can be written as

∇2
hu �

1
h3



h
�
u1 �u2 �u3 �u4 �u5 �u6

�	6huI
�
� (31)

and hence

∇2
hu �

u1 �u2 �u3 �u4 �u5 �u6	6uI

h2 (32)

which is the six-point finite difference stencil for the
Laplacian on a regular grid in 3-d.

3.1.3 Numerical Examples

We explore the application of the difference scheme to
the Poisson equation in 1-d and 3-d; in Sukumar (2003),
numerical solutions in 2-d are presented. In 1-d, we con-
sider the following Dirichlet boundary-value problem:

	u�� � π2 sin�πx� in Ω � �0�1�� (33a)

u�0� � u�1� � 0� (33b)

with the exact solution u�x� � sin�πx�. In our analysis,
the L∞ (max or sup) discrete error norm is defined as:


u	uh
∞�Ω � max
I�1�����M

�u�xI�	uh�xI��� (34)

where u and uh are the exact and the finite difference so-
lutions, respectively. In addition, the L∞ discrete norm
for the truncation error is given by


τ
∞�Ω � max
I�2�����M�1

�τI �� (35a)

where

τI �	 1
hI

u�xI�1��

�
1
hI

�
1

hI�1

�
u�xI�

	 1
hI�1

u�xI�1�	π2 sin�πxI� (35b)

is the truncation error at node I for Equation (33a). In
the above equations, u��� is the nodal value of the exact
solution, and the definitions for hI and hI�1 are shown in
Fig. 4. The sup-norms are evaluated for different max-
imum cell size �m � max

I
�I , where �I � �hI � hI�1��2,

and the rate of convergence is estimated by the slope on
a log-log plot.

We considered non-uniform grids in 1-d to test the or-
der of convergence of the truncation error and also of
u. Since the grids chosen are random with inherent
variability in the grid size, these rates of convergence
are to be viewed in an average-sense, as opposed to
precise estimates that are obtained with uniform refine-
ment. A similar approach to compute the convergence
rate was adopted by Jones and Menzies (2000) for the
cell-centered finite volume method. A uniform random
number between 20 and 200 was chosen to be the grid
size (number of nodes M). Then, the spatial coordinate
of the M nodes was set by picking M –2 random num-
bers between zero and unity (two nodes were assigned
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the coordinates x � 0 and x � 1). To conduct the conver-
gence study on non-uniform grids, we executed 1000 in-
dependent simulations. In Fig. 5, the results for the Pois-
son problem are presented. From Fig. 5a, it is observed
that the truncation error decreases as O�h�, whereas in
Fig. 5b, the error in u behaves as O�h2�. The method
displays the property of supraconvergence [Kreiss, Man-
teuffel, Swartz, Wendroff, and White, Jr. (1986); Jones
and Menzies (2000)], i.e., the solution error decreases at
a faster rate than is implied by the truncation error. Com-
parisons of the finite-difference, finite element, and the
exact solution on a random grid of 25 nodes are shown in
Fig. 5c.

To study the application of the finite difference scheme in
3-d, we consider the following Dirichlet boundary-value
problem:

∇2u � 0 in Ω � �	1�1�3 (36a)

u � xy� yz� xz on ∂Ω� (36b)

with the exact solution: u � xy � yz � xz. In the 3-
d computations, nodes are first placed on each face of
the bi-unit cube to facilitate the specification of bound-
ary conditions. Thereafter, nodes are randomly posi-
tioned within the interior of the bi-unit cube using a
pseudo-random number generator. Four grids are con-
sidered to test the convergence: 242 nodes, 542 nodes,
1593 nodes, and 3568 nodes, with mean nodal spacing
h � 0�42�0�32�0�21�0�16, respectively. The nodal grids
with 242 and 3568 nodes are shown in Figures 6a and
6b, respectively. In our analysis, the L2 discrete error
norm is defined as:


u	uh
2�Ω �

� M

∑
I�1

AI
�
u�xI�	uh�xI�

�2
�1�2

� (37)

The relative error in the L2 norm is plotted in Fig. 6c,
where the slope λ is the rate of convergence. The con-
vergence rate is computed using a mean grid size for the
measure h; second-order accuracy is observed.

3.2 Difference Approximation for the Gradient Oper-
ator

We discuss the extraction of nodal gradients of a scalar
(potential) field. The Voronoi cell can be used to define a
local discrete gradient operator. A non-local smoothing
procedure (finite volume averaging) renders the follow-
ing approximation for the nodal gradient operator [Chen,
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Figure 5 : Poisson problem in 1-d. (a) Convergence of
truncation error; (b) Convergence of solution error; and
(c) Comparison of numerical and exact solutions.
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Figure 6 : Laplace problem in 3-d. (a) Grid (242 nodes);
(b) Grid (3568 nodes); and (c) Convergence.

Wu, Yoon, and You (2001)]:

∂uh

∂x j
�xI� �

�

AI

uh
� j�x�dΩ

AI
�

�

∂AI

uh�x�nj dΓ

AI
� (38)

where Gauss’s divergence theorem has been invoked. In
Chen, Wu, Yoon, and You (2001), numerical quadrature
was used to compute the above surface integral. In this
paper, we adopt the Voronoi cell and the notion of nat-
ural neighbors, to propose two approaches to compute
the nodal gradient. In the first scheme, the derivative of
the Laplace interpolant is used as a weighting function,
whereas the second method is based on volume conser-
vation in fluid flow, or equivalently force equilibrium in
elasticity.

3.2.1 Nodal Gradient Based on the Laplace Interpolant

In a Galerkin method, the natural neighbor-based inter-
polation scheme in Equation (7) is used to evaluate uh�x�
at any point within the domain Ω. In moving to a finite-
difference setting, we can reconstruct the same picture by
imagining that a node located at xI has been removed and
subsequently re-inserted at the same location (x � xI) in
the grid (see Fig. 3a). The means to define the approxi-
mation at a point p (continuum perspective) vis-à-vis that
at a node (lattice perspective) is noted. This viewpoint
extends to the evaluation of the discrete nodal gradient,
too. The gradient at node I is evaluated by assuming that
node I is inserted into the tessellation and a discrete ap-
proximation for u� j at xI (x � xI) is computed. Referring
to Equation (8), we can approximate the gradient of a
scalar-valued function u at xI as:

�∇∇∇u�I �
∂uh

∂xi
ei �

n

∑
J�1

wi
IJ�xI�uJei �

n

∑
J�1

φJ�i�xI�uJei� (39)

where n � 5 for node I in Fig. 3, ei are the Cartesian unit
base vectors (sum on i is implied in the above equation),
and the weight wi

IJ�xI� is the derivative of the Laplace
shape function in the xi-coordinate direction.

3.2.2 Conservative Scheme for the Evaluation of Nodal
Gradients

The discrete modeling of the Laplace equation can be
accomplished by using a random lattice of lineal con-
duit elements, where the generator points (nodes) of the
Voronoi cells act as the lattice sites and the conduit ele-
ments provide flow paths between natural neighbors. We
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he

Ae

I

J

I

J ≡ sIJ

Figure 7 : Conduit network and scaling relation.

set the cross-section area of an element connecting natu-
ral neighbors I and J equal to the Voronoi facet area sIJ
that is common to both neighbors. For a two-dimensional
lattice, the element contribution to the network equilib-
rium equations is:

Ke�
κIJAIJ

hIJ

�
1 	1

	1 1

	
� κIJsIJ

hIJ

�
1 	1

	1 1

	
� (40)

where κIJ is the diffusivity of the element. These local
diffusivity relations have the same form as that of two-
node finite elements used for analyzing potential flow
problems (Fig. 7). The direct stiffness approach is used
to assemble elemental contributions into global network
equations of the form Ku � f. The key point, which is
shown through the examples that follow, is the use of the
sIJ�hIJ scaling within the elemental relations.

In Fig. 8, two Voronoi discretizations of a homogeneous
medium (l � l square domain) are shown. Potential is
prescribed on the left- and right-hand sides of the do-
main, whereas the top and bottom surfaces are assumed
to be perfect insulators. With no loss of generality, the
diffusion coefficient κ is set equal to unity. For a po-
tential difference of magnitude l acting across the do-
main, theory predicts a steady state potential u � x in
the domain. From the error norm results presented in
Tab. 1, it is observed that the random lattice approach
captures the linear potential field to within machine pre-
cision. The numerical results also demonstrate that this
approach does not exhibit spurious heterogeneity aris-
ing from either random mesh geometry or varying nodal
spacing. As a matter of comparison, the error norms aris-
ing from the use of a constant area AIJ in Equation (40)
are also presented in Tab. 1. In essence, sIJ in Equation
(40) has been replaced by the average of sIJ for the whole
domain. It is observed that on using a constant area mea-
sure, a linear potential field (patch test) can not be exactly
represented on a lattice.

qn = 0
l

u
=
 0

qn = 0

u
=
 l

(a)

(b)

Figure 8 : Voronoi diagram for grids used in the ex-
traction of nodal gradients. (a) Quasi-uniform grid; (b)
Graded grid.

After solving for the vector of nodal potentials u, as out-
lined above, the flow QIJ between nodes I and J can be
related to the potential difference between the two nodes:

QIJ �
κIJ sIJ

hIJ
�uJ 	uI�� (41)

Since the geometry of the network bears no relation to
any material features, the flow in the conduit elements
themselves has little practical meaning. However, gra-
dient information at node I can be computed from the
elemental flow values as follows. With reference to the
two-dimensional case illustrated in Fig. 9, the procedure
to extract the nodal flux (gradients) is described below:
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Table 1 : Error in the L2- and L∞-norms for the potential
problem.

Grid AIJ � sIJ�hIJ Constant AIJ


u	uh
2 
u	uh
∞ 
u	uh
2 
u	uh
∞
Fig. 8a 3�9�10�15 1�5�10�15 2�1�10�1 4�3�10�2

Fig. 8b 1�5�10�14 2�6�10�15 5�0�10�1 9�0�10�2

� section the associated Voronoi cell through its node
I with a cut plane with inclination ψ.

� determine the weighting factor RJ applied to flow
through each facet of the cell. There are three pos-
sible cases for a given face that is associated with
node J:

1. RJ � 1 when both facet vertices are on the pos-
itive (i.e., shaded) side of the cut plane;

2. RJ � 0 when both facet vertices are on the neg-
ative side of the cut plane;

3. 0 � RJ � aJ�sIJ � 1 when facet vertices ap-
pear on both sides of the cut plane. Here, aJ is
the facet length on the positive side of the cut
plane and sIJ is the length of the Voronoi edge
associated with nodes I and J.

� compute the net flow QI
ψ through the cut face by

summing the weighted flow values for each face
(i.e., for each conduit element framing into the
node):

QI
ψ �

n

∑
J�1

RJQIJ� (42)

where n is the total number of facets of the Voronoi
cell. In Fig. 9, the flows QIJ are indicated by solid
lines on Voronoi edges that contribute and by dotted
lines on edges that do not contribute in the above
summation.

� determine the nodal flux by dividing the net flow
through the cut face by its area, Aψ:

qI
ψ �

QI
ψ

Aψ
� (43)

where Aψ is the distance between points m and n in
Fig. 9.

This series of calculations can be repeated for any an-
gle ψ to determine the potential gradient in the direction
normal to the cut plane.

I

J

(-) (+)

n

Ψ

Ψ
Q

IJQ
aJ

m

Figure 9 : Numerical scheme for extraction of nodal flux.

3.2.3 Numerical Results

In Tables 2 and 3, the numerical results for the nodal gra-
dient computed by Scheme I (Section 3.2.1) and Scheme
II (Section 3.2.2), respectively, are presented. The er-
ror in the L∞ norm that is defined in Equation (34) is
used to assess the accuracy of the schemes. The poten-
tial problem with u � x as the exact solution is consid-
ered, and hence ∂u�∂x � 1 and ∂u�∂y � 0. For the con-
servative scheme, the nodal gradients have been deter-
mined for three cut plane inclinations: ψ � 0, 	π�4, and
	π�2, which correspond to ∂u�∂y, ∂u�∂n, and ∂u�∂x,
respectively. The numerical results obtained for both the
schemes are exact to within machine precision.

Table 2 : Error in the L∞ norm for the recovery of the
nodal flux (Scheme I).

Grid 
u�x	uh�x
∞ 
u�y	uh�y
∞
Fig. 8a 6�5�10�15 5�3�10�15

Fig. 8b 1�4�10�13 1�3�10�13

To demonstrate the accuracy of the conservative scheme
for non-uniform flow problems, an impermeable inclu-
sion is inserted into the center of the domain shown in
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Table 3 : Error in the L∞ norm for the recovery of the
nodal flux (Scheme II).

Grid 
u�x	uh�x
∞ 
u�y	uh�y
∞ 
u�n	uh�n
∞
Fig. 8a 1�7�10�14 1�0�10�14 1�3�10�14

Fig. 8b 3�1�10�13 4�9�10�13 4�7�10�13

Fig. 8. The mesh and boundary conditions are shown in
Fig. 10a. The inclusion radius a is small relative to the
domain size (i.e., a � l�100), so that comparisons can
be made to the theoretical solution for an infinite domain
[Kirchhoff (1985)]:

cos 2θ �

�a
r


4
�1	q2

2
�a

r


2 � (44)

where (r, θ) are polar coordinates with the origin at the
inclusion center, and q represents the flow rate. The accu-
racy of the model is demonstrated by comparing the nu-
merical and theoretical results for the flow rate (Fig. 10b).
The contour lines produced from the numerical model
are in good agreement with the theoretical solution. The
use of significantly coarser discretizations does provide
reasonably accurate results, although the flow rate curves
are not as smooth and the curves closest to the inclusion
are not fully captured.

4 Conclusions

Finite difference approximations for differential opera-
tors (diffusion and gradient) on non-uniform grids were
presented. The diffusion operator at a node was approx-
imated by its average integral-value over the Voronoi
cell of the node. The Laplace weight measure nat-
urally emerged in the difference approximation. The
Laplace weight has also been in a Galerkin formulation
[Sukumar, Moran, Semenov, and Belikov (2001)], as a
scaling parameter in fracture simulations on rigid-body
spring-networks [Bolander, Jr and Saito (1998)], and as
a weight measure for random walk on arbitrary sets [Har-
ris, Williams, and Sibson (1999)].

The Voronoi cell-based finite difference scheme was
shown to reduce to the classical finite difference scheme
on regular grids. Simple algebraic computations are only
involved in determining the finite difference weights in

qn = 0
l

u
=
 0

qn = 0

u
=
 l

(a)

q = 1

0.950.850.75

1.05

1.15

1.25

1.5

numerical
theoretical 

(Kirchhoff, 1985)

(b)

Figure 10 : Potential flow past cylindrical inclusion. (a)
Mesh; and (b) Isocontours of flow rate q

2-d as well as 3-d, and numerical examples were pre-
sented to demonstrate the accuracy of the method. Dif-
ferent schemes to compute the discrete nodal gradient on
a non-uniform grid were discussed and applied to poten-
tial flow problems. The nodal gradient recovery was ex-
act for a linear field, and accurate numerical solutions
were also obtained for a non-linear potential field. Over
the past decade, most of the developments on meshless
methods have been within the framework of a Galerkin
implementation. This study provides a link of a meshless
interpolant to discrete differential operators on arbitrary
unstructured grids.
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Doblaré, M. (2003): Overview and recent advances
in natural neighbor Galerkin methods. Archives of Com-
putational Methods in Engineering. in press.

Ferretti, E. (2003): Crack propagation mod-
eling by remeshing using the cell method (CM).
CMES:Computer Modeling in Engineering & Sciences,
vol. 4, no. 1, pp. 51–72.

Friedberg, R.; Ruiz, M. (1984): Vector algebra on a
lattice. Physical Review D, vol. 29, no. 12, pp. 2916–
2918.

Ghosh, S.; Moorthy, S. (1995): Elastic-plastic analy-
sis of arbitrary heterogeneous materials with the Voronoi
cell finite-element method. Computer Methods in Ap-
plied Mechanics and Engineering, vol. 121, no. 1–4, pp.
373–409.



Numerical Computation of Discrete Differential Operators 15

Harris, S. C.; Williams, D.; Sibson, R. (1999): Scaling
random walks on arbitrary sets. Mathematical Proceed-
ings of the Cambridge Philosophical Society, vol. 125,
no. 3, pp. 535–544.

Herrmann, H. J.; Roux, S.(Eds): Statistical Models
for the Fracture of Disordered Media. North-Holland,
Amsterdam, The Netherlands.

Hiptmair, R. (2001): Discrete Hodge operators. Nu-
merische Mathematik, vol. 90, no. 2, pp. 265–289.

Hirani, A. N. (2003): Discrete Exterior Calcu-
lus. Ph.D. thesis, California Institute of Technology,
Pasadena, CA, U.S.A., 2003.

Hiyoshi, H.; Sugihara, K. (1999): Two generaliza-
tions of an interpolant based on Voronoi diagrams. In-
ternational Journal of Shape Modeling, vol. 5, no. 2, pp.
219–231.

Hyman, J. M.; Shashkov, M. (1997): Natural dis-
cretization for the divergence, gradient, and curl on logi-
cally rectangular grids. Computers & Mathematics with
Applications, vol. 33, no. 4, pp. 81–104.

Jensen, P. S. (1972): Finite difference techniques for
variable grids. Computers and Structures, vol. 2, pp.
17–29.

Jones, W. P.; Menzies, K. R. (2000): Analysis of the
cell-centred finite volume method for the diffusion equa-
tion. Journal of Computational Physics, vol. 165, pp.
45–68.

Kirchhoff, R. (1985): Potential Flows: Computer
Graphic Solutions. Marcel Dekker, New York, N.Y.

Kreiss, H.; Manteuffel, T. A.; Swartz, B.; Wendroff,
B.; White, Jr., A. B. (1986): Supra-convergent schemes
on irregular grids. Mathematics of Computation, vol. 47,
no. 176, pp. 537–554.

Lancaster, P.; Salkauskas, K. (1981): Surfaces gener-
ated by moving least squares methods. Mathematics of
Computation, vol. 37, pp. 141–158.

Li, S.; Liu, W. K. (2002): Meshfree and particle meth-
ods and their applications. Applied Mechanics Review,
vol. 55, no. 1, pp. 1–34.

Liszka, T.; Orkisz, J. (1980): The finite difference
method at arbitrary irregular grids and its application in
applied mechanics. Computers and Structures, vol. 11,
pp. 83–95.

Mathieu, D.; Hirani, A. N.; Leok, M.; Marsden, J. E.
(2003): Discrete exterior calculus. in preparation.

Narasimhan, T. N.; Witherspoon, P. A. (1976): An in-
tegrated finite difference method for analyzing fluid flow
in porous media. Water Resources Research, vol. 12, no.
1, pp. 57–64.

Sibson, R. (1980): A vector identity for the Dirich-
let tesselation. Mathematical Proceedings of the Cam-
bridge Philosophical Society, vol. 87, pp. 151–155.

Sukumar, N. (1998): The Natural Element Method
in Solid Mechanics. Ph.D. thesis, Theoretical and Ap-
plied Mechanics, Northwestern University, Evanston, IL,
U.S.A., 1998.

Sukumar, N. (2003): Voronoi cell finite difference
method for the diffusion operator on arbitrary unstruc-
tured grids. International Journal for Numerical Meth-
ods in Engineering, vol. 57, no. 1, pp. 1–34.

Sukumar, N.; Moran, B.; Semenov, A. Y.; Belikov,
V. V. (2001): Natural neighbor Galerkin methods. Inter-
national Journal for Numerical Methods in Engineering,
vol. 50, no. 1, pp. 1–27.

Teixeira, F. L.; Chew, W. C. (1999): Lattice electro-
magnetic theory from a topological viewpoint. Journal
of Mathematical Physics, vol. 40, no. 1, pp. 169–187.

Thomas, J. W. (1995): Numerical Partial Differential
Equations: Finite Difference Methods. Springer-Verlag,
New York.

Tonti, E. (2001): A direct discrete formulation of field
laws: The cell method. CMES:Computer Modeling in
Engineering & Sciences, vol. 2, no. 2, pp. 237–258.

Wahlbin, L. B. (1995): Superconvergence in Galerkin
Finite Element Methods, volume 1605. Springer-Verlag,
New York.

Warnick, K. F.; Selfridge, R. H.; Arnold, D. V. (1997):
Teaching electromagnetic field theory using differential
forms. IEEE Transactions on Education, vol. 40, no. 1,
pp. 53–68.


