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ABSTRACT: In this paper, meshless methods and partition of unity based finite element methods are
reviewed. In meshless methods, the approximation is built without the explicit connectivity information be-
tween the nodes; moving-least squares approximants and natural neighbor-based interpolants are discussed.
The enrichment of the finite element approximation through the partition of unity framework is described,
and recent advances in crack modeling are summarized.
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1 INTRODUCTION

With an aim towards alleviating the need for mesh
re-generation in moving boundary (such as crack
growth) and large deformation problems, there has
been significant interest in the development and ap-
plication of meshless or meshfree methods. The im-
petus in this direction emanated from the work by
Nayroles and co-workers who proposed the diffuse ele-
ment method (DEM) [1] in 1992, and since then there
have been many new developments to this class of
Galerkin methods. A detailed discussion and com-
parison of different meshless and particle methods
can be found in References [2, 3]. The meshless
paradigm has provided new insights into the finite ele-
ment method [4, 5], and also brought out the intimate
link between scattered data approximation, computa-
tional geometry, and the numerical solution of PDEs.
In particular, the partition of unity framework [4] is a
powerful technique to model discontinuities and sin-
gularities through local enrichment within a finite el-
ement setting. Level set and fast marching methods
(FMM) [6] are well-known interface-capturing tech-
niques in which the interface is represented as the zero
level contour of a function (level set) of one higher-
dimension. The coupling of partition of unity tech-
niques to level set methods is an appealing means to
carry out geometric computations, evaluate enrich-
ment functions (especially in 3-d), and to evolve in-

terfaces on a fixed finite element mesh.

2 MESHLESS METHODS

Given a set of scattered nodes in �d (d =1–3) with
prescribed nodal data, a surface approximation can
be constructed without the need for any (finite el-
ement) a priori connectedness information between
the nodes. This viewpoint is adopted in meshless
Galerkin methods, where well-known methods from
data approximation theory [7, 8] are used to construct
the trial and test spaces. We first touch upon moving
least squares (MLS) approximants [7] that are used in
the Element-Free Galerkin (EFG) method as well as
in many of the other meshless methods [3], and then
discuss natural neighbor-based interpolant schemes.
In the MLS approximation, the trial function uh for
a scalar-valued function u is written as [2]

uh(x) =
m∑

j=1

pj(x)aj(x) ≡ pT (x)a(x) , (1)

where m is the number of terms in the basis function
vector p, and aj are coefficients which are found by
minimizing the quadratic functional J :

J(x) =
n∑

I=1

wI (x)[pT (xI)a(x) − uI ]
2 , (2)

where wI(x) ≡ w(x − xI) ≥ 0 is a weight function
with compact support. On taking the extremum of J



and after some simplification, we obtain

uh(x) =
n∑

I=1

φI(x)uI , (3)

where uI are nodal parameters and the EFG shape
functions are given by

φI(x) =
m∑

j=1

pj(x)[A−1(x)B(x)]jI . (4)

Since φI(xJ) �= δIJ , the shape functions do not inter-
polate nodal data, which complicates the imposition
of essential boundary condition in a Galerkin method.
In the above equation, the matrices A (moment ma-
trix) and B are given by

A(x) =
n∑

I=1

wI(x)p(xI)p
T (xI) ,

B(x) = [ w1(x)p(x1), . . . , wn(x)p(xn) ] . (5)

For smooth basis functions, the shape functions in-
herit the continuity of the weight function. This prop-
erty provides a simple means to construct Ck (k ≥ 0)
trial and test approximations.

In the EFG method, each node is associated with
a domain of influence, which is the support of the
weight function wI(x), with wI(x) > 0 in its inte-
rior and wI(x) = 0 outside it. Typically, domains
of influence are circular or rectangular in 2-d, and
Gaussian or polynomial (spline) weight functions are
used [2]. The approximant used in the reproducing
kernel particle method also bears close affinity to the
MLS-scheme [3].

The notion of natural neighbors that was intro-
duced by Sibson [8] is an attractive alternative to
MLS approximants. The Sibson [8] and the Laplace
[9] interpolants are both based on natural neigh-
bors. The definition of natural neighbors relies on
the Voronoi diagram of a nodal set. For ease of ex-
position, we restrict our attention to two-dimensions.
The Voronoi diagram partitions a set of nodes into
regions such that any point within the (first-order)
Voronoi cell V(nI) is closer to node nI than to any
other node. In Fig. 1, a set of seven nodes is shown,

and the Voronoi diagram and its dual (Delaunay tri-
angulation) are also indicated. A point p is intro-
duced into the domain Ω. Now, the Voronoi diagram
for p along with the seven nodes is constructed. If
p and node nI have a common Voronoi facet, then
node nI is said to be a natural neighbor of the point
p [8]. In Fig. 1, the point p has five natural neighbors
(filled circles).

The Sibson shape function of p with respect to a
natural neighbor I is defined as the ratio of the area
of the second-order Voronoi cell (AI) to the total area
A of the Voronoi cell of p:

φI(x) =
AI(x)

A(x)
, A(x) =

n∑
J=1

AJ(x), (6)

where n = 5 and A is the polygonal (dotted line)
area associated with p (Fig. 1). Let sI be the length
of the Voronoi facet, and hI = d(x,xI) the distance
between p and node I. The Laplace shape function
for node I is defined as [9]:

φI(x) =
αI(x)

n∑
J=1

αJ(x)
, αJ(x) =

sJ(x)

hJ(x)
. (7)

The Sibson and Laplace shape functions are non-
negative (φI ≥ 0), interpolate nodal data, and can ex-
actly reproduce a linear field (linearly complete) [10].
As opposed to MLS approximants, the construction
of these shape functions is purely geometric with no
user-defined (such as the weight function w or its sup-
port size) parameters involved in its definition, and
a robust approximation is realized for non-uniform
nodal discretizations in multi-dimensions. The sup-
port of shape functions based on natural neighbor and
MLS-schemes is shown in Fig. 2. Consider the weak
form for the Laplace equation:

∫
Ω

∇u · ∇v dΩ = 0.
From Fig. 2, we can infer that accurate numerical
integration of the weak form is an issue in meshless
methods, since the intersection of shape function sup-
ports do not coincide with the integration (triangu-
lation or quadrangulation) cells. In [11], an overview
of natural neighbor-based Galerkin methods with ap-
plications in solid and fluid mechanics is presented.
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Figure 1: Sibson and Laplace shape functions.
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Figure 2: Support of meshless shape functions.

3 PARTITION OF UNITY FINITE ELEMENTS

Finite element and meshless shape functions form a
partition of unity (sum to unity). This realization has
led to the development of partition of unity methods:
in [4], the finite element shape function is used as the
partition of unity, whereas in [5], the MLS approx-
imant is adopted. The partition of unity finite ele-
ment method (PUFEM) [4] is a generalization of the
standard Galerkin finite element method, and pos-
sesses certain distinct advantages and improvements
over previous developments in meshless methods and
in p-adaptive and enriched finite elements. In finite
elements, a basis function NI is associated with node
I in the mesh. Let ωI denote the region of support
for NI : ωI = {x : NI(x) > 0} (see Fig. 3b). The
partition of unity approximation for a scalar-valued
function u can be written in the general form [4]:

uh(x) =
N∑

I=1

NI(x)

(
M∑

J=1

ψJ(x)aI
J

)
, (8)

where ψJ(x) are enrichment functions, and aI
J are un-

known coefficients that are associated with: (1) node
I; (2) the enrichment function ψJ ; and (3) a specific
geometric entity (hole, corner, crack, or an interface).
From Eq. (8), we note that the classical finite ele-
ment space

(
ψ1 ≡ 1; ψJ = 0 (J �= 1)

)
is a sub-space

of the enriched space. A standard Galerkin proce-
dure is used to obtain the discrete equations, and the
symmetry and sparsity of the stiffness matrix are also
retained.

The partition of unity framework satisfies a few
key properties that renders it a powerful tool for lo-
cal enrichment within a finite element setting: (1) can
include application-specific basis functions to better
approximate the solution; (2) automatic enforcement
of continuity (conforming trial and test approxima-
tions); and (3) line- and surface-discontinuities can
be handled without the need for the discontinuous
surfaces to be aligned with the finite element mesh.

To fix ideas, we consider a simple 1-d Laplace
problem in Ω = Ω1 ∪ Ω2 = (−1, 0) ∪ (0, 1) with a
jump discontinuity �u� = 1 at x = 0. The bound-
ary conditions are such that the exact solution is:
u(x) = 0 in Ω1 and u(x) = 1 in Ω2. We divide the
domain into five nodes and enrich the middle node by
a discontinuous function that is unity in Ω2 and zero
otherwise. Since a discontinuous function is embed-
ded in the trial space, we recover the exact solution
(Fig. 3a). In general, nodes whose shape function
support intersect the point or surface of discontinu-
ity need to be enriched. In 2-d, the enriched nodes
for a circular interface are shown in Fig. 3b.
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Figure 3: Jump discontinuity. (a) 1-d; (b) 2-d.
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With the above backdrop, we summarize some
of the recent advances in crack modeling within the
partition of unity framework. A notable use of the
discontinuous function within a partition of unity
method has been for 2-d and 3-d crack growth mod-
eling without the need for any re-meshing [12, 13];
the implementation was referred to as the extended
finite element method (X-FEM). For crack modeling
in isotropic linear elasticity, a discontinuous function
and the two-dimensional asymptotic crack-tip dis-
placement fields are used to account for the crack,
whereas in [14], the asymptotic near-tip fields for an
interfacial crack are used for 2-d bimaterial interfacial
crack problems. For monotonically advancing (crack)
fronts, the use of a combined X-FEM/FMM method
[15] holds promise for automated 3-d crack growth
simulations.

4 CONCLUSIONS

We reviewed MLS- and natural neighbor-based
meshless methods. The positive attributes in the
latter were the ease of imposing essential boundary
conditions, and the construction of robust approx-
imations at a relatively low cost. It is simpler to
construct Ck trial spaces using MLS approximants.
Mathematical analysis of meshless methods in multi-
dimensions is required to both, better understand its
limitations, and to realize its full potential. Partition
of unity methods are clearly superior when discontin-
uous phenomena, singularities, or small-scale features
need to be captured on a coarse mesh. The partition
of unity framework is particularly advantageous in
2-d and 3-d crack growth modeling, and clearly su-
percedes meshless methods such as EFG which have
had limited success in 3-d [16].
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[12] N. Moës, J. Dolbow, and T. Belytschko. A finite
element method for crack growth without remesh-
ing. International Journal for Numerical Methods
in Engineering, 46(1):131–150, 1999.

[13] N. Sukumar, N. Moës, B. Moran, and T. Be-
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