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ABSTRACT: In this paper, we develop conforming Galerkin approximations on polygonal elements. A
notable contribution is the use of Laplace (natural-neighbor, nn) basis functions on a canonical element
combined with an affine map to construct conforming approximations on convex polygons. Laplace shape
functions interpolate nodal data, satisfy linear completeness, and are linear on the boundary of an n-gon,
which permits the direct imposition of essential boundary conditions as in classical finite element methods.
We adapt this advance to quadtree meshes to obtain C0(Ω) admissible approximations along edges with
so-called hanging nodes . The numerical formulation with supportive numerical experiments are presented.
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1 INTRODUCTION

Polygonal finite elements provide greater flexibility
in the meshing of complex geometries (e.g., biome-
chanics), are of potential use in the modeling of poly-
crystalline materials, useful as a transition element in
finite element meshes [1], and are suitable in material
design [2]. However, the development of finite ele-
ments on irregular polygons has been limited so far.
Wachspress [3] proposed rational basis functions on
polygonal elements, but only recently has interest in
the construction of barycentric coordinates on n-gons
re-surfaced [4, 5] (see [6] for details).

In this study, we present the construction of a polyg-
onal interpolant using natural neighbor (Laplace)
shape functions [7], and then use it to develop an h-
adaptive finite element method on quadtree meshes.
To this end, similar to three-node and four-node fi-
nite elements, the Laplace basis functions are defined
on a canonical element and an affine map is used to
construct conforming approximations on convex poly-
gons as well as elements in quadtree meshes. The
proposed method can be viewed as an extension of
finite elements to convex n-gons (n ≥ 3).

As an application of the proposed polygonal finite ele-
ment method, we construct C0(Ω) admissible approx-
imations on quadtree meshes. Quadtree is a hierar-

chical data structure [9], which is widely used in geo-
metric modeling and computer graphics. As a spatial
data structure, efficient storage and fast data retrieval
in a quadtree (or octree in 3-d) are unmatched, which
renders it particularly attractive for adaptive simula-
tions. The caveat, however, is that classical finite el-
ement methods are non-conforming (due to presence
of hanging nodes) on quadtree meshes which limits
their potential applications in computer simulation.
One of the key contributions in this study is the
adaptation of the natural neighbor-based (Laplace)
polygonal interpolant to enable numerical computa-
tions to be performed on quadtree decompositions of
any finite element mesh. In Fig. 1, quadtree data
structures after one and two levels of refinements are
shown. The hanging nodes a and b that are gen-
erated in neighboring elements at different levels of
refinement are indicated.
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Fig. 1: Quadtree: Levels 1 (left) and 2 (right).



2 POLYGONAL INTERPOLANTS

An interpolation scheme for a scalar-valued function
u(x) : Ω→ R is:

uh(x) =
n

∑

i=1

φi(x)ui, (1)

where ui (i = 1, 2, . . . , n) are the unknowns at the
n neighbors of point p, and φi(x) is the shape func-
tion for node i. From the viewpoint of a conforming
Galerkin approximation, the following are the desir-
able properties of shape functions (barycentric coor-
dinates) and of the interpolant: non-negativity, inter-
polation, partition of unity and linear completeness:

0 ≤ φi(x) ≤ 1, φi(xj) = δij, (2a)
n

∑

i=1

φi(x) = 1,
n

∑

I=1

φi(ξ)xi = x. (2b)
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Fig. 2: Laplace shape function.

Given a set of nodes in the plane, the Laplace shape
function at a point p within the convex hull is deter-
mined using the Voronoi diagram of the nodal set and
p. The natural neighbors [10] of p are defined through
the Delaunay circumcircles; if p lies within the cir-
cumcircle of a Delaunay triangle t, the nodes that
define t are neighbors of p. Formally, we define the
Laplace shape function as [7]:

φl
i(x) =

αi(x)
n
∑

j=1

αj(x)
, αj(x) =

sj(x)

hj(x)
, (3)

where si(x) is the length of the Voronoi edge and
hi(x) = ‖x− xi‖ (Fig. 2). The Laplace shape func-
tion satisfies all the properties indicated in Eq. (2).

In a simplex-partition of a regular polygon, all tri-
angles have a common center and the nodes all lie
on the same circumcircle. This observation underlies
the construction of the proposed polygonal finite el-
ement method. In Fig. 3, the canonical elements for
a triangle, square, pentagon and hexagon are shown.
In each case, the nodes lie on the same circumcir-
cle, and hence the nodes at the vertices of a poly-
gon are the natural neighbors for any point in Ω0.
Since φl

i ≡ φl
i(ξ) is piece-wise linear on the bound-

ary ∂Ω0, we use the isoparametric mapping given in
Eq. (2) from ξ ↔ x. Since the mapping is affine, the
shape functions remain linear on the boundary of a
distorted but convex polygon (Fig. 4).

ξ2

ξ1Ω 0 ξ1

ξ2

Ω 0

ξ2

ξ1
Ω 0

ξ2

ξ1Ω 0

Fig. 3: Canonical elements.
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Fig. 4: Isoparametric mapping.
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3 QUADTREE DATA STRUCTURE

In any spatial data structure, the domain is enclosed
by unit squares (root) that are sub-divided into four
equal elements (cells) which are the children of the
root. This process can be repeated several times on
each of the children until a stopping criteria is met.
Two cells are adjacent if they have a common edge.
Each child of the cell represents an element: {NW, NE,
SW, SE} (Fig. 1). A cell is called a leaf if it does not
have any children. The level of a cell is the number
of refinements needed to obtain that cell; the root is
at level zero.
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Fig. 5: Shape function φl
a.

The classical approach of using quadtree with finite
elements consist of two steps: domain discretization
into quadtree elements, and then sub-division of the
leaf cells into finite elements [11]. The second step is
required because after each refinement hanging nodes

are generated in the adjacent elements of different
level. To construct the shape functions in a quadtree
element A (Fig. 5), we use the affine map from the
hexagon in Fig. 3 to A. The shape function φl

a is
continuous, and linear behavior along 1–a and a–2 is
realized. Note that this behavior on the boundary
is distinct from higher-order FEM. In this study we
use the [m:1] rule: each edge can contain any number
of edge nodes. Typically, in numerical computations
on quadtree decompositions, the [2:1] rule (Fig. 1) is
used; here, no such restrictions are imposed. For each
element, we store its connectivity, refinement level, a

pointer to its father, and a pointer to its children.

4 NUMERICAL EXAMPLES

Numerical examples are first presented for the patch
test in Ω = (0, 1)2 with u(x) = x1+x2 imposed on ∂Ω.
Numerical integration is performed by sub-dividing
the canonical element into n triangles: the mapping
(ξ, η)4 → (ξ1, ξ2)Ω0

→ (x1, x2)Ωe
is depicted in Fig. 6.

In the analyses, four different meshes are considered
(Fig. 7). Relative errors in the L2 and energy norms
are: O(10−6)–O(10−5) and O(10−9)–O(10−8) with 25-
and 13-point quadrature schemes, respectively.
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Fig. 6: Numerical integration.

Fig. 7: Meshes used in the patch test.

For the adaptive simulations, we consider the model
problem: ∇2u = f in Ω = (0, 1)2 with u = 0 on ∂Ω.
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The source term f is chosen such that the exact so-
lution is: u(x) = x1

10x2
10(1− x1)(1− x2). In Fig. 8,

the initial mesh and its refinements are shown. The
solution uh on the level 5 mesh captures the sharp
gradients near (1, 1). The relative L2 error norm for
the patch test on the meshes shown in Fig. 8 were
O(10−10).
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Fig. 8: Quadtree mesh refinements and uh at level 5.

5 CONCLUDING REMARKS

In this paper, we presented the construction and nu-
merical implementation of a conforming polygonal fi-
nite element method. The Laplace shape functions [7]
were defined on a canonical (reference) element and
an affine map was used to obtain the shape functions
and their gradients on irregular polygons. Numerical
results for the patch test were presented, and errors in
the L2(Ω) and energy norms of O(10−9) and O(10−8),
respectively, were obtained. As an application of the
polygonal interpolant, we developed an h-adaptive fi-
nite element method on quadtree meshes. The tech-
nique preserves continuity on edges with multiple-
nodes, and avoids the need to use Lagrange multipli-
ers or multi-point constraints, as is usually required.
The simplicity of the method, both, in its construc-
tion and coding requirements, renders it distinct from
some of the other recent developments on conforming
approximations on quadtree meshes [12, 13].

References

[1] C. R. Dohrmann, S. W. Key, and M. W. Heinstein.
A method for connecting dissimilar finite element
meshes in two dimensions. International Journal

for Numerical Methods in Engineering, 48:655–678,
2000.

[2] A. R. Diaz and A. Bénard. Designing materials with
prescribed elastic properties using polygonal cells.
International Journal for Numerical Methods in En-

gineering, 57(3):301–314, 2003.

[3] E. L. Wachspress. A Rational Finite Element Basis.
Academic Press, New York, N. Y., 1975.

[4] M. Meyer, H. Lee, A. H. Barr, and M. Desbrun. Gen-
eralized barycentric coordinates for irregular n-gons.
Journal of Graphics Tools, 7(1):13–22, 2002.

[5] M. S. Floater. Mean value coordinates. Computer

Aided Geometric Design, 20(1):19–27, 2003.

[6] N. Sukumar and A. Tabarraei. Conforming polygo-
nal finite elements. 2004. submitted.

[7] N. H. Christ, R. Friedberg, and T. D. Lee. Weights
of links and plaquettes in a random lattice. Nuclear

Physics B, 210(3):337–346, 1982.

[8] N. Sukumar, B. Moran, A. Yu. Semenov, and V. V.
Belikov. Natural neighbor Galerkin methods. In-

ternational Journal for Numerical Methods in Engi-

neering, 50(1):1–27, 2001.

[9] H. Samet. The quadtree and related hierarchi-
cal data structure. ACM Computing Surveys,
16(2):187–260, 1984.

[10] R. Sibson. A vector identity for the Dirichlet tesse-
lation. Mathematical Proceedings of the Cambridge

Philosophical Society, 87:151–155, 1980.

[11] N. Provatas, N. Goldenfeld, and J. Dantzig. Adap-
tive mesh refinement computation of solidifica-
tion microstructures using dynamic data structures.
Journal of Computational Physics, 148(3):265–290,
1999.

[12] P. Krysl, E. Grinspun, and P. Schröder. Natural
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