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Abstract The Natural Element Method (NEM) is a mesh-
free numerical method for the solution of partial differ-
ential equations. In the natural element method, natural
neighbor coordinates, which are based on the Voronoi
tesselation of a set of nodes, are used to construct the
interpolant. The performance of NEM in two-dimensional
linear elastodynamics is investigated. A standard Galerkin
formulation is used to obtain the weak form and a central-
difference time integration scheme is chosen for time
history analyses. Two different applications are consid-
ered: vibration of a cantilever beam and dispersion anal-
ysis of the wave equations. The NEM results are compared
to ®nite element and analytical solutions. Excellent dis-
persive properties of NEM are observed and good agree-
ment with analytical solutions is obtained.

1
Introduction
The Natural Element Method (NEM) (Braun and Sam-
bridge, 1995) is a mesh-free numerical method for the
solution of partial differential equations (PDEs). Natural
neighbor (n-n) coordinates (Sibson, 1980) are used as the
interpolation functions in the natural element method.
Natural neighbor coordinates are based on the Voronoi
tesselation of a set of nodes. The optimum spatial adja-
cency of the interpolation scheme in conjunction with
properties such as partition of unity and linear com-
pleteness render n-n interpolation to be a promising
choice in a Galerkin method for the solution of PDEs.
For a few applications of Voronoi polygons in contin-
uum mechanics, see Cruz and Patera (1982), Ghosh
and Mallett (1994), and Cannmo, Runesson, and
Ristinmaa (1995).

Braun and Sambridge (1995) introduced natural neigh-
bor interpolation for the solution of partial differential
equations. Sukumar (1998), Sukumar, Moran, and Bel-
ytschko (1998), and Sukumar and Moran (1999) explored
the application of the natural element method for the so-
lution of elliptic boundary value problems that arise in solid
mechanics. Here we investigate the properties of NEM
within the context of linear elastodynamics. Section 2 is an
overview of natural neighbor interpolation. In Sect. 3, the
semi-discretized weak form of the governing equation is
presented. Applications of the NEM to problems in linear
elastodynamics are given in Sect. 4 with particular emphasis
on the dispersive properties of the method. The results are
compared to ®nite element and analytical solutions. Finally,
some concluding remarks are made in Sect. 5.

2
Natural neighbor interpolation
We brie¯y touch upon the foundations of Sibson's natural
neighbor coordinates (shape functions) that are used in the
natural element method. For a more in-depth discussion on
the Sibson interpolant and its application to second-order
partial differential equations in mechanics, the interested
reader can refer to Braun and Sambridge (1995) and
Sukumat et al. (1998), and the references therein.

The NEM interpolant is constructed on the basis of the
underlying Voronoi tesselation. The Delaunay triangula-
tion is the topological dual of the Voronoi diagram. Within
the context of natural neighbor interpolation, the circle
that circumscribes a Delaunay triangle is known as a
natural neighbor circumcircle (Watson, 1992). In Fig. 1,
some of the important geometric constructs associated
with a set of nodes are illustrated.

Consider a set of distinct nodes N � fn1; n2; . . . ; nMg in
R2. The ®rst-order Voronoi diagram of the set N is a
subdivision of the plane into regions TI (Voronoi cells)
given by

TI � fx 2 R2 : d�x; xI� < d�x; xJ� 8 J 6� Ig ; �1�
where d�xI ; xJ�, the Euclidean metric, is the distance
between xI and xJ .

The Voronoi diagram for a set of seven nodes is shown in
Fig. 2a, and a point x is introduced into the Voronoi dia-
gram of the set N . If x is tesselated along with the set of
nodes N, then the natural neighbors of x are those nodes
which form an edge of a triangle with x in the new trian-
gulation. The natural neighbor coordinates of x with
respect to a natural neighbor I is de®ned as the ratio of
the area of overlap of their Voronoi cells to the total area of
the Voronoi cell of x (see Fig. 2b):
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/I�x� �
AI�x�
A�x� ; A�x� �

Xn

J�1

AJ�x� �2�

where I ranges from 1 to n. If the point x coincides
with a node (x � xI), /I�x� � 1, and all other shape

functions are zero. The properties of positivity,
interpolation, and partition of unity directly follow:

0 � /I�x� � 1; /I�xJ� � dIJ ;
Xn

I�1

/I�x� � 1 in X :

�3�
Natural neighbor shape functions also satisfy the local
coordinate property (Sibson, 1980), namely

x �
Xn

I�1

/I�x�xI �4�

which, in conjunction with Eq. (3) imply that the natural
neighbor interpolant spans the space of linear polynomials
(linear completeness).

On using Eq. (2), we can write the ®rst derivatives of
natural neighbor shape functions as

/I;a�x� �
AI;a�x� ÿ /I�x�A;a�x�

A�x� �a � 1; 2� : �5�

Natural neighbor shape functions are C1 everywhere,
except at the nodes where they are C0 (Sibson, 1980; Farin,
1990). The Galerkin implementation of a C1 natural
neighbor interpolant for the biharmonic equation is car-
ried out in Sukumar and Moran (1999). In this study, the
geometric algorithm proposed by Watson (1992) is used to
compute the natural neighbor shape functions and its
derivatives.

Consider an interpolation scheme for a vector-valued
function u�x�: X � R2 ! R2, in the form:

uh�x� �
Xn

I�1

/I�x�uI ; �6�

Fig. 1a±d. Geometric structures for a set N of seven nodes. a
Voronoi cell for node A, b Voronoi diagram V�N�, c Delaunay
triangulation DT�N�, d natural neighbor circumcircles

Fig. 2a,b. Construction of natural neighbor coordinates.
a Original Voronoi diagram and x, b ®rst-order
and second-order Voronoi cells about x
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where uI (I � 1; 2; . . . ; n) are the vectors of nodal dis-
placements at the n natural neighbors, and /I�x� are the
shape functions associated with each node. It is noted that
Eq. (6) is a local interpolation scheme. The displacement
trial and test functions that are used in this paper assume
the form shown in Eq. (6).

3
Governing equations and weak form
We consider two-dimensional small displacement elasto-
dynamics governed by the equation of motion. Let X � R2

be a body enclosed by the boundary C with unit outward
normal n. The equation of motion is given by (strong form)

rij;j � bi � q�ui in X ; �7�
where rij is the Cauchy stress, q is the density, bi is the
body force per unit volume, and �ui is the acceleration
(material time derivative of the velocity). The constitutive
law for small displacements is given by

rij � Cijklekl ; �8�
where ekl is the small strain tensor and Cijkl are the material
moduli. The kinematic relation between the small strain
tensor and the displacement vector ui is

ekl � 1
2�uk;l � ul;k� : �9�

The essential and natural boundary conditions, and the
initial conditions for the strong form are:

ui � �ui on Cu; rijnj � �ti on Ct

�C � Cu [ Ct; Cu \ Ct � [� ; �10a�
_ui�x; 0� � v0i�x�; ui�x; 0� � u0i�x� in X �10b�
where �ui and �ti are prescribed displacements and tractions,
respectively and u0i and v0i are the initial displacements
and velocities, respectively. The weak or variational form
associated with the strong form is:

Find ui 2 H1�X� such thatZ
X

qdui �ui dX �
Z

X
duibi dX�

Z
Ct

dui�ti dC

ÿ
Z

X
rijdeij dX 8 dui 2 H1

0�X� ; �11�

where H1�X� is the space of functions with square-int-
egrable ®rst derivatives in X, and H1

0�X� is the space
of functions with square-integrable ®rst derivatives in X
and vanishing values on the essential boundary Cu. The
NEM interpolant is precisely linear on the essential
boundary Cu (X is convex), and hence as in ®nite
elements, the essential boundary conditions can be
directly imposed on the boundary nodes (Farin, 1990;
Sukumar, Moran, and Belytschko, 1998).

3.1
Matrix form
Consider a Galerkin implementation for the natural
element method in two-dimensional linear elastodynam-
ics. The displacement trial functions uh

i and the test
functions duh

i are represented as linear combination of
natural neighbor shape functions:

uh
i �x; t� �

Xn

I�1

/I�x�uiI�t�;

duh
i �x; t� �

Xn

I�1

/I�x�duiI�t� ;
�12�

where lowercase and uppercase indices are used to denote
spatial coordinates and node numbers, respectively. The
time and spatial derivatives of the trial and test functions are

_uh
i �x; t� �

Xn

I�1

/I�x� _uiI�t� ; �13a�

uh
i;j�x; t� �

Xn

I�1

/I;j�x�uiI�t� ; �13b�

duh
i;j�x; t� �

Xn

I�1

/I;j�x�duiI�t� : �13c�

Note that the shape functions are time independent and
the nodal displacements uiI are functions of time only. The
matrix equation is given by

M�u � fext ÿ f int ; �14�
where

MIJ �
Z

X
q/I/J dX; (consistent mass matrix) �15a�

f int
I �

Z
X

BT
I r dX; (internal force vector) �15b�

fext
I �

Z
Ct

/I
�t dC�

Z
X

/Ib dX; (external force vector)

�15c�
where BI which is the matrix of shape function derivatives
is given by

BI �
/I;x 0

0 /I;y

/I;y /I;x

24 35 : �16�

In order to compute the mass matrix, three different
approaches are used: consistent mass matrix; row-sum
technique which results in a diagonal (lumped) mass
matrix; and a lumped mass matrix by using the area
of the ®rst-order Voronoi cell to compute its nodal mass.

3.2
Explicit time integration
An explicit central difference time integration scheme is
adopted for the temporal discretization of the equations of
motion. The maximum stable time step for the central
difference method is given by: Dtmax � 2=xmax, where xmax

is the maximum natural frequency of the system (Cook,
Malkus, and Plesha, 1989). For ®nite elements, Irons and
Treharne (1971) showed that xmax is bounded by the
largest eigenvalue of all single elements of the system. In
the case of linear displacement rods, the CFL condition,
namely Dtub � L=c, provides an upper bound for the stable
time step. However, no such estimate for the stable time
step is currently available for the natural element method.
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For lumped mass systems in undamped systems, Ge-
rschgorin's theorem (Isaacson and Keller, 1966) provides a
safe upper bound for the stable time step. The theorem is
stated as:

xub � max�xIi� �23�
with

xIi �
���������������������������������PN

J�1

P2
j�1 jKiIjJ j

MII

s
;

where the indices j and J refer to the coordinate direction
and the number of nodes, respectively. In addition, KiIjJ

are the entries in the stiffness matrix and MII are the di-
agonal entries in the mass matrix. The upper bound xub

leads to a safe time step Dt � 2=xub for explicit time in-
tegration with the central difference method.

4
Numerical results and discussions
We consider the application of the natural element method
to problems in linear elastodynamics. First, estimation of
stable time step bounds using a lumped mass matrix are
presented. Then, two different problems are numerically
solved: cantilever beam under a step load, and dispersion
analysis for the ®rst- and second-order wave equations. In
the analyses, numerical integration is carried out using a
three point symmetric Gauss quadrature rule over the
Delaunay triangles. Results are compared to analytical
solutions as well as to results obtained using constant
strain triangle ®nite elements.

4.1
Stable time step bounds
The importance of time steps is two-fold in elastody-
namics: for linear wave propagation problems, smaller
time steps are needed to approximate waves of high fre-
quencies; and in structural dynamics problems time steps
play a crucial role for they determine the extent to which
the analysis is time intensive. Different approaches for the
evaluation of a stable time step have been introduced in

Sect. 3.2. Their accuracy for the natural element method
is checked by comparing the time step estimates to the
exact maximum stable time step which is evaluated by
solving the generalized eigenvalue problem: Kd � x2Md.
The time step evaluated by each approach is given as a
fraction of the maximum stable time step (Table 1) for the
nodal grids shown in Fig. 3. A time step is acceptable if
the ratio c is smaller than one. In the analyses, a lumped
mass matrix by the row-sum technique is used.

In Table 1, time steps computed using the CFL condi-
tion (Dt � L=c) and the Gerschgorin theorem are pre-
sented as a fraction of the maximum stable time step
obtained from the eigenvalue analysis. For the time step
given by the CFL condition (Dt � L=c), the ratio c ranges
from about 0:3 to 1:6. The characteristic length L is chosen
as the shortest distance between two nodes. Unstable time
steps are obtained for the cases (a), (b), and (c) and overly
conservative estimates for the graded meshes shown in (e)
and (f). Gerschgorin's theorem provides a safe time step
bound with ratios from 0.72 to 0.98.

4.2
Cantilever beam
A well-known benchmark problem in structural dynamics
is the beam in bending. Consider a cantilever beam
subjected to a Heaviside step loading (Fig. 4). The ana-
lytical solution for the fundamental time period T of a
cantilever beam can be estimated from the classical beam
theory as (Hurty and Rubenstein, 1964)

Fig. 3a±f. Nodal discretizations for anal-
ysis of stable time step. a Equilateral tri-
angle, b right-angled triangle, c bisected
quadrilateral, d regular grid, e and
f irregular grids

Table 1. Stable time step bounds for different nodal
discretizations

Grids c � xmax

�2c=L� c � xmax

xub

a 1.5175 0.8249
b 1.6054 0.8842
c 1.1952 0.9813
d 1.0278 0.8464
e 0.3178 0.7857
f 0.3138 0.7193
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T � 2p
1:8752

�����������
12ql4

Eh2

r
�18�

where q is the density, l is the length, E is the Youngs
modulus and h is the height of the beam. The maximum
displacement w of the right end of the beam is estimated
by calculating the bending deformation. Shear deforma-
tion is neglected, due to the chosen geometric relation
l=h � 10. The maximum displacement is obtained from
the equation for static bending with a premultiplied factor
of 2 for dynamic loading:

wmax � 2
phl3

3EI
�19�

Using Eqs. (18) and (19), the harmonic vibration of the
beam can be written as

w�t� � 1

2
1ÿ cos

2p
T

t

� �� �
wmax �20�

The cantilever beam is discretized using three different
nodal grids with equi-spacing in the coordinate directions
(Fig. 5). The time step chosen for the time integration is
0.95 of the critical stable time step: c � 0:95. The specimen

geometry and material properties are: p � 1 N/m2,
q � 10 000 kg/m3, E � 210 000 N/mm2, m � 0:3, l � 100 m,
and h � 10 m. Plane stress conditions are assumed in the
analysis. The analytical solution for the time period and
the maximum displacement are Tanalyt � 1:351 s and
wmax � 3:801� 10ÿ7 m, respectively.

Table 2 compares the fundamental time period ob-
tained using the eigenvalue analysis to that from the NEM
semi-discretization. The time integration is carried up to
3000 steps. The results show good agreement between
theory and the NEM solution with less then 1 per cent
error. The NEM results are markedly better than the
constant strain FE results.

In Table 3, the time steps obtained using FEM and NEM
are presented. The stable time step decreases with nodal
re®nement. The stable time steps used in the NEM ana-
lyses are approximately 45 per cent greater than their FEM
counterparts, which reduces the computing time for
time integration by about 30 per cent. In Figs. 6 and 7, the

Fig. 5. Nodal discretization for the cantilever beam with 22, 63,
and 205 nodes

Fig. 4. Cantilever beam problem for fundamental vibration
analysis

Table 2. Fundamental time periods for different nodal
discretizations

Method Number
of nodes

T of time
integration (s)

T of eigenvalue
analysis (s)

Percentage
error

NEM 22 1.155 1.144 0.96
63 1.295 1.306 0.84

210 1.354 1.343 0.08
FEM 22 0.670 0.684 2.05

63 1.013 1.026 1.27
210 1.240 1.239 0.08

Table 3. Time steps for different nodal discretizations

Method Number
of nodes

Stable time
step (s)

c Number
of time steps

NEM 22 2.01E-03 0.95 546
63 1.05E-03 0.95 1172

205 5.34E-04 0.95 2409

FEM 22 1.44E-03 0.95 442
63 7.21E-04 0.95 1335

205 3.61E-04 0.95 3263

Fig. 6. Fundamental vibration of a canti-
lever beam with FEM discretization
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beam deformation (FEM and NEM) is compared to the
analytical solution. There is good agreement between
theory and the numerical results. For a given nodal
discretization, the NEM solution is signi®cantly better
than the corresponding FE solution.

4.3
Dispersion analysis
Dispersion is a phenomenon that occurs in the numerical
solution of linear wave propagation problems, even though
it is absent in the analytical solution. It is especially pro-
nounced if the wave length is of the same order as the
nodal spacing. In this section, the dispersive characteris-
tics of the natural element method are examined for two-
dimensional ®rst- and second-order wave equations.
Consistent and lumped mass matrix formulations are
considered along with different nodal con®gurations. The
NEM results are compared to linear triangular ®nite ele-
ments. Mullen and Belytschko (1982) have carried out a
detailed dispersion analysis of the second-order wave
equation for linear triangular and bilinear quadrilateral
®nite elements. Recently, Voth and Christon (1998) have
presented a von Neumann analysis for reproducing kernel
semi-discretizations. Dispersive phase error is the differ-
ence between the numerical phase speed of the wave and
that of the analytical solution.

Following Voth and Christon (1998), the two-dimen-
sional ®rst-order (FO) and second-order (SO) wave
equations are given by:

u;x cos h� u;y sin h� 1

c
�u � 0; (FO) �21a�

u;xx � u;yy ÿ 1

c2
�u � 0; (SO) �21b�

where u is the unknown variable, t is the time, c is the
wave speed and h characterizes the propagation direction
of a plane wave measured from the x-axis.

We compare the dispersive properties of the NEM semi-
discretization to those obtained for constant strain ®nite
elements. Consistent and lumped mass matrices are con-
sidered with uniform nodal spacing in the coordinate
directions. In the case of uniform nodal discretizations,

lumped mass matrices by the row-sum technique are
identical to those computed using the area of the Voronoi
cells. Results are plotted as a function of the wave number
k and the wave propagating direction h. Two plots, one
circular and the other Cartesian are shown to indicate the
dependence of the dispersion on the propagation direction
and the wave number, respectively. The polar plots show
phase speed as a function of the propagation direction h,
for several values of non-dimensional wavelength, 2Dx=k.
The non-circular phase speed contours emphasize the
anisotropic nature of wave propagation on the discrete
nodal grid. The dispersion analysis follows that given by
Voth and Christon (1998) for the reproducing kernel
particle method and is not repeated here.

4.3.1
First order wave equation
The normalized phase speed for the NEM and linear FE
triangles are shown in Figs. 8±15. A quadrilateral nodal
con®guration and a hexagonal nodal con®guration are
examined with consistent and lumped mass matrices. The
nodal con®guration used in the analysis is indicated in the
®gure. In general, the dispersion error increases with
increasing non-dimensional wavelength, 2Dx=k. Figure 8
shows the NEM results for consistent mass matrix and
quadrilateral nodal spacing. The dispersive error is negli-
gible for k > 5Dx, and the relative wave speed W drops
rapidly for k < 5Dx. The dispersive error is dependent on
the propagation direction with maximum error along the
coordinate directions. The propagation is periodic in h
with a period of p=2. The corresponding plot for FEM
(Fig. 9) shows larger dispersion error and highly aniso-
tropic propagation, with h-periodicity of p. Mass lumping
leads to larger phase speed errors (Figs. 10 and 11). The
natural element method shows excellent isotropy for the
lumped mass case (Fig. 10), which is markedly better than
that for the consistent mass (Fig. 8). Signi®cantly better
propagation properties are obtained for hexagonal nodal
con®gurations (Figs. 12±15), with periodicity in h of p=3.
Both the NEM and FEM results show better isotropic
behavior for the hexagonal nodal con®guration than for
the quadrilateral nodal con®guration.

Fig. 7. Fundamental vibration of a canti-
lever beam with NEM discretization
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4.3.2
Second order wave equation
The normalized phase speed for the NEM and linear FE
semi-discretizations of the second-order wave equation are
shown in Figs. 16±23. The numerical characteristics of the
phase speed errors for the second-order wave equation are
different from the ®rst-order wave equation. In the ®rst-

order semi-discretization, the numerical phase speed is al-
ways lagging with less deviation for consistent mass matri-
ces. In the second-order case, consistent mass matrices
cause leading phase speeds and lumped mass matrices result
in lagging ones. Thus the possibility exists of reducing
phase errors by balancing the effects of the consistent and
lumped mass matrices. The maximum phase error for

Fig. 8. NEM: First-order wave
equation with consistent mass
matrix and quadrilateral nodal
con®guration

Fig. 9. FEM: Phase speed for
the ®rst-order wave equation
with consistent mass matrix
and quadrilateral nodal con®g-
uration

Fig. 10. NEM: Phase speed for
the ®rst-order wave equation
with lumped mass matrix and
quadrilateral nodal con®gura-
tion
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quadrilateral nodal spacing and a consistent mass is about
four times greater for FEM than for NEM (Figs. 16 and 17).
The propagation through the FE triangles is highly aniso-
tropic with the phase speed varying for the entire range of h
values. The periodicity is p and the largest error occurs along
propagation direction parallel to the longest element side.

NEM shows superior performance to that of linear FE. For
the grids shown, the element orientation (especially the di-
rection of the longest side of the triangle) is signi®cant for
the FE analyses. This dependence is not observed for NEM.
Rotating the grid by p=2 causes no change in the NEM re-
sults, but does change the phase speed diagram for FEM.

Fig. 11. FEM: Phase speed for
the ®rst-order wave equation
with lumped mass matrix and
quadrilateral nodal con®gura-
tion

Fig. 12. NEM: Phase speed for
the ®rst-order wave equation
with consistent mass matrix
and hexagonal nodal con®gu-
ration

Fig. 13. FEM: Phase speed for
the ®rst-order wave equation
with consistent mass matrix
and hexagonal nodal con®gu-
ration
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Hexagonal nodal spacing leads to excellent wave prop-
agation for consistent mass matrix (Fig. 20). A phase speed
error of less than 3 per cent is obtained for NEM with
consistent mass, independent of the propagation direction.
For the same case, FEM shows more than 20 per cent phase

speed error (Fig. 21). But FEM performs marginally better
than NEM for lumped mass matrices. The main advantage
of hexagonal spacing is the better dispersive properties
(small phase speed errors and near isotropic wave propa-
gation) for lumped mass matrices (Figs. 22 and 23). For

Fig. 14. NEM: Phase speed for
the ®rst-order wave equation
with lumped mass matrix and
hexagonal nodal con®guration

Fig. 15. FEM: Phase speed for
the ®rst-order wave equation
with lumped mass matrix and
hexagonal nodal con®guration

Fig. 16. NEM: Phase speed for
the second-order wave equa-
tion with consistent mass ma-
trix and quadrilateral nodal
con®guration
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both FEM and NEM, the hexagonal nodal con®guration
performed better than the quadrilateral nodal grid, both in
terms of reduced phase speed errors and less dependency
on the propagation direction.

4.3.3
Optimization by higher order mass
A higher order (HO) mass matrix is obtained as a weighted
sum of consistent �C� and lumped �L� mass matrices:

Fig. 17. FEM: Phase speed for
the second-order wave equa-
tion with consistent mass ma-
trix and quadrilateral nodal
con®guration

Fig. 18. NEM: Phase speed for
the second-order wave equa-
tion with lumped mass matrix
and quadrilateral nodal con®g-
uration

Fig. 19. FEM: Second-order
wave equation with lumped
mass matrix and quadrilateral
nodal con®guration
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MHO � aMC � �1ÿ a�ML ; �22�
where a is the lumping parameter. For the ®rst-order
wave equation, lagging phase speeds are obtained for
both, lumped and consistent mass matrices, with min-

imum phase speed error for the consistent mass. Hence,
consistent masses show optimal performance.

The second order wave equation has leading and lag-
ging phase speeds for consistent and lumped mass ma-
trices, respectively. Hence, optimization is possible. The

Fig. 20. NEM: Phase speed for
the second-order wave equa-
tion with consistent mass ma-
trix and hexagonal nodal
con®guration

Fig. 21. FEM: Phase speed for
the second-order wave equa-
tion with consistent mass ma-
trix and hexagonal nodal
con®guration

Fig. 22. NEM: Phase speed for
the second-order wave equa-
tion with lumped mass matrix
and hexagonal nodal con®gu-
ration
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minimum dispersion error for NEM with quadrilateral
nodal con®guration occurs at a � 0:85. The results are
shown in Fig. 24 with a phase speed error of less than 7 per
cent. The hexagonal nodal con®guration performs almost

optimal for a consistent mass (Fig. 20). Slight improve-
ment of the phase speed error is obtained for a � 0:98. The
maximum error in the phase speed reduces to 1:8 per cent,
as can be seen in Fig. 25.

Fig. 23. FEM: Phase speed for
the second-order wave equa-
tion with lumped mass matrix
and hexagonal nodal con®gu-
ration

Fig. 24. NEM: Phase speed for
the second-order wave equa-
tion with higher order mass
matrix and quadrilateral nodal
con®guration

Fig. 25. NEM: Phase speed for
the second-order wave equa-
tion with higher order mass
matrix and hexagonal nodal
con®guration
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4.3.4
Summary
A dispersion analysis was carried out using NEM for ®rst-
and second-order wave equations. The performance of the
NEM was compared to that for linear FE triangles. For the
®rst-order wave equation, a lumped mass matrix gave near
isotropic wave propagation but with greater phase speed
error in comparison to the consistent mass matrix results.
The NEM semi-discretization results were better than
those of FEM. Results of the second-order wave equation
using NEM with consistent mass were superior to FEM
with high accuracy for wave lengths down to 2Dx ± three
nodes per wavelength. Optimal behavior is found for
hexagonal nodal spacing and a higher order mass matrix.
Voth and Christon (1998) obtained poor performance for
the meshless reproducing kernel semi-discretization with
lumped mass matrices compared to their FE counterparts.
This is not true for NEM and the ®rst-order wave equation.
For the second-order wave equation, NEM shows greater
phase speed error than FEM, but less dependency on the
propagation direction.

For certain meshes, ®nite element triangles produce two
wave solutions due to acoustical (lower) and optical
(higher) frequencies. This phenomenon was not observed
for NEM. In triangular ®nite elements, the shape functions
are dependent on the element shape. Given a nodal con-
®guration, different element meshes are possible which
lead to different dispersive properties using FE triangles
(Mullen and Belytschko, 1982).

5
Conclusions
The application of the natural element method to linear
elastodynamics was studied. Two applications were con-
sidered: a vibration analysis of a cantilever beam subjected
to a step load; and the dispersion properties of the NEM
semi-discretization. The NEM solution for the time period
and the beam displacement showed good agreement with
the analytical solution. For the beam problem, the per-
formance of NEM was better than that of constant strain
®nite elements. Wave propagation properties of the NEM
semi-discretization were examined by a dispersion anal-
ysis. For the ®rst-order wave equation, a hexagonal nodal
con®guration with a consistent mass matrix leads to wave
propagation which is nearly independent of propagation
direction h, with less than 1 per cent phase speed error for
nodal grids of four to ®ve nodes per wavelength. Optimal
performance for NEM was obtained for the second-order
wave equation with a consistent mass matrix. Slight im-
provements were observed for higher order masses with

phase speed error of less than 1:8 per cent for hexagonal
nodal spacing and three nodes per wavelength. The overall
performance of NEM in linear elastodynamics was better
than that of linear ®nite elements. This can be attributed
to the smoothness and higher-order approximation of the
NEM interpolant. In particular, the interpolant and its
derivatives are continuous across Voronoi and integration
cell boundaries unlike the ®nite element interpolants
which suffer slope discontinuities across element edges.
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