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Natural neighbor coordinates [20] are optimum weighted-average measures for an irregular arrangement
of nodes inRn. [26] used the notion of B́ezier simplices in natural neighbor coordinatesΦ to propose a
C1 interpolant. TheC1 interpolant has quadratic precision inΩ ⊂ R

2, and reduces to a cubic polynomial
between adjacent nodes on the boundary∂Ω. We present theC1 formulation and propose a computational
methodology for its numerical implementation (Natural Element Method) for the solution of partial differ-
ential equations (PDEs). The approach involves the transformation of the original Bernstein basis functions
B3
i (Φ) to new shape functionsΨ(Φ), such that the shape functionsψ3I−2(Φ), ψ3I−1(Φ), andψ3I(Φ) for

nodeI are directly associated with the three nodal degrees of freedomwI , θIx , andθIy , respectively. The
C1 shape functions interpolate to nodal function and nodal gradient values, which renders the interpolant
amenable to application in a Galerkin scheme for the solution of fourth-order elliptic PDEs. Results for the
biharmonic equation with Dirichlet boundary conditions are presented. The generalized eigenproblem is
studied to establish the ellipticity of the discrete biharmonic operator, and consequently the stability of the
numerical method.c© 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 417–447, 1999
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I. INTRODUCTION

The ability to developC1 interpolants over an arbitrary bounded domainΩ is a much researched
and far from trivial task. The higher-order smoothness or continuity requirement of interpolants
is of interest, because such classes of trial functions are necessary in a Galerkin formulation for
the solution of higher-order elliptic partial differential equations (PDEs)—C1 trial functions for
the biharmonic (fourth-order) equation, with Kirchhoff plate bending in elasticity being a notable
application and a case in point. In a general framework,C1 continuity on the primary variable
is required, when the balance laws of a continuum can be cast in variational form and second-
order derivatives of the primary variable appear in the variational statement. For example, in the
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problem of nucleation of a solid–solid phase transformation based on an energy functional that is
dependent on the strain and strain gradients, the Galerkin implementation requiresC1-continuous
trial functions [1].

In the realm of finite elements, one of the firstC1 interpolants developed was the Clough–
Tocher finite element [2, 3] and in subsequent years many of its variants have emerged [4, 5]. Some
of the other early developments in conforming triangular finite elements are due to de Veubeke
[6], Irons [7], Bell [8], and Powell and Sabin [9]. The construction of finite elements withC1-
continuity is, in general, unwieldy with significant complexity arising in the construction of the
interpolant; moreover, the need to include first-order and second-order derivatives as additional
nodal degrees of freedom tends to adversely affect the numerical solution. A general overview of
the finite element interpolation problem for minimallyC1-continuous polynomial interpolants is
presented by Peano [10]. LocalCk (k > 0) interpolants on a regular grid are readily constructed
using splines. Lai and Wenston [11] use continuously differentiableC1 cubic splines for the
solution of elliptic partial differential equations. For irregularly spaced data, an attractive choice
for constructingCk functions is to useCk weight functions that have compact support; for
example, Shepard’s interpolant [12], compactly supported radial basis functions [13], or moving
least squares (MLS) approximants [14]. These approaches lend themselves readily to curve and
surface data fitting. Wendland [15] proposes a Galerkin method using radial basis functions, and
Fasshauer [16] presents a review of meshless radial basis functions for the numerical solution
of PDEs. In the application of MLS approximants to PDEs, certain issues do pose problems;
for example, the noninterpolating property of MLS approximants leads to complications in the
imposition of Dirichlet boundary conditions in a Galerkin scheme for the biharmonic equation
[17, 18]. Moreover, the numerical solution is sensitive to both the weight function and its radius
of support. A partial resolution to the above shortcomings is met by using smooth interpolating
trial functions, as evidenced by the work of Donning [19] in which cardinal splines are used in
a displacement-based Galerkin scheme to solve shear-deformable thick as well as thin beam and
plate problems using Mindlin–Reissner theory.

A relatively new result in interpolation theory [20] has recently led to the development of a
novel approach for the representation of multivariate data and to the solution of partial differential
equations of physics using a meshless method [21, 22]. This method, termed the Natural Element
Method (NEM), shows significant promise for problems in solid mechanics [23]. In the natural
element method, the trial and test functions are constructed using natural neighbor interpolants
[20]. These interpolants are local in character, and are based on the Voronoi tessellation [24] of
the set of nodes. As opposed to finite elements, there is no notion of element connectivity in the
construction of the NEM interpolant, and, in this context, the numerical implementation is viewed
as a meshless or meshfree method [25].

In this article, we present the computational implementation of a natural neighbor-basedC1 in-
terpolant for the solution of PDEs. Farin [26] constructed aC1 interpolant by embedding Sibson’s
natural neighbor coordinates in the Bernstein–Bézier surface representation of a cubic simplex.
TheC1 NEM interpolant that we propose is based on a transformation of Farin’s interpolant,
and, as a result, interpolation to nodal function and nodal gradient values is realized. This renders
theC1 NEM interpolant amenable to use in a Galerkin scheme for the solution of fourth-order
elliptic PDEs.

The outline of this article is as follows. In Section II, a concise description of Sibson’s natural
neighbor interpolant is presented. In Section III, we first outline Farin’s natural neighbor-based
C1 interpolant; then, we present the methodology used to derive theC1 NEM shape functions
that are used in this article. The construction, properties, and numerical computations of theC1

NEM shape functions are discussed in Section IV. In Section V, the governing equations for the
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biharmonic equation together with the Galerkin formulation for NEM are described. In Section
VI, two applications of NEM for the biharmonic equation with Dirichlet boundary conditions are
presented. Finally, in Section VII, some concluding remarks are mentioned.

II. NATURAL NEIGHBOR INTERPOLATION

In this section, we briefly touch upon the foundations of Sibson’s natural neighbor coordinates
(shape functions), which are used in the natural element method. For a more in-depth discussion
on the Sibson interpolant and its application to second-order partial differential equations in
mechanics, the interested reader can refer to Braun and Sambridge [22] and Sukumar et al. [23],
and the references therein.

Consider a set of distinct nodesN = {n1, n2, . . . , nM} in R
2. The Voronoi diagram with its

dual Delaunay triangulation is one of the most fundamental and useful geometric constructs that
defines an irregular set of points (nodes). Natural neighbor coordinates, which were introduced
by Sibson [20], are constructed on the basis of the underlying Voronoi tessellation for the nodal
setN . The Voronoi diagram (or 1st-order Voronoi diagram) of the setN is a subdivision of the
plane into regionsTI (Voronoi polygons) given by

TI = {x ∈ R
2: d(x,xI) < d(x,xJ) ∀J 6= I}, (2.1)

whered(xI ,xJ), the Euclidean metric, is the distance betweenxI andxJ .
The Voronoi diagram for a set of seven nodes is shown in Fig. 1(a). In Fig. 1(b), a pointx

is introduced into the Voronoi diagram of the setN . If x is tessellated along with the nodal set
N , then, in the newly constructed triangulation based onN andx, the natural neighbors ofx are
those nodes that are connected by a Delaunay edge tox. The natural neighbor coordinates (shape
functions) ofx with respect to a natural neighborI are defined as the ratio of the area of overlap
of their Voronoi cells to the total area of the Voronoi cell ofx:

φI(x) =
AI(x)
A(x)

, (2.2a)

FIG. 1. Construction of natural neighbor coordinates. (a) original Voronoi diagram andx, and (b) 1st-order
and 2nd-order Voronoi cells aboutx.
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A(x) =
n∑

J=1

AJ(x), (2.2b)

where I ranges from 1–n in Eq. (2.2a). If the pointx approaches a node(x → xI),
φI(x) = 1, and all other shape functions are zero. By this fact, and by construction, the properties
of positivity, interpolation, and partition of unity directly follow:

0 ≤ φI(x) ≤ 1, φI(xJ) = δIJ ,
n∑

I=1

φI(x) = 1 in Ω. (2.3)

In addition to the above, natural neighbor shape functions satisfy the local coordinate property
[20], namely

x =
n∑

I=1

φI(x)xI , (2.4)

which indicates that the shape functions can exactly reproduce the geometrical coordinates. The
above equation in conjunction with the partition of unity property in Eq. (2.3) imply that linear
completeness is satisfied by theC0(Ω) natural neighbor interpolant.

On using Eq. (2.2a), we can write the first- and second-order derivatives of natural neighbor
shape functions as

φI,α(x) =
AI,α(x) − φI(x)A,α(x)

A(x)
, (2.5a)

φI,αβ(x) =
AI,αβ(x) − φI(x)A,αβ(x) − φI,β(x)A,α(x) − φI,α(x)A,β(x)

A(x)
, (2.5b)

where Greek indicesα and β are used to denote derivatives along coordinate directionsx
andy. The geometric algorithm proposed by Watson [27] is used to compute the natural neighbor
shape functions and its derivatives.

III. C NATURAL NEIGHBOR INTERPOLANT

Farin [26] has proposed aC1 interpolant based on Sibson’s originalC0 natural neighbor in-
terpolant. By embedding Sibson’s coordinate in the Bernstein–Bézier representation of a cubic
simplex, aC1 interpolant is realized. Bernstein–Bézier patches and related concepts are widely
used in the area of surface approximation and in the field of computer-aided geometric design
[28]. A review article on triangular Bernstein–Bézier surfaces can be found in Farin [29], and
a general treatment of multivariate polynomials over multidimensional simplices is given by
de Boor [30].

In what follows, multi-index notation denoted by the bold charactersi andj is used. Multi-
indices aren-tuples of nonnegative integers, the components of which start at zero; for instance,
i = (i1, i2, . . . , in). The norm of a multi-indexi, denoted by|i|, is defined to be the sum of
the components of|i|, namely|i| = i1 + i2 + · · · + in [28]. Let ξξξ = (ξ1, ξ2, . . . , ξn), with
the property

∑
I ξI = 1, be the barycentric coordinate of a simplexδ ∈ R

n−1. A Bernstein–
Bézier surface of degreem over the simplexδ can be written in the form [30]

b(ξξξ) =
∑

|i|=m

Bm
i (ξξξ)bi, (3.1)
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wherebi is known as the B́ezier ordinate associated with the control pointi/m. The control
net ofb(ξξξ) is the network of(n + 1)-dimensional points(i/m, bi). In Eq. (3.1),Bm

i (ξξξ) arem-
variate Bernstein polynomials inn variables. To elaborate, they are the terms in the multinomial
expansion of unity, i.e.,

(ξ1 + ξ2 + · · · + ξn)m =
∑

|i|=m

Bm
i (ξξξ), Bm

i (ξξξ) =
(
m
i

)
ξi1
1 ξ

i2
2 · · · ξin

n , (3.2)

where(m
i ) is the multinomial coefficient, which is defined as

(
m
i

)
=

m!
i1!i2! · · · in!

. (3.3)

In one dimension withn = 2, we haveξ1 = 1 − x andξ2 = x as the barycentric coordinates of a
simplexδ ∈ R. The univariate linear Bernstein polynomials(m = 1) are{1−x, x}; the quadratic
polynomials(m = 2) are{(1 − x)2, 2(1 − x)x, x2}; and the cubic polynomials(m = 3) are
{(1−x)3, 3(1−x)2x, 3(1−x)x2, x3}, wherex ∈ [0, 1]. Multivariate Bernstein polynomials have
properties very much like their univariate counterparts. From Eq. (3.2), some of the important
properties of multivariate Bernstein polynomials, such as partition of unity, positivity, and cardinal
interpolation, are easily inferred. The control points (circles) and associated Bézier ordinate values
(bi) for a cubic Bernstein–Bézier triangular patch are shown in Fig. 2. The interested reader can
refer to B̈ohm, Farin, and Kahmann [31], Farin [29], and Farin [28] for further details on the
properties and applications of triangular Bernstein–Bézier patches.

Consider a pointx ∈ R
2 that hasn natural neighbors. Let the natural neighbor coordinates of

x beΦ = (φ1(x), φ2(x), . . . , φn(x)). Since
∑

I φI(x) = 1, we note thatΦ can be considered
as a barycentric coordinate (nonunique) of then-gon in the plane. The generalization of Bézier
surfaces over a convex polygonal domain was proposed by Loop and DeRose [32]. By usingΦ

FIG. 2. Cubic Bernstein–Bézier triangular patch.
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instead ofξξξ in Eq. (3.1), we can construct the surface [26]

wm(Φ) =
∑

|i|=m

Bm
i (Φ)bi. (3.4)

In the above equation, the Bézier ordinatebi is associated with the control pointqi ∈ R
2, where

qi are the projection of the control points of them-variate B́ezier polynomial over the(n − 1)-
dimensional simplex onto the plane [26]:

qi =
∑
|j|=1

B1
j (i/m)xj, |i| = m. (3.5)

On the basis of Eq. (3.5), one can infer that the components of the barycentric coordinateξξξ of the
(n− 1)-dimensional simplex is identical to that of the Sibson coordinateΦ of the mappedn-gon
on the plane.

The connectivity rule for B́ezier simplexes states that the domain simplex has all vertices
connected to all other vertices. Ifqi andqj are two B́ezier points in then-gon simplex, then the
rule indicates that there must exist integersr ands such that the multi-indicesi andj satisfy

i − er = j − es, (3.6)

whereeα = (δ1α, δ2α, . . . , δkα, . . . , δnα) denotes the multi-index having zero in all components
except for theαth component, which is one. The projection of the control net of a cubic tetrahe-
dron(m = 3, n = 4) onto the plane is shown in Fig. 3. In Fig. 3, the open circles are ‘‘boundary’’
control points, and the filled circles are center control points. The center control points are lo-
cated at the centroid of the corresponding triangle; for instance,q1,1,1,0 = 1

3 (q3,0,0,0 + q0,3,0,0
+ q0,0,3,0).

If we choosem = 1 in Eq. (3.4) and letwI = w(xI) denote the nodal function value,
we obtain

w1(x) =
n∑

I=1

φδ1I
1 (x)φδ2I

2 (x) · · ·φδnI
n (x)beI

=
n∑

I=1

φI(x)wI , (3.7)

FIG. 3. Projection of the control net of a cubic tetrahedron onto the plane [26].
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which is the original Sibson interpolant. Hence, Eq. (3.4) can be viewed as a generalized form of
the Sibson interpolant.

Form = 3, we arrive at the following surface representation [26]:

w3(Φ) =
∑
|i|=3

B3
i (Φ)bi, (3.8)

which is theC1 interpolant that we use in the natural element method.

A. Properties

Farin [26] has outlined the properties of theC1 interpolant given in Eq. (3.8). Here we discuss
some of the important properties that are germane to a Galerkin formulation that is pursued in
this article.

1. Smoothness. Farin [26] has shown that the interpolant proposed in Eq. (3.8) isC1(Ω).
Consider an open bounded domainΩ ⊂ R

2. Letx ∈ Ω be any point that hasn natural neighbors,
andxI be the nodal coordinate of nodeI (I = 1, n). Sibson coordinatesφI(x) are continuously
differentiable at all pointsx 6= xI . SinceB3

i in Eq. (3.8) is composed of products ofC0(Ω)
natural neighbor shape functions raised to a power, it is evident that the new interpolant is also
continuously differentiable at all pointsx 6= xI . The ‘‘boundary’’ control points for then-gon
with respect to nodeI lie along the lines joiningxI and the remainingn−1 nodes. Let thesen−1
directions be denoted bydj (j = 1, n− 1). The control points in the tangent plane with respect
to nodeI are the ones that lie alongdj and are connected to the control pointq3eI

(nodeI)—see
Eq. (3.6). Farin [26] noted that the directional derivative atxI along an arbitrary directiond is a
linear combination of the directional derivatives along the directionsdj . Moreover, since all the
control points are coplanar, the directional derivative alongd is also in the plane, and, hence, the
differentiability atx = xI is met. By virtue of the above inferences, theC1(Ω) continuity of the
interpolant is established.

2. Quadratic Completeness. The C1(Ω) interpolant has quadratic completeness, i.e., it
can exactly reproduce a general quadratic function [26]. In keeping with finite element us-
age [33], we use the term completeness, which is better known as precision in approximation
theory. As opposed to the above, theC1(Ω) interpolant proposed by Sibson [34] can repro-
duce only spherical quadratics, i.e., functions of the forma0 + a1x + a2y + a3(x2 + y2). By
virtue of the quadratic completeness property, Farin’sC1(Ω) interpolant can exactly represent
a state of constant curvature (second derivatives of the displacement for the thin plate prob-
lem), which is required to pass the patch test for a fourth-order PDE such as the biharmonic
equation.

By judicious choice of the B́ezier ordinates, Farin [35] realized a quadratic precision interpolant.
For a cubicn-gon simplex in the plane, there aren2 + (n

3 ) control points, and, consequently,
the same number of B́ezier ordinates. Of these,n2 control points lie along the lines joining
nodesxI andxJ (I < J ≤ n), with four control points lying along any one such line. For
instance, ifI = 1, J = 3, andn = 4, the control points along the line joiningx1 andx3 are
q3,0,0,0,q2,0,1,0,q1,0,2,0, andq0,0,3,0. The associated ‘‘boundary’’ B́ezier ordinates to thesen2

control points are of two distinct types, namely ordinatesbi whose subscript contains one 3 and
all other zeros (for example,b0,3,0,0), or ordinatesbi whose subscript have one 2, one 1, and all
other zeros (for example,b1,2,0,0). The former (nodal or vertex ordinates) are precisely equal to
the nodal function value, and the latter Bézier ordinates are easily found in the tangent planes (see
Section IV.B). The additional(n

3 ) control points are associated with ‘‘free’’ B́ezier ordinatesbi
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whose subscript contains three 1’s and all other zeros (for example,b1,1,1,0). The B́ezier ordinates
mentioned within braces are forn = 4; the control points for this case are indicated in Fig. 3. An
optimal choice for the center B́ezier ordinate is given byb1,1,1,0 = 3

2a− 1
2c [35], wherea is the

centroid of the tangent B́ezier ordinates andc is the centroid of the vertex (nodal) Bézier ordinates.
The above choice of the center Bézier ordinate guarantees quadratic precision. An illustration of
the evaluation of the B́ezier ordinates for a cubic Bernstein–Bézier triangular patch is shown in
Fig. 4. Referring to Fig. 4, we can expressb1,1,1 as [35, 26]

b1,1,1 =
3
2
a− 1

2
c, (3.9a)

where

a =
b2,1,0 + b1,2,0 + b2,0,1 + b1,0,2 + b0,2,1 + b0,1,2

6
, c =

b3,0,0 + b0,3,0 + b0,0,3

3
. (3.9b)

3. Univariate Interpolation. In one dimension, theC0(Ω) natural element method is identical
to linear finite elements [23]. We now consider theC1(Ω) natural neighbor interpolant in one
dimension. LetΩ = (0, 1) ⊂ R be an open bounded domain. Any pointx ∈ Ω has two natural
neighbors, but a pointx ∈ ∂Ω has only one neighbor. Letx ∈ Ω be a point that has two natural
neighbors atx = 0 andx = 1. Then, Eq. (3.8) reduces to

w(Φ) =
∑

i1+i2=3

3!
i1!i2!

φi1
1 (Φ)φi2

2 (Φ)bi1,i2 . (3.10)

Sinceφ1 = 1 − x andφ2 = x are the natural neighbor shape functions (barycentric coordinates)
of the pointx, we can expand the above equation to obtain

w(x) = (1 − x)3b3,0 + 3(1 − x)2xb2,1 + 3(1 − x)x2b1,2 + x3b0,3, (3.11)

which is a cubic polynomial curve between the two nodes. In the above equation,b3,0 =
w(0), b0,3 = w(1), and b2,1 and b1,2 are related to the function values and their derivatives
atx = 0 andx = 1, respectively.

FIG. 4. Evaluation of the B´ezier ordinates for a cubic triangular surface patch [31].
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4. Cubic Polynomial along the Boundary ∂Ω. We assume that the discrete model consists of
a set of nodesN that describes a convex domainΩ ⊂ R

2, with ∂Ω represented by the boundary of
the convex hull CH(N ). On the boundary of the convex hull, any pointx has only two neighbors
[26]. Consequently, by Eq. (3.11) in the previous subsection, we immediately arrive at the result
that cubic interpolation is realized along the boundary of the convex hull.

5. Bivariate Interpolation. If a point x ∈ Ω ⊂ R
2 has two natural neighbors(n = 2), the

interpolant is cubic between the two nodes; ifn = 3, the approximation is a cubic surface over a
triangular patch; and ifn = 4, the approximation is a bicubic patch [26].

B. NEM Trial Function

We use the interpolant presented in Eq. (3.8) as theC1(Ω) NEM trial function. Let the point
x ∈ Ω ⊂ R

2 haven natural neighbors, withφI(x) the natural neighbor shape function of nodeI
(I = 1, n). Consider an interpolation scheme for a scalar-valued functionw(x): Ω ⊂ R

2 → R,
in the form

wh(Φ) =
∑
|i|=3

B3
i (Φ)bi, (3.12)

where the dependence on positionx is implicit, since the components ofΦ are the natural neighbor
shape functions that are functions ofx. We reiterate that there aren2 + (n

3 ) Bézier ordinates in
Eq. (3.12), and, consequently,n2 + (n

3 ) terms on the right-hand side of the above equation.
The above form of the interpolant is suitable for applications in the context of data interpolation

or surface approximation, since nodal function values and sometimes even nodal gradient data
are knowna priori. For the numerical solution of PDEs by a Galerkin procedure, however, this
is not the case, since nodal function and nodal gradient values are unknowns, which are to be
determined from the solution of the discrete system:Kd = f . To meet the desired goal, we suggest
a transformation that renders the resulting interpolant amenable to numerical computations and
implementation in the context of the numerical solution of PDEs. This is achieved by recasting
Eq. (3.12) in the following form (matrix notation):

wh(Φ) = {B(Φ)}T {b} = {B(Φ)}T [T]{w} = {Ψ(Φ)}T {w}, (3.13a)

where

{b} = [T]{w}, {Ψ(Φ)}T = {B(Φ)}T [T]. (3.13b)

In Eq. (3.13),{B} and {b} are column vectors of dimensionn2 + (n
3 ), and [T] is a trans-

formation matrix of dimensions(n2 + (n
3 )) × 3n. The transpose of the shape function vector

{Ψ(Φ)}T = {ψ1(Φ), ψ2(Φ), ψ3(Φ), . . . , ψ3n−2(Φ), ψ3n−1(Φ), ψ3n(Φ)}, and the transpose
of the nodal vector{w}T = {w1, θ1x, θ1y, . . . , wn, θnx, θny}, wherewI = w(xI) are the nodal
function values, andθIx = w,x(xI) andθIy = w,y(xI) are the nodal gradient values. For the thin
plate problem,wI are the nodal displacements, andθIx andθIy are the nodal rotations. The ma-
trix [T] is a transformation matrix that maps the nodal function and gradient values to the Bézier
ordinates. The transformation from{B(Φ)} → {Ψ(Φ)} that we propose in Eq. (3.13b) is based
on a simple observation. In order to construct aC1(Ω) surface over an unstructured nodal grid, in
general the nodal function values and nodal gradient values are required. In the Bernstein–Bézier
surface representation given in Eq. (3.12), the vertex Bézier ordinates are identical to the nodal
function values, and the tangent and center Bézier ordinates are related to the nodal gradient data.
Hence, in its current form, the local interpolant is dependent on coefficients (Bézier ordinates) that
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vary from point to point. The matrix[T] facilitates the representation of the interpolant in terms
of nodal function values and nodal gradients, which renders it amenable to use in a PDE-setting;
moreover, interpolation to both is realized (Section IV.C). In this light, we can view theC1 NEM
interpolant as a bivariate generalization of one-dimensional Hermite cubic polynomials. In one
dimension, the equivalence of the NEM interpolant to cubic Hermite finite elements is shown in
Section IV.B.

On constructing the transformation matrix[T] and carrying out the matrix-vector multiplication
indicated in Eq. (3.13b), we can express theC1(Ω) NEM trial function in standard shape function
notation as

wh(x) =
3n∑

j=1

ψj(x)wj , (3.14)

whereψ3I−2(x), ψ3I−1(x), andψ3I(x) are the shape functions for nodeI that are associated
with the nodal degrees of freedomwI , θIx, andθIy, respectively.

1. Support of C1 Shape Functions. Consider nodeI ∈ N , whereN is the set consisting of
n natural neighbors for a pointx ∈ Ω ⊂ R

2. TheC1(Ω) shape functions associated with nodeI
areψ3I−2(x), ψ3I−1(x), andψ3I(x). These shape functions are derived from a Bernstein–Bézier
surface representation, in which the natural neighbor shape functions are used as barycentric
coordinates of a pointx. Consequently, theC1(Ω) shape functions retain the compact support
properties ofφI(x), and, hence, a local interpolant is realized. Akin toφI(x), the support of
the shape functionsψ3I−2(x), ψ3I−1(x), andψ3I(x) are the intersection of the convex hull
CH(N ) with the union of all Delaunay circumcircles that pass through nodeI [26]. Consider a
unit square discretized by25 (5 × 5) equi-spaced nodes [Fig. 5(a)]. The support for the shape
functionsφ3A−2(x) andφ3A−1(x) associated with nodeA are illustrated in Figs. 5(b) and 5(c),
respectively.

IV. NUMERICAL COMPUTATION OF SHAPE FUNCTIONS

In this section, we first present the expressions for Bernstein–Bézier basis functions as a function
of Sibson’s coordinateΦ. Then, we describe in detail the construction of the transformation matrix
[T] and the subsequent evaluation of NEM shape functions. Lastly, some key properties of the
newly developedC1(Ω) NEM shape functionsΨ(Φ) are presented.

A. Bernstein –Bézier Basis Functions

Bernstein–Bézier (BB) basis functions are defined in Eq. (3.2). For a cubicn-gon simplex in
Sibson’s coordinates, we obtain

B3
i (Φ) =

(
3
i

)
φi1

1 φ
i2
2 · · ·φin

n , (4.1)

wherei = i1 + i2 + · · · + in = 3. For the cubic case, only three distinct types of basis functions
arise, namely those corresponding toi = 3eI , i = 2eI + eJ , and i = eI + eJ + eK . For
convenience, we letI ≡ 1, J ≡ 2, andK ≡ 3. Then, the corresponding BB-basis functions are
given by

B3,0,0(x) = φ3
1(x), B2,1,0(x) = 3φ2

1(x)φ2(x), B1,1,1(x) = 6φ1(x)φ2(x)φ3(x). (4.2)
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FIG. 5. Support forC1(Ω) NEM shape function: (a) nodal grid; (b) shape functionψ3A−2(x); and (c)
shape functionψ3A−1(x).

By definition, the three basis functions can be represented in the form

Bi1,i2,i3(x) =
3!

i1!i2!i3!
φi1

1 (x)φi2
2 (x)φi3

3 (x), (4.3)

where the choices(3, 0, 0), (2, 1, 0), and(1, 1, 1) for the3-tuple(i1, i2, i3) lead to the equations
indicated in Eq. (4.2). The first derivatives ofBi1,i2,i3(x) can now be written as

∂Bi1,i2,i3(x)
∂α

= Bi1,i2,i3(x)Ci1,i2,i3(x),

Ci1,i2,i3(x) =
3∑

k=1

ik
φk,α(x)
φk(x)

, (α = x, y), (4.4)
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and its second derivatives are given by

∂2Bi1,i2,i3(x)
∂α∂β

=
∂Bi1,i2,i3(x)

∂β
Ci1,i2,i3(x) +Bi1,i2,i3(x)

∂Ci1,i2,i3(x)
∂β

, (4.5a)

where

∂Ci1,i2,i3(x)
∂β

=
3∑

k=1

ik
φk(x)φk,αβ(x) − φk,α(x)φk,β(x)

φ2
k(x)

, (α, β = x, y). (4.5b)

From the viewpoint of theoretical exposition, the above expressions for the Bernstein–Bézier basis
function derivatives are compact and appealing. Nevertheless, in the numerical implementation,
the derivatives of the basis functions given in Eq. (4.2) are explicitly computed. By this approach,
simplifications arise and one can group like terms together, which leads to fewer arithmetic
operations in the computations.

B. Construction of the Transformation Matrix [ T ]

As can be inferred from Section III.B, the construction of the transformation matrix[T] is the
key step in transforming the Bernstein–Bézier representation of the trial function to the shape
function form given in Eq. (3.14). Since this is central to the computational methodology that is
adopted here, a detailed description of its formation is shown below.

We first present the relations between Bézier ordinates and the nodal function and gradient
values, and then proceed to outline the structure and computational algorithm to construct the
transformation matrix[T]. The nodal or vertex B́ezier ordinates are equal to the nodal function
values, i.e.,

bi = wI , i = 3eI (4.6)

for the B́ezier ordinate at nodeI. The tangent B́ezier ordinates are related to the nodal function
and nodal gradient values. Letd be the direction along the linexI to xJ andd̂ be that fromxJ to
xI . The directional derivative of the functionw(x) along the directionsd andd̂ are given by

∂w(x)
∂d

= ∇w(x) · d =
∂w(x)
∂x

dIJ
x +

∂w(x)
∂y

dIJ
y , (4.7a)

∂w(x)

∂d̂
= ∇w(x) · d̂ = −

(
∂w(x)
∂x

dIJ
x +

∂w(x)
∂y

dIJ
y

)
, (4.7b)

whered̂ = −d, anddIJ
x = xJ − xI anddIJ

y = yJ − yI are the Cartesian components of the

vectord. The directional derivative atxI alongd and the directional derivative atxJ alongd̂ can
be expressed as

∂w(xI)
∂d

= θIxd
IJ
x + θIyd

IJ
y , (4.8a)

∂w(xJ)

∂d̂
= −(θJxd

IJ
x + θJyd

IJ
y ). (4.8b)

The tangent B́ezier ordinates that lie in the tangent plane are determined through the relations [28]

∂w(xI)
∂d

= 3(bi − bj), i = 2eI + eJ , j = 3eI , (4.9a)
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∂w(xJ)

∂d̂
= 3(bi − bj), i = eI + 2eJ , j = 3eJ , (4.9b)

which on using Eqs. (4.6) and (4.8) and rearranging terms results in the following expressions for
the tangent B́ezier ordinates:

b2eI+eJ
=

1
3

(θIx
dIJ

x + θIy
dIJ

y ) + wI , (4.10a)

beI+2eJ
= −1

3
(θJxd

IJ
x + θJyd

IJ
y ) + wJ . (4.10b)

Now, the center B́ezier ordinates are computed using Eq. (3.9). Consider the center ordinatebi
with subscripti = eI + eJ + eK , i.e., the corresponding control point lies at the centroid of
triangle(xI ,xJ ,xK). Hence, on using Eqs. (4.6) and (4.10) in conjunction with Eq. (3.9), we
obtain the following expression for the center ordinate:

bi =
wI + wJ + wK

3
+
αIθIx + βIθIy + αJθJx + βJθJy + αKθKx + βKθKy

4
, (4.11a)

i = eI + eJ + eK , (4.11b)

where

αI =
dIJ

x + dIK
x

3
, αJ =

−dIJ
x + dJK

x

3
, αK =

−dIK
x − dJK

x

3
, (4.12a)

βI =
dIJ

y + dIK
y

3
, βJ =

−dIJ
y + dJK

y

3
, βK =

−dIK
y − dJK

y

3
, (4.12b)

dIJ
x = xJ − xI , dJK

x = xK − xI , dJK
x = xK − xJ , (4.12c)

dIJ
y = yJ − yI , dIK

y = yK − yI , dJK
y = yK − yJ . (4.12d)

The storage structure for the transformation matrix[T] is shown in Fig. 6, and a pseudo-code
for its construction is presented in Table I. The map from the nodal function values to the vertex

FIG. 6. Storage structure for the transformation matrix[T].
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TABLE I. Pseudo-code for construction of the transformation matrix[T].

1. Initialize matrix[T] = 0;
2. Initialize matrix[R] = 0;
3. for I = 1→ n {

• T (I, 3I − 2) = 1;
}

4. row = n;
5. for I = 1→ n− 1 {

(a) forJ = I + 1→ n {
• row ← row + 1;
• T (row, 3I − 2) = 1;T (row, 3I − 1) = dIJ

x /3;T (row, 3I) = dIJ
y /3;

• R(I, J) = row;
• row ← row + 1;
• T (row, 3I − 2) = 1;T (row, 3I − 1) = −dIJ

x /3;T (row, 3I) = −dIJ
y /3;

• R(J, I) = row;
}

}
6. row = n2;
7. for I = 1→ n− 2 {

(a) forJ = I + 1→ n− 1 {
i. for K = J + 1→ n {

• row ← row + 1;
• computeαI , αJ , αK , βI , βJ , βK using Eq. (4.12);
• T (row, 3I − 2) = 1/3;T (row, 3I − 1) = αI/4;T (row, 3I) = βI/4;
• T (row, 3J − 2) = 1/3;T (row, 3J − 1) = αJ/4;T (row, J) = βJ/4;
• T (row, 3K − 2) = 1/3;T (row, 3K − 1) = αK/4;
• T (row, 3K) = βK/4;

}
}

}

Bézier ordinates is stored in the firstn rows; the nextn2 − n rows pertain to the tangent Bézier
ordinates; and the last block of(n

3 ) rows relate the nodal function and gradient values to the center
Bézier ordinates. In Fig. 7, the vertex, tangent, and center Bézier ordinates with respect to node1
are indicated for a pentagonal simplex(n = 5). An outline of the algorithm presented in Table I
follows. The matrix[T] as well as ann×nmatrix[R] are initialized to zero. The matrix[R] stores
the row number of the contribution in[T] due to the tangent B́ezier ordinates. For the first block of
n rows, Eq. (4.6) is invoked so as to set theIth row and(3I−2)-column position in[T] to unity. In
the second block (tangent ordinates), the entries in[T] are evaluated using Eq. (4.10). The loops
are executed such that for any nodeI (1 ≤ I ≤ n− 1), the entries for all tangent ordinates along
the line joiningxI to xJ (I < J ≤ n) are computed. In Fig. 7, the filled square corresponds
to the B́ezier ordinate given by Eq. (4.10a), and the open square corresponds to that given by
Eq. (4.10b). Lastly, the entries in the matrix[T] due to the center ordinates (see filled ellipses in
Fig. 7) are stored. This involves the3-tuple(I, J,K) such that1 ≤ I ≤ n− 2, I < J ≤ n− 1,
andJ < K ≤ n. Here, the entries in[T] are computed using Eqs. (4.11) and (4.12). Both[T]
as well as[R] are required to evaluate the parameters that appear in Eq. (4.12). In addition to
storing the entries in[T], the BB-basis functions and its derivatives given in Section IV.A are also
computed within each block. Once the construction of the transformation matrix[T] is complete,
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FIG. 7. Bézier ordinates used in the algorithm for a pentagonal simplex.

a matrix-vector product is carried out to compute the shape functionsψj(x) and their derivatives
ψj,α(x) andψj,αβ(x) (α, β = x, y):

{Ψ(Φ)}T = {B(Φ)}T [T], (4.13a)

{Ψ,α(Φ)}T = {B,α(Φ)}T [T], (4.13b)

{Ψ,αβ(Φ)}T = {B,αβ(Φ)}T [T]. (4.13c)

In order to illustrate the shape function computations, we present two examples. First, in one
dimension, it is shown that the matrix[T] transforms cubic Bernstein polynomials to cubic Hermite
polynomials that are used in higher-order finite elements. Then, the transformation matrix[T]
for a cubic triangular patch(n = 3) is presented to illustrate the computational methodology for
shape function calculations.

Example 1. Consider a pointx ∈ Ω = (0, 1) with natural neighbors atx1 = 0 andx2 = 1. We
recall Eq. (3.11), which is the one-dimensionalC1(Ω) interpolant in BB-form:

w(x) = B3
3,0b3,0 +B3

2,1b2,1 +B3
1,2b1,2 +B3

0,3b0,3, (4.14a)

where

B3
3,0 = (1 − x)3, B3

2,1 = 3(1 − x)2x, B3
1,2 = 3(1 − x)x2, B3

0,3 = x3. (4.14b)

From Eq. (4.6), we immediately havew1 = b3,0 andw2 = b0,3. Let θ1 = w,x(x1) andθ2 =
w,x(x2). Then, on using Eq. (4.10), we obtain

b2,1 =
θ1
3

+ w1, (4.15a)

b1,2 = −θ2
3

+ w2, (4.15b)

and, hence, the transformation equation given in Eq. (3.13b) can be written as

b3,0
b0,3
b2,1
b1,2


 =




1 0 0 0
0 0 1 0
1 1

3 0 0
0 0 1 − 1

3






w1
θ1
w2
θ2


 . (4.16)
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On using Eq. (4.13a) in conjunction with Eqs. (4.14) and (4.16), we obtain the following equations
for theC1(Ω) NEM shape functions:

ψ1(x) = B3
3,0 +B3

2,1 = 1 − 3x2 + 2x3, (4.17a)

ψ2(x) =
1
3
B3

2,1 = x− 2x2 + x3, (4.17b)

ψ3(x) = B3
0,3 +B3

1,2 = 3x2 − 2x3, (4.17c)

ψ4(x) = −1
3
B3

1,2 = −x2 + x3, (4.17d)

which are cubic Hermite polynomials.

Example 2. The B́ezier ordinates for a cubic triangular patch(m = 3, n = 3) are indicated in
Fig. 4 and the relation for the center ordinate is presented in Eq. (3.9). For any pointx in a triangle,
the natural neighbor shape functionsφI(x) atx are identical to the barycentric coordinates ofx
[26]. For simplicity, we consider the∆ABC with verticesA(0, 0), B(1, 0), andC(0, 1). There are
ten cubic triangular B́ezier ordinates, of which three are vertex ordinates, six are tangent ordinates,
and one is a center (‘‘free’’) ordinate. On using Eqs. (4.10) and (4.11), with the parameters
computed from Eq. (4.12), we can relate the nodal vector{w} to the B́ezier ordinate vector{b}
through the following equation:

{b} = [T]{w} ⇒




b3,0,0
b0,3,0
b0,0,3
b2,1,0
b1,2,0
b2,0,1
b1,0,2
b0,2,1
b0,1,2
b1,1,1




=




1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
1 1

3 0 0 0 0 0 0 0
0 0 0 1 − 1

3 0 0 0 0
1 0 1

3 0 0 0 0 0 0
0 0 0 0 0 0 1 0 − 1

3
0 0 0 1 −1

3
1
3 0 0 0

0 0 0 0 0 0 1 1
3 − 1

3
1
3

1
12

1
12

1
3 − 1

6
1
12

1
3

1
12 − 1

6







w1
θ1x

θ1y

w2
θ2x

θ2y

w3
θ3x

θ3y




. (4.18)

Let the nodes be numbered as1, 2, and3. Then, the BB-basis functions are

Bi1,i2,i3(x) =
3!

i1!i2!i3!
φi1

1 (x)φi2
2 (x)φi3

3 (x), (4.19)

wherei1 + i2 + i3 = 3 andφ1(x) = 1 − x − y, φ2(x) = x, andφ3(x) = y are the natural
neighbor shape functions. The ten components of the vector{B(Φ)} are computed from the
above equation. Since[T] is known from Eq. (4.18), the shape function vector{Ψ(Φ)} and its
derivatives are readily computed from Eq. (4.13).

Remark. A cubic Bernstein–Bézier surface representation over a triangle leads to aC0 in-
terpolant. In the natural element method, as a pointx approaches a Delaunay edge, which is
within the convex hull of the domain, the number of neighbors forx is greater than three, and
consequently a smooth interpolant is realized in that region.

C. Properties

Most of the properties ofC0(Ω) natural neighbor shape functions and Bernstein–Bézier basis
functions are retained byC1(Ω) shape functions, but there do exist a few differences and some
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notable exceptions. We present some of the most important properties ofC1(Ω) NEM shape
functions.

1. Interpolation, Partition of Unity, and Quadratic Completeness. The interpolant proposed
in Eq. (3.14) is an alternate representation of Farin’sC1(Ω) interpolant that appears in Eq. (3.12).
SinceC1(Ω) NEM shape functions are linear combinations of Bernstein–Bézier basis functions,
cardinal interpolation of the functionw(x) is immediately seen:

ψ3I−2(xJ) = δIJ , ψ3I−1(xJ) = 0, ψ3I(xJ) = 0 ⇒ wh(xJ) = w(xJ). (4.20)

In addition, it is obvious that the quadratic precision property of Eq. (3.12) also holds for the recast
form proposed in Eq. (3.14). By the above inferences, we immediately arrive at the following
properties:

3n∑
j=1

ψj(x)wj = w(xj) ∀w(x) =
∑

i+j≤2
i,j≥0

aijx
iyj , aij ∈ R, (4.21a)

n∑
I=1

ψ3I−2(x) = 1. (4.21b)

Equation (4.21a) is the statement of quadratic completeness of the NEM interpolant, and Eq.
(4.21b), which can be viewed as a consequence of Eq. (4.21a) forw(x) ≡ 1, indicates that the
NEM shape functions associated with the nodal function values form a partition of unity.

2. Positivity. Natural neighbor shape functionsφI(x) as well as Bernstein–Bézier basis func-
tionsB3

i share the property of positivity:

0 ≤ φI(x) ≤ 1, 0 ≤ B3
i ≤ 1. (4.22)

As opposed to the above, only the NEM shape functionsψ3I−2(x) that correspond to the nodal
function values share the above property, namely

0 ≤ ψ3I−2(x) ≤ 1, (4.23)

whereasψ3I−1(x) as well asψ3I(x) can assume both positive as well as negative values. A shape
function of the formψ3I−2(x) is illustrated in Fig. 5(b), and one akin toψ3I−1(x) is shown in
Fig. 5(c).

3. Interpolation to Nodal Rotations. It was mentioned in Section IV.B that the NEM inter-
polant in Eq. (3.14) interpolates to nodal function and nodal gradient values. The former is evident
by virtue of Eq. (4.20). The latter is shown below.

Claim. TheC1(Ω) interpolant in Eq. (3.14)interpolates to nodal gradient values:

wh
,x(xI) = θIx, wh

,y(xI) = θIy. (4.24)

Proof. Consider a cubicn-gon simplex in the plane, wheren is the number of natural neighbors
for a pointx ∈ Ω. The B́ezier ordinate atxI isb3eI

, and the directional derivative along a direction
datxI is influenced only by the tangent Bézier ordinates that are connected tob3eI

. These ordinates
are of the formb2eI+eJ

, whereJ = I is a vertex ordinate, and the rest are tangent ordinates. It
is evident that the B́ezier ordinatesb2eI+eJ

are related to onlywI , θIx, andθIy—see Eq. (4.10).
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The Bernstein–Bézier basis function derivatives associated with these ordinates are the only ones
that are nonzero atxI . For simplicity, without any loss of generality, we letI = 1, i.e., local
node1 with nodal locationx1 is considered. In Fig. 2, wheren = 3, the ordinates of interest are
b3,0,0, b2,1,0, andb2,0,1, and in Fig. 3, wheren = 4, the ordinates areb3,0,0,0, b2,1,0,0, b2,0,1,0, and
b2,0,0,1. Hence, the vector consisting of Bernstein–Bézier basis function derivatives at the point
x1 can be written as

{B,α(x1)}T =


B1,α(x1), . . . . . .︸ ︷︷ ︸

n−1 zeros

, B2,α(x1), 0, . . . , Bn,α(x1), 0︸ ︷︷ ︸
[(n2−n)/2]zeros

, . . . . . .︸ ︷︷ ︸
( n
3 ) zeros


 , (4.25a)

where

B1(x) = φ3
1(x), BJ(x) = 3φ2

1(x)φJ(x), (J = 2, . . . , n), (4.25b)

BJ,α(x1) = 3φJ,α(x1), (J = 1, 2, . . . , n;α = x, y), (4.25c)

where the interpolating propertyφJ(x1) = δJ1 is used to arrive at Eq. (4.25c). Now, we consider
the structure of[T] to determine the entries that are of interest. Since the Bézier ordinatesb2e1+eJ

are related to onlyw1, θ1x, andθ1y, it suffices if we only consider the first three columns of[T].
Let [T̂] be such a submatrix of[T]. We must point out that the entries in[T̂] due to the center
Bézier ordinates are nonzero. The associated basis function derivatives are zero, however, and,
hence, the center ordinates provide no contribution to any of the components in the NEM shape
function vector. Using Eq. (4.10), the matrix[T̂] can be written as

[T̂] =




1 0 0
0 0 0

· · · · · · · · ·
0 0 0
1 α12

x α12
y

0 0 0
1 α13

x α13
y

0 0 0
· · · · · · · · ·
· · · · · · · · ·
1 α1n

x α1n
y

0 0 0
c11 c12 c13
· · · · · · · · ·
cm1 cm2 cm3




, (4.26)

wherecij ∈ R,m = (n
3), andα1J

x = d1J
x /3 andα1J

y = d1J
y /3. The submatrices corresponding to

the vertex, tangent, and center Bézier ordinates are indicated by the enclosed boxes in the above
equation. By virtue of Eq. (4.12), we have

d1J
x = xJ − x1, d1J

y = yJ − y1, (J = 2, 3, . . . , n). (4.27)
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On taking the product of Eqs. (4.25) and (4.26), we can write the nonzeroC1(Ω) shape function
derivatives as

ψ1,α(x1) =
n∑

J=1

φJ,α(x1), (4.28a)

ψ2,α(x1) =
n∑

J=2

φJ,α(x1)d1J
x , (4.28b)

ψ3,α(x1) =
n∑

J=2

φJ,α(x1)d1J
y . (4.28c)

Since
∑

J φJ(x1) = 1, it follows that Eq. (4.28a) is identically equal to zero. On substituting Eq.
(4.27) in the above equation and noting thatφ1,α(x1) = −∑n

J=2 φJ,α(x1), we obtain

ψ1,α(x1) = 0, (4.29a)

ψ2,α(x1) =
n∑

J=1

φJ,α(x1)xJ , (4.29b)

ψ3,α(x1) =
n∑

J=1

φJ,α(x1)yJ . (4.29c)

But the natural neighbor shape functions satisfy the local coordinate property given in Eq. (2.4),
namely

n∑
J=1

φJ(x)xJ = x, (4.30)

and, hence, on taking the derivative of the above equation with respect tox andy in succession
and substituting in Eq. (4.29), we obtain

ψ1,x(x1) = 0, ψ2,x(x1) = 1, ψ3,x(x1) = 0, (4.31a)

ψ1,y(x1) = 0, ψ2,y(x1) = 0, ψ3,y(x1) = 1. (4.31b)

Now, the derivatives of the NEM trial function given in Eq. (3.14) can be written as

wh
,x(x1) = ψ1,x(x1)w1 + ψ2,x(x1)θ1x + ψ3,x(x1)θ1y, (4.32a)

wh
,y(x1) = ψ1,y(x1)w1 + ψ2,y(x1)θ1x + ψ3,y(x1)θ1y, (4.32b)

and, hence, on using Eq. (4.31) in the above equation, we obtain

wh
,x(x1) = θ1x, wh

,y(x1) = θ1y. (4.33)

Since the choiceI = 1 is arbitrary, the above relations are readily extended for allI (1 ≤ I ≤ n),
which leads us to the desired result:

wh
,x(xI) = θIx, wh

,y(xI) = θIy. (4.34)



436 SUKUMAR AND MORAN

By virtue of Eqs. (4.20) and (4.31), we note an additional property—C1(Ω) NEM shape
functions are cardinal with respect to function evaluation, as well as differentiation with respect
to the coordinate directions:

ψ3I−2(xJ) = δIJ , ψ3I−1(xJ) = 0, ψ3I(xJ) = 0, (4.35a)

ψ3I−2,x(xJ) = 0, ψ3I−1,x(xJ) = δIJ , ψ3I,x(xJ) = 0, (4.35b)

ψ3I−2,y(xJ) = 0, ψ3I−1,y(xJ) = 0, ψ3I,y(xJ) = δIJ . (4.35c)

V. GOVERNING EQUATIONS AND WEAK FORM

As a model fourth-order partial differential equation, we consider the biharmonic equation with
Dirichlet boundary conditions, which is described as

∆2w = f in Ω, (5.1a)

w = g1 onΓ, (5.1b)

∂w

∂n
= g2 onΓ, (5.1c)

whereΩ ⊂ R
2 is an open bounded domain andΓ is its boundary,n is the outward normal toΩ,

and∆ is the Laplacian operator. The weak or variational problem is posed as:

Findw ∈ V = H2(Ω) such thata(w, v) = (f, v) ∀ v ∈ V0 = H2
0 (Ω), (5.2)

wherea(w, v):V × V → R is the bilinear form for the biharmonic operator and theL2(Ω) inner
product on the right-hand side is defined as

(f, v) =
∫

Ω
fv dΩ. (5.3)

In Eq. (5.2),V is the Sobolev space of functions with square-integrable second derivatives inΩ,
and the Sobolev spaceV0 = {v ∈ H2(Ω), v = 0, ∂v/∂n = 0 onΓ}. As opposed to the Laplace
operator, two distinct Dirichlet (bilinear) forms exist for the biharmonic operator [36]:

a1(w, v) =
∫

Ω
∆w∆v dΩ, (5.4a)

a2(w, v) =
∫

Ω
[(w,xx − w,yy)(v,xx − v,yy) + 4w,xyv,xy] dΩ. (5.4b)

Any linear combination of the above two equations is also a Dirichlet form. For the plate problem,
the bilinear form (strain energy) is given by [37, 38]:

a3(w, v) =
∫

Ω
[∆w∆v − (1 − ν)(w,xxv,yy + w,yyv,xx − 2w,xyv,xy)] dΩ, (5.5)

whereν is the Poisson’s ratio. By virtue of Green’s theorem, we have∫
Ω

∆w∆v dΩ =
∫

Ω
∆2wv dΩ −

∫
Γ

∆w,nv dΓ −
∫

Γ
∆wv,n dΓ, (5.6a)
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Ω

[w,xxv,yy + w,yyv,xx − 2w,xyv,xy] dΩ =
∫

Γ
w,ttv,n dΓ −

∫
Γ
w,ntv,t dΓ, (5.6b)

wheren andt are the outward normal and tangential directions toΓ. For the Dirichlet problem
with v ∈ V0, the boundary integrals in the above equations are zero, andw satisfies the strong
form given in Eq. (5.1). The bilinear form for the biharmonic equation given in Eq. (5.4a) and that
for the plate problem indicated in Eq. (5.5) are both bounded, symmetric, and positive definite
operators inV0, and, therefore, there exists a unique solutionw to the variational problem in Eq.
(5.2) [38].

Consider the Galerkin implementation for the natural element method. Using the bilinear form
given in Eq. (5.4a), the weak form for the discrete problem can be stated as:

Findw ∈ V h ⊂ V such thata1(wh, vh) = (f, vh) ∀ vh ∈ V h
0 ⊂ V0. (5.7)

In a Bubnov–Galerkin procedure, the trial functionwh as well as the test functionvh are repre-
sented in terms of the same shape functions. The trial and test functions are

{wh vh} =
n∑

I=1

{ΨI}[wI vI ], (5.8a)

where

ΨT
I =



ψ3I−2

ψ3I−1

ψ3I


 , wI =




wh
I

θwh

Ix

θwh

Iy


 , vI =




vh
I

θvh

Ix

θvh

Iy


 . (5.8b)

The discrete Laplacian for the trial and test functions can be written as

{∆wh ∆vh} =
n∑

I=1

{BI}[wI vI ], (5.9a)

where

BT
I =



ψ3I−2,xx + ψ3I−2,yy

ψ3I−1,xx + ψ3I−1,yy

ψ3I,xx + ψ3I,yy


 . (5.9b)

On substituting the trial and test functions in Eq. (5.7) and using the arbitrariness of nodal varia-
tions, the following discrete system of linear equations is obtained:

Kd = f , (5.10)

where

KIJ =
∫

Ωh

BT
I BJ dΩ, (5.11a)

fI =
∫

Ωh

ΨT
I f dΩ. (5.11b)

In the above equations,d is the vector of nodal function and gradient values,ΨI is the nodal
shape function vector, andBI is the discrete Laplacian vector.
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VI. NUMERICAL RESULTS

The application of NEM to the biharmonic equation with Dirichlet boundary conditions is pre-
sented. TheL2(Ω) and energy error norms that are used in the analyses are defined as

‖w − wh‖L2(Ω) =
(∫

Ω
(w − wh)2 dΩ

)1/2

, (6.1a)

‖w − wh‖E(Ω) =
(

1
2

∫
Ω
a1(w − wh, w − wh) dΩ

)1/2

, (6.1b)

wherew andwh are the exact and numerical (NEM) solutions, respectively. Numerical integration
of the weak form is carried out using symmetric quadrature rules for a triangle [39]. In the error
norm computations, 25 point quadrature rule is used in each triangle. The packagesTriangle
[40] andShow Me[41] are used to construct and display the nodal discretization and Delaunay
triangles.

A. Airy Stress Function

The Airy stress function in small displacement linear elastostatics satisfies the biharmonic equa-
tion. A wide range of two- and three-dimensional problems, ranging from homogeneous deforma-
tion to those with point and line singularities, are encompassed within this theoretical framework.
In fracture mechanics, numerical methods are an invaluable tool to compute fracture parame-
ters that are associated with the fracture and failure of cracked-bodies. Bernal and Whiteman
[42] used finite difference approximations, and Gregory et al. [43] used local mesh refinement
with modifiedC1 bicubic interpolants to solve the two-dimensional biharmonic problem of an
edge-cracked plate under uniaxial tension.

Letw be the Airy stress function in two-dimensional elasticity. As a benchmark problem (patch
test) for the homogeneous biharmonic operator, we consider a circular plate under a biaxial state
of stress:

∆2w = 0 in Ω, (6.2a)

w = a2 onΓ, (6.2b)

∂w

∂r
= 2a onΓ, (6.2c)

whereΩ = {(x, y):x2 + y2 < a2} is a circular domain of radiusa andΓ is its boundary.
In polar coordinates, the exact solution for the Airy stress function is:w(r) = r2. Consider

a circular domain of unit radius(a = 1); due to symmetry, only one-quarter of the circular
domain is modeled with appropriate symmetry boundary conditions. TheL2(Ω) and energy error
norm results for four quasi-regular nodal grids are presented in Table II. The nodal grid and the
associated Delaunay triangles for a typical discretization are shown in Fig. 8. The nodal grids
are constructed by setting aL× L× L sub-division for the three boundaries. The caseL = 6 is
shown in Fig. 8, and the other grids correspond toL = 12, 24, and48. In Fig. 9, the plot ofw
and∂w/∂r vs. the radial distancer for theL = 6 grid is presented. In the computations, 25 equi-
distant output points betweenr = 0 andr = 1 are considered. Since theC1(Ω) NEM interpolant
has quadratic completeness, the numerical solution should be accurate within machine precision,
which is10−16 in double-precision arithmetic on a HP9000/s700 workstation. The inaccuracy in



C1 NATURAL NEIGHBOR INTERPOLANT 439

TABLE II. Relative error norms for the Airy stress function problem.

Nodal grids Quadrature
‖w−wh‖

L2(Ω)
‖w‖

L2(Ω)

‖w−wh‖E(Ω)
‖w‖E(Ω)

3 7.2× 10−3 2.7× 10−1

37 25 8.3× 10−3 1.1× 10−1

37 9.7× 10−3 1.2× 10−1

3 8.2× 10−3 2.3× 10−1

127 25 2.6× 10−3 9.6× 10−2

37 3.6× 10−3 9.5× 10−2

3 6.9× 10−3 2.0× 10−1

469 25 9.9× 10−4 7.3× 10−2

37 1.6× 10−3 7.3× 10−2

3 4.0× 10−3 1.5× 10−1

1801 25 4.7× 10−4 5.5× 10−2

37 6.2× 10−4 5.3× 10−2

the NEM solution is due to numerical quadrature errors in the integration of the weak form, which
was also observed for the patch test in two-dimensional elastostatics [23]. First and foremost, the
numerical integration errors stem from the fact that the support of the shape functions do not
coincide with the Delaunay triangles. In addition, the entries in the stiffness matrixK consist
of products of second-order derivatives of NEM shape functions. The integrand is a rational
function, which is not exactly integrated using polynomial-precision symmetric quadrature rules
over triangles. The selection of an appropriate numerical quadrature scheme for NEM, however,
is still an open issue.

B. Clamped Circular Plate

Consider the axi-symmetric problem of a clamped circular plate under a uniform transverse unit
load(f = 1). The governing equations are:

∆2w = 1 in Ω, (6.3a)

w =
∂w

∂r
= 0 onΓ, (6.3b)

whereΩ = {(x, y):x2 + y2 < a2} is a circular domain of radiusa andΓ is its boundary. The
exact solution to the above problem is given by [44]:

w(r) =
1
64

(a2 − r2)2. (6.4)

Consider a circular domain of unit radius; due to symmetry, only one-quarter of the circular
domain is modeled. The nodal discretizations used in the analyses are: 37[A], 127[B], 271[C],
469 [D], 721[E], 1027[F ], 1387[G], and 1801[H] nodes. The subdivision for these grids are:
L = 6, 12, 18, 24, 30, 36, 42, and48. The discrete Kirchhoff element (DKT) is one of the most
efficient and reliable finite elements for thin plate analysis [45]. In the DKT element, onlyC0

continuity requirements are needed to be satisfied, with the Kirchhoff hypothesis being met at
discrete points along the edges of the element. In Table III, the normalized center displacement
for the above grids are presented, and in Fig. 10, the NEM results are illustrated. There is good
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FIG. 8. Quarter circular plate: (a) nodal discretization (37 nodes); and (b) Delaunay triangulation.

agreement between the NEM and exact solution. The convergence to the center displacement is
monotonic, and the error in the center displacement is less than 2% for a grid with more than 200
nodes. A plot ofw andw,r as a function ofr is illustrated in Fig. 11. The grid shown in Fig. 8 is
used, and 25 equi-spaced output points betweenr = 0 andr = 1 are chosen in the computations.
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FIG. 9. Plot ofw andw,r vs.r for the Airy stress function problem (37 nodes).

A convergence study is carried out using the nodal gridsA–H. The relativeL2(Ω) and energy error
norms are shown against a measure of the nodal spacingh (h = a/L, a = 1 is the plate radius)
on a log–log plot (Fig. 12). In Fig. 12, the convergence rate is indicated by the value ofR. The
rate of convergence in displacement and energy is 0.95 and 0.41, respectively; optimal rates are
2 and 1 in displacement and energy for a conforming finite element with quadratic completeness
[3]. In order to study the suboptimal rates of convergence, an eigenanalysis is carried out in the
following section. The results indicate that the discrete bilinear operator isV h

0 -elliptic and, hence,
stable, while the approximating space is poorly conditioned. The suboptimal rates of convergence
are attributable to the latter factor in conjunction with the numerical integration errors in the
computations.

C. Eigenanalysis

To study stability, we look at the properties of the approximating spaces and the ellipticity of the
discrete bilinear operator. The EISPACK eigensolver package [46] is used to solve the eigenprob-
lems that follow.

TABLE III. Normalized center displacement for the uniformly loaded circular plate.
wh

NEM
w

Nodal grids Quad= 3 Quad= 25
wh

DKT
w

37 1.0986 1.0408 1.0087
127 1.0817 1.0224 1.0026
271 1.0639 1.0147 1.0012
469 1.0565 1.0117 1.0007
721 1.0463 1.0095 1.0005

1027 1.0392 1.0082 1.0003
1387 1.0331 1.0071 1.0002
1801 1.0292 1.0061 1.0002
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1. Linear Independence of Shape Functions. The approximating space is studied by con-
sidering the linear independence of the shape functions [3]. To this end, we consider the following
discrete eigenvalue problem:

Md̂ = λhd̂, (6.5)

whered̂ andλh are the eigenvectors and eigenvalues ofM, andM is the mass matrix, which is
given by

MIJ =
∫

Ω
ΨT

I ΨJ dΩ. (6.6)

The conditions numberκ(M) = λmax(M)/λmin(M) is used as a measure of the linear inde-
pendence of the shape functions. If the shape functions were orthonormal,MIJ would be the
identity matrix andκ = 1. The leading eigenvalueλh

3I−2, which corresponds to the eigenvector
d̂3I−2 is used to compute the condition number; the other eigenvalues are deemed spurious and
vanish in the limith → 0 [3]. In Table IV, the condition number is computed for the nodal grids
A,B,C,D, andH (see Section VI.B). It is seen that the condition numbers increase markedly
with nodal refinement thereby indicating that the system is poorly conditioned. This indicates
that theC1(Ω) NEM approximation spaces are not uniformly linearly independent. An immedi-
ate consequence of this is that the accuracy of the computed results could be affected, since, if the
condition number is10s, then as many ass digits may be lost during the solution of the system
Kd = f [3]. Keeping this in mind, we now consider the stability of the discrete operator, which
is of far greater significance for the stability and convergence of the numerical method.

2. Ellipticity. The continuity of the discrete bilinear operatora(wh, vh):V h × V h
0 → R is

established by virtue of choosing conforming finite-dimensional subspaceswh ∈ V h andvh ∈
V h

0 . For showingV h
0 -ellipticity of the operator, it suffices if the following condition is satisfied:

a(vh, vh) ≥ α‖vh‖2 ∀ vh ∈ V h
0 ⊂ H2

0 (Ω), (6.7)

where the positive constantα is bounded away from zero. The ellipticity constant for the discrete
operator is numerically estimated by considering the generalized eigenproblem associated with

FIG. 10. Variation of normalized center displacement with number of nodes for the uniformly loaded
clamped circular plate.
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FIG. 11. Plot ofw andw,r vs.r for the uniformly loaded clamped circular plate (37 nodes).

the biharmonic equation:

∆2w̃ = λw̃ in Ω, (6.8a)

w̃ = w̃,n = 0 onΓ, (6.8b)

wherew̃ is the natural mode of vibration of the plate,λ = ω2 is the eigenvalue, andω the natural
frequency of vibration. The equivalent variational form for the eigenproblem is:

Find w̃ ∈ V = H2(Ω) such that
∫

Ω
∆w̃∆ṽ dΩ = λ(w̃, ṽ) ∀ ṽ ∈ V0 = H2

0 (Ω). (6.9)

The weak form for the discrete problem is posed as:

Find w̃h ∈ V h ⊂ V such that
∫

Ω
∆w̃h∆ṽh dΩ = λh(w̃h, ṽh) ∀ ṽh ∈ V h

0 ⊂ V0. (6.10)

FIG. 12. Rate of convergence in displacement and energy for the uniformly loaded clamped circular plate.
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TABLE IV. Condition number of the mass matrix.

Nodal grids κ = λh
max

λh
min

37 8.57× 103

127 8.35× 104

271 2.69× 105

469 5.87× 105

1801 9.42× 109

By substituting the discrete trial and test functions in the above equation and using the arbitrariness
of nodal variations, we obtain the following discrete eigensystem:

Kd̄ = λhMd̄, (6.11)

whered̄ andλh are the natural eigenmodes and eigenvalues, respectively,KIJ is the nodal stiff-
ness matrix that is defined in Eq. (5.11), andMIJ is the mass matrix given in Eq. (6.6). For the
symmetric bilinear form in Eq. (6.10) there exists an increasing sequence of strictly positive eigen-
values for the eigenproblem. By considering the Rayleigh quotientR(vh) = a(vh, vh)/(vh, vh)
for the discrete problem in conjunction with Eqs. (6.11) and (6.7), we obtain the following result
for the ellipticity constant:

α = inf{R(vh): vh ∈ V h
0 } = λh

1 , (6.12)

whereλh
1 is the lowest eigenvalue withωh

1 =
√
λh

1 the corresponding fundamental frequency. The
fundamental frequency that corresponds to the lowest eigenvalue is computed for the nodal grids
A–D. The reference solution for the fundamental frequency isω1 = 10.21 [47]. The results for
the normalized fundamental frequency are presented in Table V; there is good agreement between
the numerical solution (NEM) and the reference solution. Clearly,α = (ωh

1 )2 is approximately a
constant and is bounded away from zero. This implies that the ellipticity condition given in Eq.
(6.7) is satisfied, and, hence, the discrete bilinear operator is stable.

VII. CONCLUSIONS

Natural neighbor coordinates were proposed by Sibson [20] as a means for data interpolation and
smoothing. In a previous study [23], its potential as a paradigm for the solution of second-order
elliptic PDEs was demonstrated. Natural neighbor coordinates have optimum spatial adjacency,
and provide a natural means to assign weights to irregularly spaced nodal data; it is envisaged that
this could be of merit in the development of lumped mass schemes for wave propagation in elasto-
dynamics and electromagnetics. In this article, aC1 natural element method was presented, and its

TABLE V. Normalized fundamental frequency for the clamped circular plate.

Nodal grids
ωh
1

ω1

37 0.9854
127 0.9927
271 0.9951
469 0.9962
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application to the biharmonic equation, a fourth-order elliptic partial differential equation (PDE),
was carried out. Farin [26] has developed aC1 interpolant by embedding Sibson’s coordinate [20]
in the Bernstein–Bézier surface representation of a cubic simplex. TheC1 NEM interpolant that
we propose is constructed by a suitable transformation of Bernstein basis functions that appear
in Farin’sC1 interpolant. This transformation results in the representation of the interpolant in
terms of nodal function and nodal gradient values, which renders it amenable to use in a Galerkin
scheme for the solution of PDEs. TheC1 interpolant has quadratic completeness, interpolates
to nodal function and nodal gradient values, and reduces to a cubic polynomial on the boundary
of the domain. In one dimension,C1 NEM interpolation is identical to cubic Hermite finite ele-
ments. In the application to the biharmonic equation, a standard Galerkin procedure was used to
obtain the discrete equations. In the patch test for the biharmonic operator, issues pertaining to
the accurate numerical integration of the weak form were raised. Excellent agreement with the
exact solution for the uniformly loaded clamped circular plate was obtained, and convergence to
the exact center displacement was monotonic with nodal refinement.

Issues pertaining to stability were probed by carrying out an eigenanalysis. Numerical results
show that the mass matrix is poorly conditioned. The satisfaction of the ellipticity condition was
met, with the ellipticity constantα being the square of the fundamental frequency of the clamped
plate. This established the stability of the discrete biharmonic operator. The NEM results for the
fundamental frequency matched the reference solution for the clamped plate problem. In this
context, a potential application of theC1 interpolant is in the numerical computation of natural
modes and frequencies of plates.

The computational costs of theC1 natural element method are more than itsC0 variant. The
increased costs are primarily due to the fact that three degrees of freedom are associated with each
node; theC1 shape function computations involve basic linear algebra matrix-vector operations
and the costs are not significantly more than that incurred in the evaluation ofC0 natural neighbor
shape functions.

The computational methodology presented here demonstrates an effective, accurate, and ap-
pealing choice to construct aC1 conforming method for the solution of fourth-order ellip-
tic PDEs.

The research support of NSF grant CMS-9732319 to Northwestern University is gratefully
acknowledged. The first author thanks Professor Gerald Farin for helpful comments on theC1

natural neighbor interpolant.
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