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An irregular lattice model is proposed for simulating quasistatic fracture in softening materials. Lattice
elements are defined on the edges of a Delaunay tessellation of the medium. The dualsVoronoid tessellation is
used to scale the elemental stiffness terms in a manner that renders the lattice elastically homogeneous. This
property enables the accurate modeling of heterogeneity, as demonstrated through the elastic stress analyses of
fiber composites. A cohesive description of fracture is used to model crack initiation and propagation. Numeri-
cal simulations, which demonstrate energy-conserving and grid-insensitive descriptions of cracking, are pre-
sented. The model provides a framework for the failure analysis of quasibrittle materials and fiber-reinforced
brittle-matrix composites.
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I. INTRODUCTION

The use of discrete, one-dimensional elements to repre-
sent structural continua dates back to the work of
Hrennikoff.1 The modern counterparts of such discrete sys-
tems are lattice models, which are composed of simple, one-
dimensional mechanical elements connected on a dense set
of nodal sites that are either regularly or irregularly
distributed.2 These models have their primary justification in
the physical structure of matter at a very small scale, where
material can be seen as a collection of particles in equilib-
rium with their interaction forces. Lattice models have also
been used to study the behavior of a variety of materials at
larger scales, with particular interest in their disorder and
breakdown under loading.2,3

When subjected to loading, the lattice network has elastic
strain energyHsud, whereu=hu1, . . . ,uNj are the general-
ized displacements of theN nodal sites. On minimizingH
with respect tou, a system of equations is obtained, from
which u is determined. The breaking of an element in a
lattice network is based on criteria in terms of element strain,
generalized force, or energy, as determined from the dis-
placement solution. In the classical approach, an element is
removed from the network if it meets the breaking criterion.
The procedure is repeated, where only the most critical ele-
ment is removed for each solution of the equation set. Load-
ing on the network is incremented only after all elements are
within the limits set by the breaking criterion.

Lattice models differ mainly in the manner in which
neighboring nodal sites interact via the lattice elements. With
respect to modeling material fracture, the simplest and one of
the most popular forms of interaction is through central force
sor axiald springs.4–6 A more general form of interaction is
provided by the Born model,7 which includes both axial and
transverse stiffnesses, although this model in not rotationally
invariant. With the introduction of rotational degrees of free-
dom at the element nodes, bond-bending,8 granular, and
Euler-Bernoulli beam9,10 models overcome the deficiency of
the Born model and allow for a more general interaction
between the neighboring sites that, in the limit, relate to a
gradient continuum, such as Mindlin-Toupin or Cosserat

continua. A gradient continuum includes higher-order terms
and an internal length scale, which are absent in the con-
tinuum theory of linear elasticity. By virtue of nodal site
symmetry, lattices formed from regularly positioned nodal
sites can model uniform straining. However, regular lattices
tend to provide low energy pathways for element breaking
and, therefore, can strongly bias the cracking direction. Ir-
regular lattices11,12exhibit less bias on cracking direction and
offer freedom in domain discretization, yet generally do not
provide an elastically uniform description of the material.

In this paper, we utilize beam-type elements in an irregu-
lar lattice model of fracture for quasibrittle materials such as
concrete composites. The scaling of element stiffness terms
is based on a Voronoi discretization of the material domain
and provides an elastically uniform description of the mate-
rial under uniform modes of straining. This Voronoi scaling
was introduced by Christet al.,13 who investigated the pos-
sibility of carrying out quantum field theory computations
using a random lattice. The elastically uniform lattice serves
as a basis for the explicit modeling of heterogeneous fea-
tures, such as inclusions and fibers. Fracture is modeled us-
ing a cohesive description of cracking. Closing pressures as-
sociated with the cohesive crack law blunt the singularity
that would exist at the crack tip in linear elastic fracture
mechanics. This reduces nodal rotations that might otherwise
accentuate differences between theories based on gradient
continua and classical linear elasticity. In contrast to most
lattice models, element breaking is gradual and governed by
rules that provide an energy conserving, objective represen-
tation of fracture through the irregular lattice.

Numerical examples are presented to demonstrate the ac-
curacy and applicability of the lattice model in terms of its
elasticity and fracture properties. These capabilities provide
an effective framework for the modeling of fracture in
heterogeneous materials. For instance, the lattice model pro-
posed herein can serve as a basis for modeling fracture
in fiber-reinforced brittle-matrix composites and in other
multiphase materials when each phase is assumed to be
homogeneous.
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II. DOMAIN DISCRETIZATION

The elastic properties of the material are discretized using
a Voronoi diagram on an irregular set of points.14 By defini-
tion, the Voronoi cell associated with siteI is the set of points
closer to siteI than all other sites in the domainfFig. 1sadg.
The Voronoi partitioning of the material domain is robust and
facilitates a high degree of preprocessing automation. Ad-
vantages of this approach include the ability to do the fol-
lowing:

s1d Explicitly model material structure, such as the
boundaries between two phasesswhich generally do not run
along the grid lines produced by a regular triangular or
square latticed. This can be done by strategically placing
semiregularly spaced points prior to random filling of the
domainfFig. 1sbdg.

s2d Grade average cell sizesgrid point densityd, which
can be advantageous for improving resolution in critical re-
gions of the domain, while reducing computational expense
elsewhere.

s3d Perform adaptive mesh refinement in nonlinear or
time-dependent problems.
In the following, the generator points of the Voronoi diagram
are the lattice sitessnodesd, whereas the edges of the corre-
sponding Delaunay triangulation define the lattice element
connectivitiesfFig. 1sadg. For the planar analyses considered

here, two translational and one rotational degrees of freedom
are defined at each lattice node.

III. LATTICE ELEMENT DESCRIPTION

A. Elasticity model

The lattice element, shown in Fig. 2, consists of a zero-
size spring set that is connected to the lattice nodes via rigid
arms. The spring set is positioned at the midpoint of the
Voronoi edge common to the two nodes. This general ap-
proach has evolved from the rigid-body-spring concept of
Kawai.15,16 Each spring set consists of normal, tangential,
and rotational springs that are defined as local to the com-
mon edge and assigned stiffnesseskn, kt, and kf, respec-
tively. These stiffnesses are simple functions of the distance,
hIJ, between the lattice nodesI and J and the length of the
common Voronoi edge,sIJ,

kn = EAIJ/hIJ,

kt = EAIJ/hIJ, s1d

kf = knsIJ
2 /12,

where AIJ=sIJt, with t being the thickness of the planar
model andE being the elastic modulus of the continuum
material. The systematic scaling of the spring stiffnesses
given in Eq.s1d provides an elastically homogeneous repre-
sentation of the continuum,15,17 which is necessary for the
objective modeling of fracture described later in this work.
The samesIJ /hIJ scaling relation has been used for random
walks on arbitrary sets18 and for solving two-dimensional
and three-dimensional diffusion problems on irregular
grids.19,20 Lattice models are limited in their ability to repre-
sent Poisson effects in linear elasticity, due to the unidirec-
tional structure of the lattice elements. A limited range of
macroscopic Poisson ratios can be modeled by the regular
arrangement of lattice elements or by the adjustment of ele-
ment stiffness coefficients, but a local realization of the Pois-
son effect is not obtained. The proposed model can represent

FIG. 1. sad Dual tessellations of a two-dimensional set of points
and sbd Voronoi diagram partitioning of a multiphase material.

FIG. 2. Basic element of the spring network model.
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a range of macroscopic Poisson ratios by settingkt=akn,
where 0øaø1, but for ktÞkn the material model is not
elastically homogeneous.17 Schlangen and Garboczi10 pro-
vide an alternative approach to obtaining an elastically uni-
form random lattice, which involves the iterative refinement
of the lattice element properties.

Due to the arrangement of its six nodal degrees of free-
dom, the element shown in Fig. 2 is similar to a beam-spring
element with axial stiffness, such as those used by Schlangen
and van Mier21 to model elasticity and brittle fracture at the
material scale. For the special case of a square lattice, the
two approaches provide the same element stiffness
matrices,15 provided thesIJ /hIJ scaling is also used for the
beam element properties. In general, however, the stiffness
formulations are different, partly because the spring set is
located eccentrically to the element axissDelaunay edged so
that elemental axial and rotational stiffness terms are
coupled.

B. Fracture model

One motivation for utilizing lattice models is the explicit
representation of discontinuous material structure at fine
scales, including the simulation of bond breaking in atomic
structures. At coarser resolutions, however, the model repre-
sents the material as a continuum. Heterogeneity is intro-
duced into the network either explicitly or through statistical
variations in the element properties.2 As a fundamental re-
quirement for either case, the lattice formulation must be
able to provide an unbiased representation of fracture
through a homogeneous medium. Consider the discretization
of a two-phase composite shown in Fig. 1sbd. At this scale,
heterogeneity is apparent at the junction of different phases,
whereas each phase by itself is often regarded as a homoge-
neous material. From a modeling perspective, the lattice el-
ements eithers1d correspond to specific features of the ma-
terial structure, such as an interface between different phases
or s2d are not related to any material feature, such as when
representing homogeneous properties within a single phase.
The proposed lattice model is applied to the latter of these
two cases, although the approach can be tailored to treat both
cases.

In this study, modeI cracking is simulated by degrading
the strengths and stiffnesses of the lattice elements, accord-
ing to the crack-band approach.22 The crack-band model is
based on the observation that microcracking, crack branch-
ing, and other toughening mechanisms associated with
cracking occur within a fracture process zone, the width of
which is typically related to the maximum size of the hetero-
geneities. These various crack openings are assumed to be
uniformly distributed over the crack-band width. In the nu-
merical implementation of the model, cracks form and
propagate through the element interiors and the band width
generally conforms to the element size, rather than to the
actual width of the fracture process zonesi.e., the fracture
localizes into the smallest width permitted by the element
discretization of the material domain, provided there is no
artificial locking of the crack opening that might otherwise
cause the crack band to widend. In this sense, the crack-band

model is functionally equivalent to the cohesive crack model,
as considered by Dugdale23 and Barenblatt24 and later ap-
plied to softening materials by Hillerborget al.25 According
to this type of fracture model, separation takes place across a
cohesive zone and is resisted by cohesive tractions. Within
this framework, the physically unrealisticÎr singularity that
arises in linear elastic fracture mechanics26 is avoided. For
brittle materials, the interface traction law can be linked with
the gradual breaking of atomic bonds toward the formation
of a new traction-free surface. The area under the traction-
displacement curve is the specific fracture energy,GF, and
the maximum effective stress,st, the maximum effective
separation,wc, and the shape of the traction-displacement
curve are material parameters. When cohesive tractions di-
minish with increasing separation, the traction-displacement
curve can be referred to as a softening relation.

An important feature of the fracture model is that the
crack band can form at an angleuR to the element axis and
the dimensions of the crack band are determined according
to the local geometry of the Voronoi diagram17 fFig. 3sadg.
The forces carried by the spring sets are known at any stage
of the loading history. An average value of tensile stress can
be calculated from the resultant of this force pair, divided by
the projected area,

sR =
FR

AIJ cosuR
. s2d

To obtain proper fracture energy consumption for different
meshing strategies, strain values characterizing the softening
response are22

FIG. 3. sad Crack-band geometry within an element of the spring
network model andsbd associated softening relation.
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«cr =
w

hIJ cosuR
, s3d

wherew is the crackopening displacement, which is assumed
to be uniformly distributed over the crack-band width of
hIJ cosuR fFig. 3sadg. In essence, modeI cracking is con-
trolled by the shape of the tension-softening diagram and the
fracture energy,GF, which are assumed to be material prop-
erties and thus do not depend on the domain discretization.
The softening diagram, shown in Fig. 3sbd, can be defined by
stress and crack-opening values determined through inverse
analysis of fracture test results.17 After each load increment,
the resultant tensile stress in each spring set is checked
against the softening relation. For a critical spring set, frac-
ture involves an isotropic reduction of the spring stiffnesses
and an associated release of spring forces, so that the result-
ant stress lies on the corresponding softening relation. The
release of spring forces causes an imbalance between the
external and internal nodal force vectors, which often pro-
motes additional fracture within the load step. The process of
partially breaking the single most critical element and then
solving the associated system of linear equations is repeated
within each load step until the fracture criterion is satisfied
throughout the problem domain. Although this process is
computationally demanding, negative stiffness terms are
avoided and zero-energy modes of deformation are not pro-
duced.

IV. NUMERICAL SIMULATIONS

A. Elastic uniformity of irregular lattices

In Fig. 4, quasiuniform and graded discretizations of a
unit square domain are illustrated. For uniform strain condi-
tions imposed on the boundaries, the lattice sites should dis-
place so that uniform strain occurs throughout the lattice.
Regular lattice models, by virtue of site symmetry, exhibit
such elastic uniformity, whereas irregular lattices are gener-
ally not elastically uniform.10

The lattices indicated in Fig. 4 are subjected to both uni-
form stretchingsu1=x1; u2=0d and combined stretching and
shear su1=u2=x1+x2d. The numerical solution accurately
represents the theoretical displacement field, as indicated by
the small relative errors indicated in Table I. The relative
error is defined as

er =
iu − uhi2

iui2
, iui2 =Îo

I=1

N

usxId ·usxId, s4d

wherei ·i2 is theL2 norm of the indicated argument,u anduh

are the exact and numerical solutions, respectively, andN is
the total number of nodes. The networks do not exhibit spu-
rious heterogeneity arising from either random mesh geom-
etry or varying element size. If each of the lattice elements is
assigned a constant area, equal to the average of the Voronoi
facet areasAIJ, then the lattices are not elastically uniform, as
evidenced by the large relative errors given in Table I. In
producing the results for shear loading, rotations of the

Voronoi cells have been constrained for both sets of analyses.
The placement of nodes along the boundaries is only to fa-
cilitate the analyses and is not a requirement here.

B. Elastic analysis of fiber composites

To illustrate the importance of elastic uniformity, we first
consider a short fiber embedded within an irregular lattice
model of a matrix material. A fiber contributes to the stiff-
ness of a lattice element if it crosses the common boundary
of the two Voronoi cellssFig. 5d. To model this stiffness
contribution, a zero-length spring connects the two cells at
the boundary crossing. The spring is aligned in the fiber di-
rection and assigned axial stiffness,

FIG. 4. Irregular lattices.sad Quasiuniform nodal discretization
and sbd graded nodal discretization.
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kf =
Afs fsxcd

shv/coscd«m
, s5d

where Af is the fiber cross-section area,«m is the matrix
strain in the fiber direction,s fsxcd is the fiber axial stress at
the boundary crossing, andc is the angle between the fiber
axis and the direction of loading on the composite. The
spring stiffness is linked to the computational degrees of
freedom, which are defined at the lattice nodes, by assuming
the cells to be rigid. The approach is general in that any
appropriate model relatings fsxcd and«m can be used to de-

terminekf through Eq.s5d. The relation used here, and plot-
ted in Fig. 6sbd, is based on an elastic shear lag theory pro-

posed by Cox,27 in which perfect bonding is assumed
between the fiber and matrix.

In general, fibers cross multiple Voronoi cell boundaries
and therefore contribute to the stiffness and internal force
calculations of multiple lattice elements. Figure 6sad shows a
single, inclined fiber of lengthl f embedded in a homoge-
neous matrix subjected to uniaxial tension. The fiber elastic
modulus isEf =10Em, whereEm is the elastic modulus of the
matrix. For comparisons with Cox’s theory,27 which assumes
a uniform strain in the matrix, the fiber diameter is chosen to
be small relative to the thickness of the matrix. Axial stress
levels in the fiber at each cell boundary crossing are shown
in Fig. 6sbd, where the axial stress has been normalized by
s̄ f =Ef« cos2 c, with « being the strain in the loading direc-
tion. The computed axial stress values agree with theory
when the Voronoi scaling of the lattice stiffness coefficients
is used. The constant-area scaling does not provide an elas-
tically uniform representation of the matrix, and the associ-
ated artificial heterogeneity of the lattice is manifested as
noise in the axial stress profile.

As a second example, we consider a fiber composite with
a random distribution of short fibers. Fibers are randomly
inserted in aa3a square domain with thicknessa/10 fFig.
7sadg. The matrix discretization is shown in Fig. 6sad. The
fiber lengthl f =a/8, fiber diameterf= l f /100,Ef =10Em, and
6 519 fibers are used to achieve a fiber volume fraction of
1%. The composite system is subjected to tensile loading in
the vertical direction and the fiber axial stress valuessfor
each individual fiber at each boundary crossingd are plotted
in Fig. 7sbd. Once again the numerical results for the axial
stress in the fibers are in good agreement with Cox’s
theory.27 Of the 11 497 data points shown in Fig. 7sbd, a few
stress values differ from the theoretical predictions, since
nonuniformity and the discrete nature of the fiber distribution
causes variations in the stiffness and therefore fluctuations in
strain. Similarly, good agreement with theory is obtained for
severalfold increases in the fiber volume fraction, although
for much higher fiber contentssor for significantly larger
fibers relative to the domain thicknessd, the heterogeneity
more strongly affects straining of the matrix and therefore
the axial strain profiles of the fibers. The modeling of local
interaction effects between the fibers is approximate, and
therefore the physical interpretation of the results also be-
comes difficult for high volume fractions of fibers.

C. Fracture of uniaxial tension specimen

The lattice model is used to simulate fracture in a rectan-
gular panel of homogeneous material under uniaxial tensile

TABLE I. Relative errorser for uniform strain loading.

Boundary
conditions

Quasiuniform mesh Graded mesh

Voronoi scaling AIJ=AIJ Voronoi scaling AIJ=AIJ

u1=x1 1.25310−7 4.41310−2 5.46310−8 8.68310−2

u2=0

u1=x1+x2 1.602310−7 3.640310−2 1.191310−7 7.610310−2

u2=x1+x2

FIG. 5. sad Lattice element with fiber inclusion andsbd fiber
contribution to element stiffness.
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loading. The panel has cross-section areaA and the softening
properties of the material are shown in Fig. 3sbd. Figure 8
shows a Voronoi discretization of the panel. For imposed
relative displacementd between the two ends of the speci-
mensand reactive forcePd, stresssR is determined for each
lattice element per Eq.s2d; for each element,sR has magni-
tude P/A and acts in the direction of the axial load. With
increasing axial load,sR reaches the tensile strengthst in all
elements simultaneously. Only a small reduction of thest
value is needed to initiate fracture at any specific location.
For a perturbation of 1310−7st in the tensile strength of the
element atA or B sFig. 8d, fracture initiates at those loca-
tions. From the point of crack initiation, fracture propagates
through the cross section and the material separatesfFigs.
9sad and 9sbdg. From these plots, it appears that cracking is
constrained to follow the intercell boundaries. However, as
discussed in Sec. III B, fracture is distributed within the lat-
tice elements and the direction of fracture is not constrained
by the discretization. In Fig. 10, average stresss=P/A and
axial displacementd have been normalized to better indicate
that the cohesive softening curvefFig. 3sbdg, used as input to
the model, is manifested at the structural scale. The separa-
tion process involves only two nodes per element; this facili-
tates the transition from continuous to discontinuous behav-
ior and avoids significant stress locking.

If the crack band is constrained to form normal to the
element axis, as would be the case for a central force spring
lattice, the model response is not a direct reflection of the
softening curve. There are two main sources of error:s1d the
magnitude of the stress component aligned with the element
axis, sn=Fn/AIJ, is less than the average axial stresss
=P/A, unless the element is aligned with the direction of
tensile loading, ands2d after fracture initiation, the compo-
nent of crack opening in the direction of the element axis is
smaller than that in the direction of loading. These two

sources of error combine to produce excess strength and en-
ergy consumption, as indicated by the broken line in Fig. 10,
which can be viewed as a form of stress locking. In this case
fFig. 9scdg, fracture initiation does not occur at the point of
reduced strength, which happens to be the element at loca-
tion B. Furthermore, elements at different locations partially
fracture prior to localization and ultimate failure along the
path shown in Fig. 9scd. Even in most classical lattice
approaches,2 where, upon violation of the fracture criteria,
the element is completely removed, the first of these sources
of error would still be present. The sensitivity to fluctuations
in strength, provided by the elastically uniform material
model and thesR stress measure, is a prerequisite to analyses
based on the statistical assignment of strength values.

D. Fracture of three-point bend specimen

The lattice model is used to simulate the three-point bend
test illustrated in Fig. 11. The specimen has dimensionsL
=300 mm,d=100 mm,,=d/2, and a uniform thickness of
100 mm. For an actual concrete mix, the physical test28 pro-
vided the load versus crack mouth opening displacement
sCMODd response shown in Fig. 12. Using the regular,
straight-line discretization of the potential crack path be-
tween the prenotch tip and load application pointfFig.
11sbdg, an inverse analysis based on a Levenburg-Marquardt
minimization algorithm provided the softening relation pa-
rameterssst=4.12 MPa, wc=0.154 mm, b=0.247, andh
=0.118d. These softening parameters were then used in a
forward analysis to obtain the corresponding load versus
CMOD curve in Fig. 12. Differences between the experimen-
tal result and the inverse fitting are due, in part, to the use of
a bilinear softening relation, which is assumed to be constant
during fracture through the ligament length. The dimensions
of the three-point bend specimen, boundary conditions, and

FIG. 6. sad Inclined fiber in a homogeneous matrix andsbd axial stress along fiber.
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specific fracture energy of the material preclude the appear-
ance of instability in the global load versus CMOD response.
The solution process can accommodate instabilityssuch as
snap backd in the specimen response by advancing and/or
retracting the load point displacements so that the material
fracture criterion is precisely followed.

Using the same set of softening parameters, forward
analyses are repeated for two different semirandom, irregular
discretizations of the ligament length. The deformed mesh at
a near-final stage in the loading history for one of the analy-
ses is shown in Fig. 13. The resulting load versus CMOD
plots is also given in Fig. 12. The main observation is that
mesh size and irregular geometry do not appreciably influ-
ence cracking behavior and, therefore, the resulting load-
displacement curves agree well.

To help illustrate the consequences of theAIJ /hIJ scaling
of the stiffness and crack-band dimensions, two variations
are made.

s1d The lattice elements in the fracture ligament region
are assigned a constant area, equal to the average of the
Voronoi facet areas over the same region. For this case, the
initial slope of the load-CMOD diagram is nearly the same,
whereas the remainder of the curve is in fair agreement with
the previous resultssFig. 14d.

s2d As for the uniaxial tension test simulation, the crack
band is constrained to form normal to the element axissi.e.,
sn=Fn/AIJ is used to guide fractured. For this case, the glo-
bal response curve is too toughsFig. 14d. Schlangen and
Garboczi29 have noted a strong directional dependence of the
fracture properties of regular lattices when employing this
type of normal force fracture criterion.

From these results, it appears that the scaling of the ele-
ment stiffness terms and the condition of elastic uniformity
are of secondary importance when compared to the influence
of the element-breaking rules. However, the performance
evaluation of the different models should not be based on the
global load versus CMOD results alone. The following sec-
tion focuses on the performance of each model in terms of
the rate and variation of energy consumption along the crack
trajectory.

E. Energy conservation in crack growth processes

As is common for lattice models, only one lattice element
is modified per computational cycle. The energy associated

FIG. 7. Analysis of random fiber composite.sad Fiber distribu-
tion andsbd axial stress along fibers.

FIG. 8. Voronoi discretization of uniaxial tension test
specimen.

FIG. 9. Failure patternssad CaseA, sbd caseB, and scd caseB
usingsn fracture criterion.

FIG. 10. Normalized load versus displacement relations for
simulated uniaxial tension test.
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with the breaking of an element can be computed from the
changes in reactive force at the load points, whose displace-
ments are controlled through a finite stiffness device. The
cumulative amount of energy consumed by each lattice ele-
ment is obtained, so that the distribution of local energy con-
sumption can be viewed at any load stage. The total amount
of energy assigned to the breaking elements is equal to the
difference between the area under the global force versus
displacement curve and the elastic strain energy stored in the
system.

In Fig. 15, we depict the maps of specific fracture energy
consumption,gF, along the ligament length for the regular
and two irregular discretizations of the ligament region. The
energies correspond to a near-final stage in the loading his-
tory and have been normalized byGF, the area under the
bilinear softening diagramfFig. 3sbdg. As expected, the regu-
lar discretization of the ligament produces uniform energy
consumption along the crack trajectory. The ratiogF /GF de-
creases near the top of the ligament length, sincew becomes
less thanwc and tends to zero when approaching the neutral
axis of bending. For the random geometry analysis, the en-
ergy distributions are nearly uniform along the principal
crack trajectory, with gF /GF<1.0. Crack propagation
through the random mesh produces nearly the same results as
crack propagation along a smooth, predefined pathway. This
is desirable in that network random geometry does not rep-

resent any structural features within the material. The simu-
lated uniaxial tension test discussed earlier also exhibits a
uniform distribution ofgF /GF<1.0 over the fracture surface.

When using a constant area,AIJ, for each lattice element
in the ligament region, it is clear that local energy con-
sumption does not follow that prescribed by the softening
relation fFig. 16sadg. For elements withAIJ.AIJ, the ratio
gF /GF,1, whereas for elements withAIJ,AIJ, the converse
is true. This tendency forgF /GF to be on either side of unity
provides reasonable global load-displacement results, as seen
earlier in Fig. 14. When constraining fracture to form normal
to the element axisssn criteriond, however,gF /GFù1 for all
cracks withwùwc fFig. 16sbdg, resulting in overstrength and
excess energy consumption in the structural response. The
stress locking is more pronounced, relative to that seen for
the uniaxial tension specimen, since the fracture path from
the prenotch tip includes elements that are significantly in-
clined to the loading direction. For the uniaxial tension test,
there are low energy pathways available, where the elements
are closely aligned with the loading direction. In these simu-
lations, there is a temptation to associate the nonuniform
distribution of energy consumption with heterogeneous fea-
tures present in the material. However, the effects of this
artificial heterogeneity can be severe and bear no relation to
the actual material features.

F. Fracture of fiber-reinforced brittle-matrix composites

The irregular lattice serves as a framework for modeling
the fracture of fiber-reinforced brittle-matrix composites.
Discontinuous, short fibers are added to brittle matrix mate-
rials to provide additional toughness after matrix fracture.
The increase in toughness is due to debonding along the
fiber-matrix interface, followed by frictional pullout of the
fibers traversing an opening matrix crack.30 Various types of
fibers are used, depending on the application, with the fiber

FIG. 11. sad Three-point bend test specimen and dimensions and
sbd Voronoi discretization for inverse analysis of softening
parameters.

FIG. 12. Experimental curve and forward analysis runs.

FIG. 13. Mesh for simulating fracture in three-point bend
test.

FIG. 14. Influence of discretization and fracture criterion on
specimen response.
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dosages ranging up to several percent by volume of the com-
posite, which is a practical limit for achieving uniform dis-
persions of fibers with high aspect ratios.

Prior to matrix fracture, fiber contributions to composite
stiffness and strength are modeled using elastic-shear lag
theory, as described in Sec. IV B. At the onset of matrix
fracture, fibers that cross the developing crack are identified,
and the associated springs at the crossing locationsfFig.
5sbdg are modified as follows. Considering equilibrium and
compatability conditions, the axial stiffness of a modified
spring is based on a composite pulloutsi.e., axial force ver-
sus pullout displacementd curve, which is derived from the
pullout relations for the embedded fiber lengths to each side
of the spring. The crack opening is modeled as the separation
between adjacent Voronoi cells at the fiber-crossing location.
The spring aligns with the point of entry of the fiber into
each Voronoi cell. With continued crack opening, the shorter
embedded length eventually pulls out, whereas the other end

of the fiber unloads after peak fiber load. The pullout rela-
tions for each embedded length are derived from the consti-
tutive properties of the matrix-fiber interfacefshown in Fig.
17sad, whereta andt f indicate adhesional and constant fric-
tional bond strengths, respectivelyg. Slip hardening or fric-
tional decay along the matrix-fiber interface can be consid-
ered in the modeling approach. In addition, the spring
element is augmented with a beam-spring component to
model the flexural and shear properties of the fiber, which
become active after fracture initiation. This lumping of the
fiber postcracking behavior into a nonlinear spring bridging
the crack is valid, provided the fiber crosses only one crack,
which is the case in most applications.

Assuming constantt f =ta for the fiber-matrix interface,
the direct pullout of a single embedded length from the ir-
regular lattice yields the plot of axial forcesat the load pointd
versus pullout displacement shown in Fig. 17sbd. The peak
load is equal toP0=pflet f, wherele is the embedded length.

FIG. 15. Crack trajectories and
local energy consumption.sad
Regular discretizationsbd irregu-
lar discretizationscase Id and scd
irregular discretizationscase IId of
the ligament length.
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Within the figure inset, the numerical solution is compared
with theory31 for the initial part of the curve that is primarily
affected by fiber debonding, i.e., the loss of perfect bond.
After peak load, the fiber is completely debonded and the
axial force declines linearly due to the loss of embedded
length as the fiber is pulled out from the matrix.

To demonstrate and verify the modeling procedure for
multiple fiber composites, short fibers are randomly posi-

tioned within an irregular lattice model of a uniaxial tension
test specimen. The Voronoi discretization of thea35a rect-
angular domainswith thicknessa/2d and the model bound-
ary conditions are as previously shown in Fig. 8. The fiber
length l f =a/2, fiber diameterf= l f /100,Ef =2Em, and 2547
fibers are used to achieve a fiber volume fraction of 1%. The
matrix-fiber interface is assigned constant bond strength,t
=ta=t f, and t /st=1. Fiber axial strength is assumed to be
greater than the maximum pullout strengths0.5pfl ft fd, so
that tensile rupture of the fibers is avoided, which is normally
the material design objective.

For the same lattice geometry, three different random re-
alizations of the fiber distribution are considered, providing
the three global response curves shown in Fig. 18, wheren is
the number of fibers bridging the crack andle is the corre-
sponding average embedded length. The load-displacement
response is linear until the onset of matrix fracture, after
which the toughening actions of the fibers are mobilized. The
response curves are normalized by the mathematically ex-
pected postcracking strength,

Pe = sn̄pfl f/4dt f , s6d

where n̄ is the average ofn for the three simulations. The
scatter in the results is caused by the differences inn and the
differences in the distribution of embedded lengths about the
expected average ofl f /4, both of which are due to random
variation in the fiber positions. The load-free crack condition
occurs at an axial displacement ofl f /2, which corresponds to
the maximum possible embedded length. As the post-
cracking strength is significantly less than the first cracking
strength of the composite, a single crack forms, followed by
fiber pullout, as shown in Fig. 19. Nonuniformity of the fiber
distribution causes variation in the load carried by the ma-
trix; therefore the crack location differs for each of the three
simulations.

V. CONCLUSION

In this paper, we have described an irregular lattice model
that is suitable for simulating fracture in quasibrittle materi-
als, such as concrete, rock, and other geomaterials. This
model differs from previous lattice models in several re-
spects.

FIG. 16. Crack trajectories and local energy consumption.sad
Constant element areasAIJ=Ād andsbd axial stress fracture criterion
ssn=Fn/AIJd.

FIG. 17. sad Constitutive relations for the fiber-matrix interface
and sbd axial load versus pullout displacement for a single fiber.

FIG. 18. Axial load versus displacement curves for three nomi-
nally identical fiber-reinforced brittle matrix composites.
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s1d Lattice geometry is based on a Voronoi discretization
of the material domain, allowing effective gradations of
nodal point density. The Voronoi diagram provides scaling
rules for the elemental stiffness relations, so that the irregular
lattice is elastically homogeneous under uniform modes of
straining. The elastically uniform lattice serves as a basis for
the explicit modeling of heterogeneous features, such as
short fibers.

s2d Fracture is modeled using a crack-band approach,
where the crack band can form at arbitrary angles to the axes
of the lattice elements. The dimensions of the crack band and
the softening relation are also defined by the local geometry
of the Voronoi diagram. Fracture localizes into the narrowest
band permitted by lattice discretization and, therefore, the
model can also be regarded as a cohesive zone representation
of fracture.

s3d The crack-band representation of fracture involves an
incremental softening of the lattice elements, according to
the prescribed traction-displacement relation. This is in con-
trast to the conventional approach in which elements are
completely removed from the lattice upon violating the frac-
ture criterion.

s4d The fracture model is objective with respect to the
irregular geometry of the lattice. During simulated fracture
testing of a uniaxial tension specimen and a notched concrete
beam, uniform fracture energy is consumed along the crack

trajectory regardless of the mesh geometry. The common ap-
proach of assigning equal areas to the lattice elements, and
the use of element axial forces to define the fracture criteria,
leads to strongly nonuniform specific energy consumption
along the crack path that, on the average, is much higher than
that prescribed through the cohesive traction-displacement
relation. Although disordered materials exhibit fluctuations
in specific energy consumption as the fracture process ad-
vances, the fluctuations exhibited by the common lattice ap-
proach can be extreme and can bear no connection to the
physical processes. This form of stress locking leads to over-
strength and excess energy consumption in the global load-
displacement response.

The fracture simulations presented in this paper involved
statistically homogeneous softening materials as well as
fiber-reinforced brittle-matrix composites. In the former case,
the various sources of energy consumption during fracture
were represented by a cohesive law. A similar approach can
be applied in the fracture analysis of multiphase materials
where each phase is assumed to be homogeneous. In the
latter case, the stiffness, strength, and toughening mecha-
nisms of individual fibers were explicitly represented within
the material model. This enables the quantification and study
of the effects of nonuniform fiber distributions on composite
performance measures, such as postcracking strength and
toughness. The explicit modeling of material structure, and
its relations to system breakdown and failure, is a long-term
objective of this research.
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