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Natural neighbor coordinates [20] are optimum weighted-average measures for an irregular arrangement
of nodes inR™. [26] used the notion of &ier simplices in natural neighbor coordinaégo propose a

C" interpolant. TheC'! interpolant has quadratic precisionfihC R?, and reduces to a cubic polynomial
between adjacent nodes on the boundiy We present th€! formulation and propose a computational
methodology for its numerical implementation (Natural Element Method) for the solution of partial differ-
ential equations (PDESs). The approach involves the transformation of the original Bernstein basis functions
Bi3(<I>) to new shape function® (®), such that the shape functiofig; —2(®), 1371 (®), andys; (P) for

node/ are directly associated with the three nodal degrees of freedar,., andf;, , respectively. The

C' shape functions interpolate to nodal function and nodal gradient values, which renders the interpolant
amenable to application in a Galerkin scheme for the solution of fourth-order elliptic PDEs. Results for the
biharmonic equation with Dirichlet boundary conditions are presented. The generalized eigenproblem is
studied to establish the ellipticity of the discrete biharmonic operator, and consequently the stability of the
numerical methodo 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15:-447, 1999
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I. INTRODUCTION

The ability to develogC! interpolants over an arbitrary bounded dom@iis a much researched

and far from trivial task. The higher-order smoothness or continuity requirement of interpolants
is of interest, because such classes of trial functions are necessary in a Galerkin formulation for
the solution of higher-order elliptic partial differential equations (PDES)' trial functions for

the biharmonic (fourth-order) equation, with Kirchhoff plate bending in elasticity being a notable
application and a case in point. In a general framew6rkcontinuity on the primary variable

is required, when the balance laws of a continuum can be cast in variational form and second-
order derivatives of the primary variable appear in the variational statement. For example, in the

Correspondence tdProfessor Brian Moran
© 1999 John Wiley & Sons, Inc. CCC 0749-159X/99/040417-31



418 SUKUMAR AND MORAN

problem of nucleation of a solidolid phase transformation based on an energy functional that is
dependent on the strain and strain gradients, the Galerkin implementation réguitestinuous
trial functions [1].

In the realm of finite elements, one of the filst interpolants developed was the Clough
Tocher finite element [2, 3] and in subsequent years many of its variants have emerged [4, 5]. Some
of the other early developments in conforming triangular finite elements are due to de Veubeke
[6], Irons [7], Bell [8], and Powell and Sabin [9]. The construction of finite elements @ith
continuity is, in general, unwieldy with significant complexity arising in the construction of the
interpolant; moreover, the need to include first-order and second-order derivatives as additional
nodal degrees of freedom tends to adversely affect the numerical solution. A general overview of
the finite element interpolation problem for minimady} -continuous polynomial interpolants is
presented by Peano [10]. Lod@f (k > 0) interpolants on a regular grid are readily constructed
using splines. Lai and Wenston [11] use continuously differentiéBlecubic splines for the
solution of elliptic partial differential equations. For irregularly spaced data, an attractive choice
for constructingC* functions is to useC* weight functions that have compact support; for
example, Shepard’s interpolant [12], compactly supported radial basis functions [13], or moving
least squares (MLS) approximants [14]. These approaches lend themselves readily to curve and
surface data fitting. Wendland [15] proposes a Galerkin method using radial basis functions, and
Fasshauer [16] presents a review of meshless radial basis functions for the numerical solution
of PDEs. In the application of MLS approximants to PDEs, certain issues do pose problems;
for example, the noninterpolating property of MLS approximants leads to complications in the
imposition of Dirichlet boundary conditions in a Galerkin scheme for the biharmonic equation
[17, 18]. Moreover, the numerical solution is sensitive to both the weight function and its radius
of support. A partial resolution to the above shortcomings is met by using smooth interpolating
trial functions, as evidenced by the work of Donning [19] in which cardinal splines are used in
a displacement-based Galerkin scheme to solve shear-deformable thick as well as thin beam and
plate problems using MindlirReissner theory.

A relatively new result in interpolation theory [20] has recently led to the development of a
novel approach for the representation of multivariate data and to the solution of partial differential
equations of physics using a meshless method [21, 22]. This method, termed the Natural Element
Method (NEM), shows significant promise for problems in solid mechanics [23]. In the natural
element method, the trial and test functions are constructed using natural neighbor interpolants
[20]. These interpolants are local in character, and are based on the Voronoi tessellation [24] of
the set of nodes. As opposed to finite elements, there is no notion of element connectivity in the
construction of the NEM interpolant, and, in this context, the numerical implementation is viewed
as a meshless or meshfree method [25].

In this article, we present the computational implementation of a natural neighbordsased
terpolant for the solution of PDEs. Farin [26] constructe&d'anterpolant by embedding Sibson’s
natural neighbor coordinates in the Bernst@ézier surface representation of a cubic simplex.
The C' NEM interpolant that we propose is based on a transformation of Farin’s interpolant,
and, as a result, interpolation to nodal function and nodal gradient values is realized. This renders
the C' NEM interpolant amenable to use in a Galerkin scheme for the solution of fourth-order
elliptic PDEs.

The outline of this article is as follows. In Section I, a concise description of Sibson’s natural
neighbor interpolant is presented. In Section lll, we first outline Farin’s natural neighbor-based
C' interpolant; then, we present the methodology used to derive'thdEM shape functions
that are used in this article. The construction, properties, and numerical computation§'éf the
NEM shape functions are discussed in Section IV. In Section V, the governing equations for the
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biharmonic equation together with the Galerkin formulation for NEM are described. In Section
VI, two applications of NEM for the biharmonic equation with Dirichlet boundary conditions are
presented. Finally, in Section VII, some concluding remarks are mentioned.

II. NATURAL NEIGHBOR INTERPOLATION

In this section, we briefly touch upon the foundations of Sibson’s natural neighbor coordinates
(shape functions), which are used in the natural element method. For a more in-depth discussion
on the Sibson interpolant and its application to second-order partial differential equations in
mechanics, the interested reader can refer to Braun and Sambridge [22] and Sukumar et al. [23],
and the references therein.

Consider a set of distinct nodéé = {ny,ns,...,ny } in R2. The Voronoi diagram with its
dual Delaunay triangulation is one of the most fundamental and useful geometric constructs that
defines an irregular set of points (nodes). Natural neighbor coordinates, which were introduced
by Sibson [20], are constructed on the basis of the underlying Voronoi tessellation for the nodal
setN. The Voronoi diagram (orgt-order Voronoi diagram) of the séf is a subdivision of the
plane into regiond’; (Voronoi polygons) given by

Tr = {x € R*:d(x,x1) < d(x,x;5) VJ#I}, (2.1)

whered(xy,x ), the Euclidean metric, is the distance betweerandx ;.

The Voronoi diagram for a set of seven nodes is shown in Fig. 1(a). In Fig. 1(b), axpoint
is introduced into the Voronoi diagram of the g€t If x is tessellated along with the nodal set
N, then, in the newly constructed triangulation basedoandx, the natural neighbors of are
those nodes that are connected by a Delaunay edgeltoe natural neighbor coordinates (shape
functions) ofx with respect to a natural neighbbare defined as the ratio of the area of overlap
of their Voronoi cells to the total area of the Voronoi celbof

br(x) = i,r((}:) ; (2.2a)
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FIG. 1. Construction of natural neighbor coordinates. (a) original Voronoi diagram,ar! (b) St-order
and Zd-order Voronoi cells about.
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Ax) = ) As(x), (2.2b)
J=1

where I ranges from in in Eq. (2.2a). If the pointx approaches a nodé&x — xj),
¢1(x) = 1, and all other shape functions are zero. By this fact, and by construction, the properties
of positivity, interpolation, and partition of unity directly follow:

0< ¢](X) < 1, QS[(XJ) = 51‘], Z¢[(X) =1 inQ. (23)
I=1

In addition to the above, natural neighbor shape functions satisfy the local coordinate property
[20], namely

x =Y or(x)x, (2.4)
I=1

which indicates that the shape functions can exactly reproduce the geometrical coordinates. The
above equation in conjunction with the partition of unity property in Eq. (2.3) imply that linear
completeness is satisfied by th€(Q) natural neighbor interpolant.

On using Eq. (2.2a), we can write the first- and second-order derivatives of natural neighbor
shape functions as

 Ara(x) = ¢1(x)A o (x)

Or.a(x) = A : , (2.5a)
T

where Greek indicesx and 3 are used to denote derivatives along coordinate directions
andy. The geometric algorithm proposed by Watson [27] is used to compute the natural neighbor
shape functions and its derivatives.

IIl. C* NATURAL NEIGHBOR INTERPOLANT

Farin [26] has proposed @' interpolant based on Sibson’s origin@P natural neighbor in-
terpolant. By embedding Sibson’s coordinate in the BernsB#aier representation of a cubic
simplex, aC'! interpolant is realized. BernsteiBézier patches and related concepts are widely
used in the area of surface approximation and in the field of computer-aided geometric design
[28]. A review article on triangular BernsteiBézier surfaces can be found in Farin [29], and

a general treatment of multivariate polynomials over multidimensional simplices is given by
de Boor [30].

In what follows, multi-index notation denoted by the bold charactensdj is used. Multi-
indices aren-tuples of honnegative integers, the components of which start at zero; for instance,
i = (i1,i2,...,1,). The norm of a multi-index, denoted byji|, is defined to be the sum of
the components ofi|, namely|i| = i1 + is + -~ + i, [28]. Let & = (&1,&a,...,&,), With
the property>", &, = 1, be the barycentric coordinate of a simplexe R"~*. A Bernstein
Bézier surface of degree over the simplex can be written in the form [30]

b(€) = Y B"©bi, (3.2)
lil=m
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whereb; is known as the Bzier ordinate associated with the control pdint:. The control

net ofb(¢) is the network of(n + 1)-dimensional pointgi/m, b;). In Eq. (3.1),B*(§) arem-
variate Bernstein polynomials imvariables. To elaborate, they are the terms in the multinomial
expansion of unity, i.e.,

G +&+ &)™ = B, B?@%:(?) PR b, (32)

lil=m

where(7") is the multinomial coefficient, which is defined as

m m!
( i ) T igligl iy (3.3)

In one dimension with = 2, we havet; = 1 — z and&; = x as the barycentric coordinates of a
simplexd € R. The univariate linear Bernstein polynomiéls = 1) are{1 —x, 2}; the quadratic
polynomials(m = 2) are{(1 — z)?,2(1 — x)x,x?}; and the cubic polynomialén = 3) are
{(1—2)3,3(1—2)%x,3(1—2)x2, 23}, wherex € [0, 1]. Multivariate Bernstein polynomials have
properties very much like their univariate counterparts. From Eq. (3.2), some of the important
properties of multivariate Bernstein polynomials, such as partition of unity, positivity, and cardinal
interpolation, are easily inferred. The control points (circles) and associétaer®rdinate values
(b;) for a cubic BernsteirBézier triangular patch are shown in Fig. 2. The interested reader can
refer to Bbhm, Farin, and Kahmann [31], Farin [29], and Farin [28] for further details on the
properties and applications of triangular Bernst&iézier patches.

Consider a poink € R? that has: natural neighbors. Let the natural neighbor coordinates of
xbe® = (¢1(x), P2(x), ..., dn(x)). Sinced_; ¢:(x) = 1, we note that® can be considered
as a barycentric coordinate (nonunique) of thgon in the plane. The generalization o Ber
surfaces over a convex polygonal domain was proposed by Loop and DeRose [32]. Bypusing

b3s,00

boso boz21 boize boos

FIG. 2. Cubic BernsteirBézier triangular patch.
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instead of in Eqg. (3.1), we can construct the surface [26]

w™(®) = > B(®)b;. (3.4)

li|=m

In the above equation, thefBier ordinate; is associated with the control poigt € R2, where
q; are the projection of the control points of thevariate Bezier polynomial over thén — 1)-
dimensional simplex onto the plane [26]:

ai= Y Bii/m)x;, [i=m. (3.5)
lil=1

On the basis of Eq. (3.5), one can infer that the components of the barycentric coofdihtite
(n — 1)-dimensional simplex is identical to that of the Sibson coordidatd the mapped:.-gon
on the plane.

The connectivity rule for Bzier simplexes states that the domain simplex has all vertices
connected to all other vertices.df andq; are two Bezier points in the:-gon simplex, then the
rule indicates that there must exist integeends such that the multi-indicesandj satisfy

i—e.=j— e, (3.6)

wheree,, = (014,024, - - -, Oka, - - - , Ona ) dEnotes the multi-index having zero in all components
except for thexth component, which is one. The projection of the control net of a cubic tetrahe-
dron(m = 3,n = 4) onto the plane is shown in Fig. 3. In Fig. 3, the open circles are “boundary”
control points, and the filled circles are center control points. The center control points are lo-
cated at the centroid of the corresponding triangle; for instaqce; o = %(qg,op,o + q0,3,0,0
+d0,0,3,0)-

If we choosem = 1 in EqQ. (3.4) and letw; = w(x;) denote the nodal function value,
we obtain

wh(x) =D S (x)05 (%) -+ o (X)be, = D dr(x)wr, (3.7)
I=1 I=1

q 3,0,0,0 q 2,1,0,0 q 1,2,0,0 q 0,3,0,0

FIG. 3. Projection of the control net of a cubic tetrahedron onto the plane [26].
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which is the original Sibson interpolant. Hence, Eq. (3.4) can be viewed as a generalized form of
the Sibson interpolant.
Form = 3, we arrive at the following surface representation [26]:

w(®) = Y B} (@), (3.8)

li|=3

which is theC' interpolant that we use in the natural element method.

A. Properties

Farin [26] has outlined the properties of the interpolant given in Eq. (3.8). Here we discuss
some of the important properties that are germane to a Galerkin formulation that is pursued in
this article.

1. Smoothness. Farin [26] has shown that the interpolant proposed in Eq. (3.8)!g2).
Consider an open bounded dom@irc R2. Letx € 2 be any point that has natural neighbors,
andx; be the nodal coordinate of nod€ = 1,n). Sibson coordinates; (x) are continuously
differentiable at all pointx # x;. Since B in Eq. (3.8) is composed of products 67 ()
natural neighbor shape functions raised to a power, it is evident that the new interpolant is also
continuously differentiable at all points # x;. The “boundary” control points for the-gon
with respect to nodé lie along the lines joining; and the remaining — 1 nodes. Let these—1
directions be denoted h¥; (j = 1,n — 1). The control points in the tangent plane with respect
to node/ are the ones that lie alonly and are connected to the control paigt, (nodel)—see
Eqg. (3.6). Farin [26] noted that the directional derivativeaialong an arbitrary directiod is a
linear combination of the directional derivatives along the directibnd/loreover, since all the
control points are coplanar, the directional derivative al@mgalso in the plane, and, hence, the
differentiability atx = x; is met. By virtue of the above inferences, ti&(Q2) continuity of the
interpolant is established.

2. Quadratic Completeness. The C'(Q) interpolant has quadratic completeness, i.e., it
can exactly reproduce a general quadratic function [26]. In keeping with finite element us-
age [33], we use the term completeness, which is better known as precision in approximation
theory. As opposed to the above, th8((2) interpolant proposed by Sibson [34] can repro-
duce only spherical quadratics, i.e., functions of the fagm+- a1z + a2y + az(z? + y?). By
virtue of the quadratic completeness property, Fari'$Q)) interpolant can exactly represent
a state of constant curvature (second derivatives of the displacement for the thin plate prob-
lem), which is required to pass the patch test for a fourth-order PDE such as the biharmonic
equation.

By judicious choice ofthe Bzier ordinates, Farin [35] realized a quadratic precision interpolant.
For a cubicn-gon simplex in the plane, there ar@ + (3) control points, and, consequently,
the same number of &aier ordinates. Of these,? control points lie along the lines joining
nodesx; andx; (I < J < n), with four control points lying along any one such line. For
instance, ifl = 1,J = 3, andn = 4, the control points along the line joining, andxs are
q3,0,0,0,92,0,1,0, 91,0,2,0, andq(),(]y(gy(). The associated “bOUndary"&ier ordinates to thesé
control points are of two distinct types, namely ordindteshose subscript contains one 3 and
all other zeros (for exampléy s 00), or ordinates; whose subscript have one 2, one 1, and alll
other zeros (for exampl®; 2 ¢,0). The former (nodal or vertex ordinates) are precisely equal to
the nodal function value, and the latteéBer ordinates are easily found in the tangent planes (see
Section IV.B). The additional}) control points are associated with “free”@ier ordinate$;
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whose subscript contains three 1's and all other zeros (for exatnple,). The Bézier ordinates
mentioned within braces are far= 4; the control points for this case are indicated in Fig. 3. An
optimal choice for the center@&ier ordinate is given by, 1,10 = %a — %c [35], wherea is the
centroid of the tangent&ier ordinates andis the centroid of the vertex (nodal¥Bier ordinates.
The above choice of the centeéBer ordinate guarantees quadratic precision. An illustration of
the evaluation of the &zier ordinates for a cubic BernsteBézier triangular patch is shown in
Fig. 4. Referring to Fig. 4, we can express, ; as [35, 26]

3 1
bii11= 5 a— 3 c, (3.9a)
where
ba,1,0 +b1,20 +b201+b102+bo21+bo12  b300+b030+boos
0= : o= : . (3.9b)

3. Univariate Interpolation. In one dimension, th€°(Q) natural element method is identical
to linear finite elements [23]. We now consider thé(2) natural neighbor interpolant in one
dimension. Lef2 = (0,1) C R be an open bounded domain. Any paint 2 has two natural
neighbors, but a point € 9 has only one neighbor. Let € 2 be a point that has two natural
neighbors at: = 0 andz = 1. Then, Eq. (3.8) reduces to

3! i i

w(®) = | Z e ()R (P)by, 4y - (3.10)
11 +1i2=3

Sinceg; = 1 — x andg, = z are the natural neighbor shape functions (barycentric coordinates)

of the pointz, we can expand the above equation to obtain

w(z) = (1 —2)%b30 + 3(1 — x)%xba 1 + 3(1 — 2)2?by 2 + b0 3, (3.11)

which is a cubic polynomial curve between the two nodes. In the above equaiipn=
w(0),bps = w(1l), andbe; andb; o are related to the function values and their derivatives
atx = 0 andx = 1, respectively.

FIG. 4. Evaluation of the Bzier ordinates for a cubic triangular surface patch [31].
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4. Cubic Polynomial along the Boundary 92. We assume that the discrete model consists of

a set of noded/ that describes a convex domé&inc R?, with 92 represented by the boundary of

the convex hull CHV). On the boundary of the convex hull, any painhas only two neighbors

[26]. Consequently, by Eqg. (3.11) in the previous subsection, we immediately arrive at the result
that cubic interpolation is realized along the boundary of the convex hull.

5. Bivariate Interpolation. If a pointx €  C R? has two natural neighbors = 2), the
interpolant is cubic between the two nodes) i 3, the approximation is a cubic surface over a
triangular patch; and if. = 4, the approximation is a bicubic patch [26].

B. NEM Trial Function

We use the interpolant presented in Eq. (3.8) as(thé?) NEM trial function. Let the point
x € Q) C R? haven natural neighbors, with;(x) the natural neighbor shape function of ndde
(I = 1,n). Consider an interpolation scheme for a scalar-valued funetiog: Q2 C R? — R,
in the form

w"(®) = > B} (®)b;, (3.12)

li|=3

where the dependence on positiois implicit, since the components &are the natural neighbor
shape functions that are functions>afWe reiterate that there aré + (%) Bézier ordinates in
Eg. (3.12), and, consequenth? + (%) terms on the right-hand side of the above equation.

The above form of the interpolant is suitable for applications in the context of data interpolation
or surface approximation, since nodal function values and sometimes even nodal gradient data
are knowna priori. For the numerical solution of PDEs by a Galerkin procedure, however, this
is not the case, since nodal function and nodal gradient values are unknowns, which are to be
determined from the solution of the discrete systid: = f. To meet the desired goal, we suggest
a transformation that renders the resulting interpolant amenable to numerical computations and
implementation in the context of the numerical solution of PDEs. This is achieved by recasting
Eq. (3.12) in the following form (matrix notation):

w"(®) = {B(®)}" {b} = {B(®)}[T{w} = {¥(®)}"{w}, (3.13a)
where
{b} = [Tl{w}, {®(®)}" = {B(®)}"[T]. (3.13b)

In Eq. (3.13),{B} and {b} are column vectors of dimensiat’ + (%), and[T] is a trans-
formation matrix of dimensiongn? + (%)) x 3n. The transpose of the shape function vector
{‘I’(‘I’)}T = {77[)1((1))7 1/)2((1)), 1/)3(‘1’), . 71#3”,2(@’), ’(ﬂgnfl(@), ’l/Jgn((I))}, and the transpose
of the nodal vectofw}” = {wy, 014,01y, ..., Wy, Ons, Ony }, Wherew; = w(x;) are the nodal
function values, anfl;, = w ,(x;) andd;, = w ,(xr) are the nodal gradient values. For the thin
plate problemyw; are the nodal displacements, ahd anddr, are the nodal rotations. The ma-
trix [T] is a transformation matrix that maps the nodal function and gradient values tézer B
ordinates. The transformation frofi8(®)} — {¥(®)} that we propose in Eq. (3.13b) is based
on a simple observation. In order to construt'd(2) surface over an unstructured nodal grid, in
general the nodal function values and nodal gradient values are required. In the BeBeéstiEn
surface representation given in Eqg. (3.12), the vertézi® ordinates are identical to the nodal
function values, and the tangent and centéziBr ordinates are related to the nodal gradient data.
Hence, inits current form, the local interpolant is dependent on coefficieasdBordinates) that
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vary from point to point. The matrikT] facilitates the representation of the interpolant in terms
of nodal function values and nodal gradients, which renders it amenable to use in a PDE-setting;
moreover, interpolation to both is realized (Section IV.C). In this light, we can vieWthsEM
interpolant as a bivariate generalization of one-dimensional Hermite cubic polynomials. In one
dimension, the equivalence of the NEM interpolant to cubic Hermite finite elements is shown in
Section IV.B.

On constructing the transformation matfl and carrying out the matrix-vector multiplication
indicated in Eq. (3.13b), we can expresshg(2) NEM trial function in standard shape function
notation as

3n
wh(x) = v (x)w;, (3.14)
j=1

whereysr_2(x), ¥3r—1(x), andysr(x) are the shape functions for nodehat are associated
with the nodal degrees of freedou, 0., anddr,, respectively.

1. Support of C! Shape Functions. Consider nodd € N, whereN is the set consisting of

n natural neighbors for a point € Q c R2. TheC*(92) shape functions associated with nade
areysr—2(x), ¥3r—1(x), andysr (x). These shape functions are derived from a BernsB#aier
surface representation, in which the natural neighbor shape functions are used as barycentric
coordinates of a point. Consequently, the'*(2) shape functions retain the compact support
properties ofp;(x), and, hence, a local interpolant is realized. Akingtdx), the support of
the shape functiongs;_o(x), ¥3;-1(x), ands;(x) are the intersection of the convex hull
CH(V) with the union of all Delaunay circumcircles that pass through nof6]. Consider a
unit square discretized 85 (5 x 5) equi-spaced nodes [Fig. 5(a)]. The support for the shape
functionses 4o (x) andgs 41 (x) associated with nodd are illustrated in Figs. 5(b) and 5(c),
respectively.

IV. NUMERICAL COMPUTATION OF SHAPE FUNCTIONS

In this section, we first present the expressions for BernsBs#nier basis functions as a function

of Sibson’s coordinat®. Then, we describe in detail the construction of the transformation matrix
[T] and the subsequent evaluation of NEM shape functions. Lastly, some key properties of the
newly developed”! (2) NEM shape function® (@) are presented.

A. Bernstein —Bézier Basis Functions

BernsteinBézier (BB) basis functions are defined in Eq. (3.2). For a cubgon simplex in
Sibson’s coordinates, we obtain

B (®) = (‘:’) ool (4.1)
wherei = iy + iy + - - - + 4, = 3. For the cubic case, only three distinct types of basis functions
arise, namely those correspondingite= 3e;,i = 2e; + ey, andi = e; + ey + ex. For
convenience, we let = 1, J = 2, andK = 3. Then, the corresponding BB-basis functions are
given by

Bso0(x) = ¢7(x),  Baio(x) =341 (x)¢2(x),  Bi1i1(x) = 6¢1(x)d2(x)¢s(x). (4.2)
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(b) (©)

FIG. 5. Support forC' (22) NEM shape function: (a) nodal grid; (b) shape functigsm —2(x); and (c)
shape functionps 41 (x).

By definition, the three basis functions can be represented in the form
3' i1 72 i
B iz is (X) = iliglial 1 (x)07 (x) o35 (x), (4.3)
where the choice83, 0,0), (2,1,0), and(1, 1, 1) for the 3-tuple (i1, i2, i3) lead to the equations
indicated in Eq. (4.2). The first derivatives B, ,, ;,(x) can now be written as
aBil,imiB (X)

Do = Bil,iz,iS (X)Ci1,i27i3 (X>7

3

Cihiz,i?, (X) = sz QZ;]:ES;)v ((X = ax,y), (4.4)

k=1
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and its second derivatives are given by

82& Qo .ie (X) 6‘Bz i 7‘3(X)
1,22,13 — 1,%2,% . Bz i i
aaaﬁ aﬁ 01727 d(x)+ 11273(X)

9Ci, g is (%)
op

, (4.5a)

where

3
E)C’“ 12 23 Z ¢k aﬁ( ) ¢k,a(x)¢k,ﬁ(x) (Oé, B8 = :c,y). (4.5b)

¢k: (x) ’

From the viewpoint of theoretical exposition, the above expressions for the Beriigdeiar basis
function derivatives are compact and appealing. Nevertheless, in the numerical implementation,
the derivatives of the basis functions given in Eq. (4.2) are explicitly computed. By this approach,
simplifications arise and one can group like terms together, which leads to fewer arithmetic
operations in the computations.

B. Construction of the Transformation Matrix [T ]

As can be inferred from Section 11I.B, the construction of the transformation matfixs the

key step in transforming the BernsteBézier representation of the trial function to the shape
function form given in Eq. (3.14). Since this is central to the computational methodology that is
adopted here, a detailed description of its formation is shown below.

We first present the relations betweegzier ordinates and the nodal function and gradient
values, and then proceed to outline the structure and computational algorithm to construct the
transformation matrixT]. The nodal or vertex &ier ordinates are equal to the nodal function
values, i.e.,

bi =wy, i=3€] (46)

for the Bezier ordinate at nodé The tangent Bzier ordinates are related to the nodal function
and nodal gradient values. Lébe the direction along the line; to x ; andd bp that fromx ; to
x7. The directional derivative of the functian(x) along the directiond andd are given by

ow(x) B 8w( ) . 8w( ) U
9 Vuw(x) -d= o d, By d, (4.7a)
ow(x) - Ow(x) 1 (‘3w(x) 17
= = d=— 4.7
Y Vw(x)-d ( o d;, 9y d,” |, (4.7b)
whered = —d, andd!’ = z; — z; andd)’ = y; — y are the Cartesian components of the

vectord. The directional derivative at; alongd and the directional derivative &ty alongd can
be expressed as

ow(xr)

o = O1ody” + Oryd,’, (4.8a)
ow(xy
a(d ) _ —(050dl” + 05yd)7). (4.8b)
The tangent Bzier ordinates that lie in the tangent plane are determined through the relations [28]
QW) g b, i—2er4es,  j—3er, (4.92)

od
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ow(xy)
ad
which on using Egs. (4.6) and (4.8) and rearranging terms results in the following expressions for
the tangent Bzier ordinates:

= S(bl - bj), i=e;+ 2ey, j=3ey, (4.9b)

1

be+e, = 3 (01,d." +6;,d)) +wy, (4.10a)
1

best2e, = —3 (0,47 +05,d)7) +w,. (4.10b)

Now, the center Bzier ordinates are computed using Eg. (3.9). Consider the center ortlinate
with subscripti = e; + e; + ey, i.e., the corresponding control point lies at the centroid of
triangle (x;,xs,xx). Hence, on using Egs. (4.6) and (4.10) in conjunction with Eq. (3.9), we
obtain the following expression for the center ordinate:

wr +wy + wi n arlre + Brry + oyl + B50 7y + a0, + Brlry

by = . (4.11a
3 1 ( )
i=e;+te;+eg, (411b)
where
d,I'] dIK 7dIJ df]K 7dIK _ dJK
ay = =z ; z , O[Jzim ; z s ()11(:73C 3 z , (4123)
dIJ +dIK 7dl‘] + dJK 7dIK _ dJK
= e T e SRNCELT)
dij = xy—xj, diK:J?K*ZCI, df{.K:IKfz,], (412C)
di) = yr—yr, &f =yx—yr,  d)f =yx —y,. (4.12d)

The storage structure for the transformation maffiiX is shown in Fig. 6, and a pseudo-code
for its construction is presented in Table I. The map from the nodal function values to the vertex

1 2 3 e e e 3n

1 1
\ .
* Nodal ordinates 11 TOWS
L
n
L]
L4 .
o Tangent ordinates n2 - nrows
L]
n2
[ ] . n
N Center ordinates C; rows
n
n2+ Cj
3n columns

FIG. 6. Storage structure for the transformation mafiix
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TABLE I. Pseudo-code for construction of the transformation mafix

[EnY

. Initialize matrix[T] = 0;
. Initialize matrix[R] = 0;
3. forI=1—n{

o T(I,31 —2)=1;
}

4. row = n;
5. fori=1—-n-1{
@ forg=I+1—-n{
® IOW < row +1;
e T(row,3I —2) = 1;T(row, 3] — 1) = d.’ /3; T (row, 31) = d}’ /3;
e R(I,J) = row;
® oW <« row + 1,
e T(row,3I —2) = 1;T(row, 3] — 1) = —d.” /3; T(row, 31) = —d}”’ /3;
e R(J,I) = row,;
}
}
. row = n?;
7.forl=1—-n—-2{
@forJ=I+1—-n—-1{
i.forK=J+1—-n{
row < row + 1;
computear, o, o, Br, 87, Bk using Eq. (4.12);
T(row,3I —2) =1/3;T(row,3I — 1) = oz /4;T(row, 31) = Br/4;
T(row,3J —2) = 1/3; T(row,3J — 1) = ay/4;T(row, J) = B /4;
T(row,3K — 2) =1/3;T(row,3K — 1) = ax /4;
T(row,3K) = Bk /4;

N

(<2}

Bézier ordinates is stored in the firstrows; the next? — n rows pertain to the tangentRier
ordinates; and the last block @f ) rows relate the nodal function and gradient values to the center
Bézier ordinates. In Fig. 7, the vertex, tangent, and cerdeidB ordinates with respect to notle

are indicated for a pentagonal simplex= 5). An outline of the algorithm presented in Table |
follows. The matriT| as well as am x n matrix[R] are initialized to zero. The matr[R| stores

the row number of the contribution |T'] due to the tangent&ier ordinates. For the first block of
nrows, Eq. (4.6) is invoked so as to set ttilke row and(37 — 2)-column position iff T] to unity. In

the second block (tangent ordinates), the entriéTjrare evaluated using Eq. (4.10). The loops
are executed such that for any nddgl < I < n — 1), the entries for all tangent ordinates along
the line joiningx; to x; (I < J < n) are computed. In Fig. 7, the filled square corresponds
to the Bézier ordinate given by Eq. (4.10a), and the open square corresponds to that given by
Eqg. (4.10b). Lastly, the entries in the matfik] due to the center ordinates (see filled ellipses in
Fig. 7) are stored. This involves tBetuple (I, J, K) suchthatl <7 <n -2 1< J <n-—1,

andJ < K < n. Here, the entries ifil] are computed using Egs. (4.11) and (4.12). Bath

as well as/R] are required to evaluate the parameters that appear in Eqg. (4.12). In addition to
storing the entries ifiT'], the BB-basis functions and its derivatives given in Section IV.A are also
computed within each block. Once the construction of the transformation riiBtrig complete,
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FIG. 7. Bézier ordinates used in the algorithm for a pentagonal simplex.

a matrix-vector product is carried out to compute the shape functipfys) and their derivatives
¥j.0(x) @NdY;.ap(x) (@, f = z,y):

{®(@)}" = {B(®)}"[T], (4.13a)
{T (@)} = {B(®)}7[T], (4.13b)
{¥os(®)}" = {Bs(®)}7[T]. (4.13¢)

In order to illustrate the shape function computations, we present two examples. First, in one
dimension, itis shown that the matfik] transforms cubic Bernstein polynomials to cubic Hermite
polynomials that are used in higher-order finite elements. Then, the transformation fWAtrix
for a cubic triangular patctn = 3) is presented to illustrate the computational methodology for
shape function calculations.

Example 1. Consider a point: € @ = (0, 1) with natural neighbors at; = 0 andz, = 1. We
recall Eq. (3.11), which is the one-dimensiondl(2) interpolant in BB-form:

w(z) = B3 gbso + B3 1ba1 + B yb1 2 + By sbo s, (4.14a)
where
Bgo =(1—2x)3, B;l =3(l—-z)’x, B},=3(1-1a)a" 3373 =2°.  (4.14b)

From Eq. (4.6), we immediately have, = b3 o andws = by 3. Let0; = w (z1) andfy =
w z(x2). Then, on using Eq. (4.10), we obtain

0
bo1 = §1+w1, (4.15a)
D)
bio = *§+w2, (4.15b)
and, hence, the transformation equation given in Eqg. (3.13b) can be written as

bgﬁo 100 O w1
bos | _[|001 O 01
b271 o 1 % 0 0 w2 (416)
b1, 001 —3 02
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Onusing Eg. (4.13a) in conjunction with Egs. (4.14) and (4.16), we obtain the following equations
for the C'*(£2) NEM shape functions:

1(x) = Bio+ By, =1—32"+22°, (4.17a)
Yo(x) = % Bg’,l =1z —2z% +2®, (4.17b)
V3(x) = Bjs+ B}, =32 — 2z, (4.17¢)
y(x) = —% BiQ = —z? + 23, (4.17d)

which are cubic Hermite polynomials.

Example 2. The Bézier ordinates for a cubic triangular patgh = 3,n = 3) are indicated in

Fig. 4 and the relation for the center ordinate is presented in Eq. (3.9). For anyk@oatriangle,

the natural neighbor shape functiopgx) atx are identical to the barycentric coordinatesof

[26]. For simplicity, we consider thA 4 g with verticesA(0, 0), B(1,0), andC(0, 1). There are

ten cubic triangular Bzier ordinates, of which three are vertex ordinates, six are tangent ordinates,
and one is a center (“free”) ordinate. On using Egs. (4.10) and (4.11), with the parameters
computed from Eq. (4.12), we can relate the nodal veftof to the Bézier ordinate vectofb}
through the following equation:

b3.0,0 1 0 00O 0 OO0 O
bo,3.,0 00 01 0 O0OO O ;"1
bo,0,3 00 00 O 010 O 611
b2.1.0 12000 000 0 ly
_ biao{ [0 0 01 -3 000 0 w2
{b} = [T{w} = boas (=110 200 000 0 zzw . (4.18)
b1,0,2 00 00 0 010 f% 2y
bo,2,1 0001-%2%100 0 ;03
bo,1,2 0000O0 014 -4 931
3y
N R
Let the nodes be numbered L, and3. Then, the BB-basis functions are
B iz ,is (X) = T H(x) o (x) 5 (x), (4.19)
11112113

wherei, + i + i3 = 3and¢;(x) = 1 — x — y, d2(x) = z, andos(x) = y are the natural
neighbor shape functions. The ten components of the vé@®¢®)} are computed from the
above equation. Sind&'] is known from Eq. (4.18), the shape function vecfdr(®)} and its
derivatives are readily computed from Eq. (4.13).

Remark. A cubic BernsteinBezier surface representation over a triangle leads t6in-
terpolant In the natural element methpds a pointx approaches a Delaunay edgehich is
within the convex hull of the domaithe number of neighbors fot is greater than thregand
consequently a smooth interpolant is realized in that region

C. Properties

Most of the properties of°(2) natural neighbor shape functions and Bernst#zier basis
functions are retained b§! (Q2) shape functions, but there do exist a few differences and some
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notable exceptions. We present some of the most important propert@&s(9f) NEM shape
functions.

1. Interpolation, Partition of Unity, and Quadratic Completeness. The interpolant proposed
in Eq. (3.14) is an alternate representation of Faxir*¢()) interpolant that appears in Eq. (3.12).
SinceC'(©2) NEM shape functions are linear combinations of Berns®@®ézier basis functions,
cardinal interpolation of the functiom(x) is immediately seen:

Yar—2(x7) =617, Ysr—1(x7) =0,  sr(xs) = 0= wh(x;) = w(x;). (4.20)

In addition, it is obvious that the quadratic precision property of Eq. (3.12) also holds for the recast
form proposed in Eqg. (3.14). By the above inferences, we immediately arrive at the following
properties:

3n
ij(x)wj =w(x;) Yw(x)= Z aijz'y!,  ai; €R, (4.21a)
= i+j<2
§,§>0
> ahsroa(x) =1. (4.21b)
=1

Equation (4.21a) is the statement of quadratic completeness of the NEM interpolant, and Eq.
(4.21b), which can be viewed as a consequence of Eq. (4.21a)(for= 1, indicates that the
NEM shape functions associated with the nodal function values form a partition of unity.

2. Positivity.  Natural neighbor shape functiong(x) as well as BernsteitBézier basis func-
tions B} share the property of positivity:

0<¢r(x) <1, 0<B} <L (4.22)

As opposed to the above, only the NEM shape functiofs »(x) that correspond to the nodal
function values share the above property, namely

O S ng_g(x) S 1, (423)

whereas)sr—1(x) as well agsr(x) can assume both positive as well as negative values. A shape
function of the formys;_o(x) is illustrated in Fig. 5(b), and one akin t&;_1(x) is shown in
Fig. 5(c).

3. Interpolation to Nodal Rotations. It was mentioned in Section IV.B that the NEM inter-
polantin Eq. (3.14) interpolates to nodal function and nodal gradient values. The former is evident
by virtue of Eq. (4.20). The latter is shown below.

Claim. TheC'(9) interpolant in Eq (3.14)interpolates to nodal gradient values

wh (x1) =0, wh(x1) = 01y (4.24)

X

Proof. Consider a cubig-gon simplexinthe plane, wherds the number of natural neighbors
forapointx € 2. The Bézier ordinate at; is bse, , and the directional derivative along a direction
datx;isinfluenced only by the tangen#Rier ordinates that are connectetlig . These ordinates
are of the formbee, 1e,, WhereJ = [ is a vertex ordinate, and the rest are tangent ordinates. It
is evident that the Bzier ordinates,,, ;, are related to onlyy, 0;,, andf,—see Eq. (4.10).
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The BernsteinBézier basis function derivatives associated with these ordinates are the only ones
that are nonzero at;. For simplicity, without any loss of generality, we 1&t= 1, i.e., local

nodel with nodal locationx; is considered. In Fig. 2, where= 3, the ordinates of interest are
bg’(]’(), bgyl’(), andbz’oyl, andin Flg 3, where = 4, the ordinates ar&’dy()’oym b2’17()707 b2,(],1,0a and
b2,0,0,1- Hence, the vector consisting of Bernstéézier basis function derivatives at the point

x1 can be written as

B (x) 3(x), Bs(x)=3¢(x)ps(x), (J=2,...,n), (4.25b)
Bjo(x1) = 3¢ja(x1), (J=1,2,....,n;a=z,y), (4.25c)

where the interpolating property; (x1) = d1 is used to arrive at Eq. (4.25c). Now, we consider

the structure ofT| to determine the entries that are of interest. Since #m@d ordinatesse, e,

are related to only, 61,,, andé,,, it suffices if we only consider the first three columng/®f.

Let [T] be such a submatrix dff']. We must point out that the entries [ii] due to the center

Bézier ordinates are nonzero. The associated basis function derivatives are zero, however, and,
hence, the center ordinates provide no contribution to any of the components in the NEM shape
function vector. Using Eq. (4.10), the matfik] can be written as

1 0 0
0 0 0
0
1 ol? allf
0 0 0
1 a13 a13
o T y
MTj=1]0 0 0 , (4.26)
1 aglg” a;”
0 0 0
€11 C12 (13
L Cm1l Cm2 Cm3 |

wherec;; € R,m = (%), anda;’ = d}’ /3 anda,’ = d}’ /3. The submatrices corresponding to
the vertex, tangent, and centeéBer ordinates are indicated by the enclosed boxes in the above
equation. By virtue of Eq. (4.12), we have

d =x; -2, & =y;—yp, (J=23,...,n). (4.27)
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On taking the product of Egs. (4.25) and (4.26), we can write the norzgiQ) shape function
derivatives as

Yra(x1) = Y dralx1), (4.28a)
J=1

Yon(x1) = Y dralxi)dy’, (4.28b)
J=2

V3,a(x1) = Z(bJ,a(Xl)dgl/J- (4.28c¢)
J=2

Since)_ ; ¢;(x1) = 1, it follows that Eq. (4.28a) is identically equal to zero. On substituting Eq.
(4.27) in the above equation and noting that, (x1) = — >_7_, ¢4 (x1), we obtain

Y1,a(x1) = 0, (4.29a)

Gaalx) = 3 dralxi)as, (4.29)
J=1

Usa(x1) = Y bralx)ys. (4.29¢)
J=1

But the natural neighbor shape functions satisfy the local coordinate property given in Eq. (2.4),
namely

> osx)xs =x, (4.30)
J=1

and, hence, on taking the derivative of the above equation with respectrtdy in succession
and substituting in Eq. (4.29), we obtain

Pra(x1) = 0, toa(x1)=1, ¢3.(x1) =0, (4.31a)
Yry(x1) = 0,  ahay(x1) =0, thay(x1) =1 (4.31b)
Now, the derivatives of the NEM trial function given in Eq. (3.14) can be written as
wh(x1) = P10(X)wi + V2.0 (X1)01z + P32 (x1)01y, (4.32a)
wh (x1) = P1y(x1)w1 + Y2,y(x1)010 + V3,4 (x1) 01y, (4.32b)
and, hence, on using Eq. (4.31) in the above equation, we obtain
wh(x1) = 0o, wly(x1) = b1y (4.33)

Since the choicé = 1 is arbitrary, the above relations are readily extended far@ll< I < n),
which leads us to the desired result:

wly(xr) = 01z, wly(x1) = 01y (4.34) .
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By virtue of Egs. (4.20) and (4.31), we note an additional properd} (2) NEM shape
functions are cardinal with respect to function evaluation, as well as differentiation with respect
to the coordinate directions:

Y3r_2(xy) = 17, Yar—1(x5) =0,  P3r(xs) =0, (4.35a)
P3r—2.(X5) = 0,  Ysr_12(xy) =615,  Y3rx(xy) =0, (4.35b)
Yar—oy(xy) = 0,  sr_14(xy) =0,  Ps1,y(xs) =017 (4.35¢)

V. GOVERNING EQUATIONS AND WEAK FORM

As a model fourth-order partial differential equation, we consider the biharmonic equation with
Dirichlet boundary conditions, which is described as

A’w = f inQ, (5.1a)

w = ¢g; onT, (5.1b)
ow = go onl, (5.1c)
on

where) C R? is an open bounded domain aRds its boundaryp is the outward normal te,
andA is the Laplacian operator. The weak or variational problem is posed as:

Findw € V = H*(Q) such thatu(w,v) = (f,v) Vv e Vo = HZ(Q), (5.2)

wherea(w,v): V x V — R is the bilinear form for the biharmonic operator and f#(2) inner
product on the right-hand side is defined as

(f,v) = / SfodSd. (5.3)
Q
In Eq. (5.2),V is the Sobolev space of functions with square-integrable second derivaties in
and the Sobolev spadg = {v € H?(Q),v = 0,0v/dn = 0 onT'}. As opposed to the Laplace
operator, two distinct Dirichlet (bilinear) forms exist for the biharmonic operator [36]:

al(w,u):/AwAde, (5.4a)
Q

as(w,v) = /Q (W gz — Wyy ) (V gz — U yy) + 4W 5y U 5] AL (5.4b)

Any linear combination of the above two equations is also a Dirichlet form. For the plate problem,
the bilinear form (strain energy) is given by [37, 38]:

az(w,v) = / [AwAY — (1 — 1) (W 32V 4y + W 4y zz — 2W 54U 5 )] A2, (5.5)
Q
wherev is the Poisson’s ratio. By virtue of Green’s theorem, we have

/AwAde:/AQwde—/Aw,nvdf—/va’ndF, (5.6a)
Q Q r r



C' NATURAL NEIGHBOR INTERPOLANT 437

/ (W22 5y + Wy 20 — 2W 29V 2y] A = /
Q r

’w,tﬂ]m dF — / ’LU;mgUﬂg dF, (56b)
r

wheren andt are the outward normal and tangential direction§'té&or the Dirichlet problem
with v € Vj, the boundary integrals in the above equations are zerowasatisfies the strong
form given in Eq. (5.1). The bilinear form for the biharmonic equation given in Eq. (5.4a) and that
for the plate problem indicated in Eq. (5.5) are both bounded, symmetric, and positive definite
operators ing, and, therefore, there exists a unique solutioto the variational problem in Eq.
(5.2) [38].

Consider the Galerkin implementation for the natural element method. Using the bilinear form
given in Eq. (5.4a), the weak form for the discrete problem can be stated as:

Findw € V" € V such that, (w”,v") = (f,o") Vo' € VI c V. (5.7)

In a Bubnov-Galerkin procedure, the trial functian” as well as the test functiost* are repre-
sented in terms of the same shape functions. The trial and test functions are

{w" "} = Z {®}w; vl (5.8a)
I=1
where
Y3r_2 wy v}
h h
O = ahsr q p, wy=2L 0% 3, vi=< 0% 5. (5.8b)
h h
Var 0y, 0%,

The discrete Laplacian for the trial and test functions can be written as

{Awh AV} = Z {Br}wr vil, (5.9a)
=1

where
Y31-2,02 + V31-2,4y
B} =< ¥sr-100 +¥sr-14y ¢ - (5.9b)
V31 ze + V3I,yy

On substituting the trial and test functions in Eq. (5.7) and using the arbitrariness of nodal varia-
tions, the following discrete system of linear equations is obtained:

Kd =f, (5.10)
where
K;; :/ BB, d, (5.11a)
Qh
f; :/ Ol faq. (5.11b)
Qh

In the above equationsl is the vector of nodal function and gradient valugs, is the nodal
shape function vector, arld; is the discrete Laplacian vector.
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VI. NUMERICAL RESULTS

The application of NEM to the biharmonic equation with Dirichlet boundary conditions is pre-
sented. The.?(£2) and energy error norms that are used in the analyses are defined as

1/2
||w — wh||L2(Q) = </ (w— wh)2 dQ) , (6.1a)
Q
1 1/2
[w — w"|| 5y = (2 /al(w—wh,w—wh)dQ) , (6.1b)
Q

wherew andw" are the exact and numerical (NEM) solutions, respectively. Numerical integration
of the weak form is carried out using symmetric quadrature rules for a triangle [39]. In the error
norm computations, 25 point quadrature rule is used in each triangle. The padkayege

[40] andShow Md41] are used to construct and display the nodal discretization and Delaunay
triangles.

A. Airy Stress Function

The Airy stress function in small displacement linear elastostatics satisfies the biharmonic equa-
tion. Awide range of two- and three-dimensional problems, ranging from homogeneous deforma-
tion to those with point and line singularities, are encompassed within this theoretical framework.
In fracture mechanics, numerical methods are an invaluable tool to compute fracture parame-
ters that are associated with the fracture and failure of cracked-bodies. Bernal and Whiteman
[42] used finite difference approximations, and Gregory et al. [43] used local mesh refinement
with modified C'! bicubic interpolants to solve the two-dimensional biharmonic problem of an
edge-cracked plate under uniaxial tension.

Letw be the Airy stress function in two-dimensional elasticity. As a benchmark problem (patch
test) for the homogeneous biharmonic operator, we consider a circular plate under a biaxial state
of stress:

A?w = 0 inqQ, (6.2a)

w = a* onT, (6.2b)
ow = 2a onT, (6.2¢c)
or

whereQ) = {(x,y): 22 + y* < a?} is a circular domain of radius andT is its boundary.

In polar coordinates, the exact solution for the Airy stress functiom{s) = r2. Consider
a circular domain of unit radiuga = 1); due to symmetry, only one-quarter of the circular
domain is modeled with appropriate symmetry boundary conditionsL¥(@) and energy error
norm results for four quasi-regular nodal grids are presented in Table Il. The nodal grid and the
associated Delaunay triangles for a typical discretization are shown in Fig. 8. The nodal grids
are constructed by settinglax L x L sub-division for the three boundaries. The cése 6 is
shown in Fig. 8, and the other grids correspond.te- 12,24, and48. In Fig. 9, the plot ofw
anddw/0r vs. the radial distancefor the L. = 6 grid is presented. In the computations, 25 equi-
distant output points between= 0 andr = 1 are considered. Since ti& () NEM interpolant
has quadratic completeness, the numerical solution should be accurate within machine precision,
which is10~16 in double-precision arithmetic on a HP9000/s700 workstation. The inaccuracy in
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TABLE Il. Relative error norms for the Airy stress function problem.

. lw—w"ll 2 llo—w" || g (0
Nodal grids Quadrature Tl Tl
3 7.2x 1073 2.7x 107!

37 25 8.3x 1073 1.1x 107!
37 9.7x 1073 1.2x 107!

3 8.2x 1073 2.3x 107!

127 25 2.6x 1073 9.6x 1072
37 3.6x 1073 9.5x 1072

3 6.9x 1073 2.0x 107!

469 25 9.9x 10~* 7.3%x 1072
37 1.6x 1073 7.3%x 1072

3 4.0x 1073 1.5%x 107!

1801 25 4.7x 1074 5.5x 1072
37 6.2x 107 5.3x 1072

the NEM solution is due to numerical quadrature errors in the integration of the weak form, which
was also observed for the patch test in two-dimensional elastostatics [23]. First and foremost, the
numerical integration errors stem from the fact that the support of the shape functions do not
coincide with the Delaunay triangles. In addition, the entries in the stiffness nifitarnsist

of products of second-order derivatives of NEM shape functions. The integrand is a rational
function, which is not exactly integrated using polynomial-precision symmetric quadrature rules
over triangles. The selection of an appropriate numerical quadrature scheme for NEM, however,
is still an open issue.

B. Clamped Circular Plate

Consider the axi-symmetric problem of a clamped circular plate under a uniform transverse unit
load(f = 1). The governing equations are:

A’w =1 inQ, (6.3a)
w = g—fzo onl, (6.3b)

whereQ = {(x,y): 22 + y? < a?} is a circular domain of radius andT is its boundary. The
exact solution to the above problem is given by [44]:

1 2 2\2
w(r) = el (a® —1%)°. (6.4)
Consider a circular domain of unit radius; due to symmetry, only one-quarter of the circular
domain is modeled. The nodal discretizations used in the analyses 4w, 327[B], 271[C],
469([D], 721[E], 1027[F], 1387|G], and 1801 H] nodes. The subdivision for these grids are:

L =6,12,18,24, 30, 36,42, and48. The discrete Kirchhoff element (DKT) is one of the most
efficient and reliable finite elements for thin plate analysis [45]. In the DKT element, Gfly
continuity requirements are needed to be satisfied, with the Kirchhoff hypothesis being met at
discrete points along the edges of the element. In Table Ill, the normalized center displacement
for the above grids are presented, and in Fig. 10, the NEM results are illustrated. There is good
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(b)

FIG. 8. Quarter circular plate: (a) nodal discretization (37 nodes); and (b) Delaunay triangulation.

agreement between the NEM and exact solution. The convergence to the center displacement is
monotonic, and the error in the center displacement is less than 2% for a grid with more than 200
nodes. A plot ofw andw ,- as a function of- is illustrated in Fig. 11. The grid shown in Fig. 8 is

used, and 25 equi-spaced output points betweer) andr = 1 are chosen in the computations.
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FIG. 9. Plot ofw andw - vs.r for the Airy stress function problem (37 nodes).

A convergence study is carried out using the nodal gtid& . The relativel.?(2) and energy error

norms are shown against a measure of the nodal spadihg= a/L,a = 1 is the plate radius

on a loglog plot (Fig. 12). In Fig. 12, the convergence rate is indicated by the valiie ®he

rate of convergence in displacement and energy is 0.95 and 0.41, respectively; optimal rates are
2 and 1 in displacement and energy for a conforming finite element with quadratic completeness
[3]. In order to study the suboptimal rates of convergence, an eigenanalysis is carried out in the
following section. The results indicate that the discrete bilinear operatgt-slliptic and, hence,

stable, while the approximating space is poorly conditioned. The suboptimal rates of convergence
are attributable to the latter factor in conjunction with the numerical integration errors in the
computations.

C. Eigenanalysis

To study stability, we look at the properties of the approximating spaces and the ellipticity of the
discrete bilinear operator. The EISPACK eigensolver package [46] is used to solve the eigenprob-
lems that follow.

TABLE Illl.  Normalized center displacement for the uniformly loaded circular plate.
ngM
Nodal grids Quad-= 3 Quad= 25 w%UKT

37 1.0986 1.0408 1.0087

127 1.0817 1.0224 1.0026

271 1.0639 1.0147 1.0012

469 1.0565 1.0117 1.0007

721 1.0463 1.0095 1.0005

1027 1.0392 1.0082 1.0003

1387 1.0331 1.0071 1.0002

1801 1.0292 1.0061 1.0002
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1. Linear Independence of Shape Functions. The approximating space is studied by con-
sidering the linear independence of the shape functions [3]. To this end, we consider the following
discrete eigenvalue problem:

Md = \d, (6.5)

whered and\" are the eigenvectors and eigenvalue®hfandM is the mass matrix, which is
given by

MU:/@%I;J ds. (6.6)
Q

The conditions numbet(M) = Ayax(M)/Amin(M) is used as a measure of the linear inde-
pendence of the shape functions. If the shape functions were orthondvbaalyould be the
identity matrix ands = 1. The leading eigenvaluk’; ., which corresponds to the eigenvector
ds;_» is used to compute the condition number; the other eigenvalues are deemed spurious and
vanish in the limith — 0 [3]. In Table 1V, the condition number is computed for the nodal grids

A, B,C,D, andH (see Section VI.B). It is seen that the condition numbers increase markedly
with nodal refinement thereby indicating that the system is poorly conditioned. This indicates
that theC'* (©2) NEM approximation spaces are not uniformly linearly independent. An immedi-
ate consequence of this is that the accuracy of the computed results could be affected, since, if the
condition number i40%, then as many asdigits may be lost during the solution of the system

Kd = f [3]. Keeping this in mind, we now consider the stability of the discrete operator, which

is of far greater significance for the stability and convergence of the numerical method.

2. Ellipticity.  The continuity of the discrete bilinear operatgm®, v"): V* x VI — Ris

established by virtue of choosing conforming finite-dimensional subspates V" andv” ¢

V. For showingV/J*-ellipticity of the operator, it suffices if the following condition is satisfied:
a(v™ ") > all"|? Vot € VI c HE(Q), (6.7)

where the positive constaatis bounded away from zero. The ellipticity constant for the discrete
operator is numerically estimated by considering the generalized eigenproblem associated with
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©
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FIG. 10. Variation of normalized center displacement with number of nodes for the uniformly loaded
clamped circular plate.



C! NATURAL NEIGHBOR INTERPOLANT 443

0.03 ;
S e w (NEM)
0.02 - —— w (Exact)
S w, (NEM)
001 | \\ — w, (Exact)
2 0.00
z
-0.01
-0.02 -
-0.03 ! . .
0.00 0.25 0.50 0.75 1.00

Radial distance r

FIG. 11. Plot ofw andw , vs.r for the uniformly loaded clamped circular plate (37 nodes).

the biharmonic equation:

A% = b inQ, (6.8a)

W=w,=0 onl, (6.8b)

wherew is the natural mode of vibration of the plate= w? is the eigenvalue, and the natural
frequency of vibration. The equivalent variational form for the eigenproblem is:

Findw € V = H?*(Q) such that/ ADATAQ = N, 9) Vi€ Vo= Hi(Q). (6.9)
Q
The weak form for the discrete problem is posed as:

Findw" € V" ¢ V such that/ A" AT dQ = N (wh, o) vt e VI € Vo, (6.10)
Q
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FIG. 12. Rate of convergence in displacement and energy for the uniformly loaded clamped circular plate.



444 SUKUMAR AND MORAN

TABLE IV. Condition number of the mass matrix.
)\h,

Nodal grids K = Smax
37 8.57x 10°

127 8.35x 10!
271 2.69x 10°
469 5.87x 10°
1801 9.42x 10°

By substituting the discrete trial and test functions in the above equation and using the arbitrariness
of nodal variations, we obtain the following discrete eigensystem:

Kd = \"Md, (6.11)

whered and\" are the natural eigenmodes and eigenvalues, respecighyis the nodal stiff-

ness matrix that is defined in Eq. (5.11), aMt ; is the mass matrix given in Eq. (6.6). For the
symmetric bilinear formin Eq. (6.10) there exists an increasing sequence of strictly positive eigen-
values for the eigenproblem. By considering the Rayleigh quofiént) = a(v", v")/(v", v")

for the discrete problem in conjunction with Egs. (6.11) and (6.7), we obtain the following result
for the ellipticity constant:

a = inf{R(v"):v" € V1 = A\, (6.12)

where)\” is the lowest eigenvalue with} = \/)T’fthe corresponding fundamental frequency. The
fundamental frequency that corresponds to the lowest eigenvalue is computed for the nodal grids
A-D. The reference solution for the fundamental frequeney,is= 10.21 [47]. The results for

the normalized fundamental frequency are presented in Table V; there is good agreement between
the numerical solution (NEM) and the reference solution. Clearly, (w})? is approximately a
constant and is bounded away from zero. This implies that the ellipticity condition given in Eq.
(6.7) is satisfied, and, hence, the discrete bilinear operator is stable.

VII. CONCLUSIONS

Natural neighbor coordinates were proposed by Sibson [20] as a means for data interpolation and
smoothing. In a previous study [23], its potential as a paradigm for the solution of second-order
elliptic PDEs was demonstrated. Natural neighbor coordinates have optimum spatial adjacency,
and provide a natural means to assign weights to irregularly spaced nodal data; it is envisaged that
this could be of merit in the development of lumped mass schemes for wave propagation in elasto-
dynamics and electromagnetics. In this articl€'anatural element method was presented, and its

TABLE V. Normalized fundamental frequency for the clamped circular plate.
h

Nodal grids =
37 0.9854
127 0.9927
271 0.9951

469 0.9962
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application to the biharmonic equation, a fourth-order elliptic partial differential equation (PDE),
was carried out. Farin [26] has developed ainterpolant by embedding Sibson’s coordinate [20]

in the BernsteinBézier surface representation of a cubic simplex. TheNEM interpolant that

we propose is constructed by a suitable transformation of Bernstein basis functions that appear
in Farin's C'* interpolant. This transformation results in the representation of the interpolant in
terms of nodal function and nodal gradient values, which renders it amenable to use in a Galerkin
scheme for the solution of PDEs. Tli# interpolant has quadratic completeness, interpolates

to nodal function and nodal gradient values, and reduces to a cubic polynomial on the boundary
of the domain. In one dimensiog;' NEM interpolation is identical to cubic Hermite finite ele-
ments. In the application to the biharmonic equation, a standard Galerkin procedure was used to
obtain the discrete equations. In the patch test for the biharmonic operator, issues pertaining to
the accurate numerical integration of the weak form were raised. Excellent agreement with the
exact solution for the uniformly loaded clamped circular plate was obtained, and convergence to
the exact center displacement was monotonic with nodal refinement.

Issues pertaining to stability were probed by carrying out an eigenanalysis. Numerical results
show that the mass matrix is poorly conditioned. The satisfaction of the ellipticity condition was
met, with the ellipticity constant being the square of the fundamental frequency of the clamped
plate. This established the stability of the discrete biharmonic operator. The NEM results for the
fundamental frequency matched the reference solution for the clamped plate problem. In this
context, a potential application of tif@' interpolant is in the numerical computation of natural
modes and frequencies of plates.

The computational costs of th@! natural element method are more tharcifsvariant. The
increased costs are primarily due to the fact that three degrees of freedom are associated with each
node; theC'! shape function computations involve basic linear algebra matrix-vector operations
and the costs are not significantly more than that incurred in the evaluati¢hradtural neighbor
shape functions.

The computational methodology presented here demonstrates an effective, accurate, and ap-
pealing choice to construct @' conforming method for the solution of fourth-order ellip-
tic PDEs.

The research support of NSF grant CMS-9732319 to Northwestern University is gratefully
acknowledged. The first author thanks Professor Gerald Farin for helpful comments 6H the
natural neighbor interpolant.
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