Next: About this document ...
Up: A Note on Natural
Previous: Acknowledgements
- 1
-
R. Sibson.
A vector identity for the Dirichlet tesselation.
Mathematical Proceedings of the Cambridge Philosophical
Society, 87:151-155, 1980.
- 2
-
R. Sibson.
A brief description of natural neighbor interpolation.
In V. Barnett, editor, Interpreting Multivariate Data, pages
21-36, Chichester, 1981. John Wiley.
- 3
-
D. F. Watson.
Contouring: A Guide to the Analysis and Display of Spatial
Data.
Pergamon Press, Oxford, 1992.
- 4
-
P. Alfeld.
Scattered data interpolation in three or more variables.
In T. Lyche and L. L. Schumaker, editors, Mathematical Methods
in Computer Aided Geometric Design, pages 1-34, San Diego, 1989. Academic
Press.
- 5
-
G. M. Voronoi.
Nouvelles applications des paramètres continus à la
théorie des formes quadratiques. deuxième Mémoire: Recherches
sur les parallélloèdres primitifs.
J. Reine Angew. Math., 134:198-287, 1908.
- 6
-
B. Delaunay.
Sur la sphère vide. A la memoire de Georges Voronoi.
Izv. Akad. Nauk SSSR, Otdelenie Matematicheskih i Estestvennyh
Nauk, 7:793-800, 1934.
- 7
-
F. Preparata and M. Shamos.
Computational Geometry: An Introduction.
Springer-Verlag, New York, N.Y., 1985.
- 8
-
J. O'Rourke.
Computational Geometry in C.
Cambridge University Press, 1994.
- 9
-
M. Sambridge, J. Braun, and H. McQueen.
Geophysical parameterization and interpolation of irregular data
using natural neighbors.
Geophysical Journal International, 122:837-857, 1995.
- 10
-
J. Braun and M. Sambridge.
A numerical method for solving partial differential equations on
highly irregular evolving grids.
Nature, 376:655-660, 1995.
- 11
-
B. N. Boots.
Voronoi (Thiessen) Polygons.
Geo Books, Norwich, UK, 1986.
- 12
-
A. Okabe, B. Boots, and K. Sugihara.
Spatial Tessellations: Concepts and Applications of Voronoi
Diagrams.
John Wiley & Sons, Chichester, England, 1992.
- 13
-
F. Aurenhammer.
Voronoi diagrams -- a survey of a fundamental geometric data
structure.
ACM Transactions on Mathematical Software, 23:469-483, 1996.
- 14
-
T. Belytschko, Y. Y. Lu, and L. Gu.
Element-free Galerkin methods.
International Journal for Numerical Methods in Engineering,
37:229-256, 1994.
- 15
-
J. B. Lasserre.
An analytical expression and an algorithm for the volume of a convex
polyhedron in .
Journal of Optimization Theory and Applications,
39(3):363-377, 1983.
- 16
-
D. F. Watson.
nngridr: An implementation of natural neighbor interpolation.
David Watson, 1994.
- 17
-
D. F. Watson.
Computing the -dimensional Delaunay tessellation with
application to Voronoi polytopes.
The Computer Journal, 24(2):167-172, 1981.
- 18
-
S. Fortune.
A sweepline algorithm for Voronoi diagrams.
Algorithmica, 2:153-174, 1987.
- 19
-
C. B. Barber, D. P. Dobkin, and H. T. Huhdanpaa.
The Quickhull algorithm for convex hull.
ACM Transactions on Mathematical Software, 22:469-483, 1996.
- 20
-
C. B. Barber and H. T. Huhdanpaa.
Qhull (Computer Program).
Available at http://www.geom.umn.edu/software/qhull/, The
Geometry Center, University of Minnesota, 1300 South Second Street,
Minneapolis, MN 55454, 1994.
- 21
-
C. L. Lawson.
Software for surface interpolation.
In J. R. Rice, editor, Mathematical Software III, volume 3, New
York, N.Y., 1977. Academic Press.
- 22
-
G. Strang and G. Fix.
An Analysis of the Finite Element Method.
Prentice-Hall, Englewood Cliffs, N.J., 1973.
- 23
-
B. Donning.
Meshless methods for shear-deformable beams and plates.
Master's thesis, Northwestern University, 1997.
N. Sukumar