next up previous
Next: About this document ... Up: A Note on Natural Previous: Acknowledgements

Bibliography

1
R. Sibson.
A vector identity for the Dirichlet tesselation.
Mathematical Proceedings of the Cambridge Philosophical Society, 87:151-155, 1980.

2
R. Sibson.
A brief description of natural neighbor interpolation.
In V. Barnett, editor, Interpreting Multivariate Data, pages 21-36, Chichester, 1981. John Wiley.

3
D. F. Watson.
Contouring: A Guide to the Analysis and Display of Spatial Data.
Pergamon Press, Oxford, 1992.

4
P. Alfeld.
Scattered data interpolation in three or more variables.
In T. Lyche and L. L. Schumaker, editors, Mathematical Methods in Computer Aided Geometric Design, pages 1-34, San Diego, 1989. Academic Press.

5
G. M. Voronoi.
Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième Mémoire: Recherches sur les parallélloèdres primitifs.
J. Reine Angew. Math., 134:198-287, 1908.

6
B. Delaunay.
Sur la sphère vide. A la memoire de Georges Voronoi.
Izv. Akad. Nauk SSSR, Otdelenie Matematicheskih i Estestvennyh Nauk, 7:793-800, 1934.

7
F. Preparata and M. Shamos.
Computational Geometry: An Introduction.
Springer-Verlag, New York, N.Y., 1985.

8
J. O'Rourke.
Computational Geometry in C.
Cambridge University Press, 1994.

9
M. Sambridge, J. Braun, and H. McQueen.
Geophysical parameterization and interpolation of irregular data using natural neighbors.
Geophysical Journal International, 122:837-857, 1995.

10
J. Braun and M. Sambridge.
A numerical method for solving partial differential equations on highly irregular evolving grids.
Nature, 376:655-660, 1995.

11
B. N. Boots.
Voronoi (Thiessen) Polygons.
Geo Books, Norwich, UK, 1986.

12
A. Okabe, B. Boots, and K. Sugihara.
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams.
John Wiley & Sons, Chichester, England, 1992.

13
F. Aurenhammer.
Voronoi diagrams -- a survey of a fundamental geometric data structure.
ACM Transactions on Mathematical Software, 23:469-483, 1996.

14
T. Belytschko, Y. Y. Lu, and L. Gu.
Element-free Galerkin methods.
International Journal for Numerical Methods in Engineering, 37:229-256, 1994.

15
J. B. Lasserre.
An analytical expression and an algorithm for the volume of a convex polyhedron in $ {R}^n$.
Journal of Optimization Theory and Applications, 39(3):363-377, 1983.

16
D. F. Watson.
nngridr: An implementation of natural neighbor interpolation.
David Watson, 1994.

17
D. F. Watson.
Computing the $ n$-dimensional Delaunay tessellation with application to Voronoi polytopes.
The Computer Journal, 24(2):167-172, 1981.

18
S. Fortune.
A sweepline algorithm for Voronoi diagrams.
Algorithmica, 2:153-174, 1987.

19
C. B. Barber, D. P. Dobkin, and H. T. Huhdanpaa.
The Quickhull algorithm for convex hull.
ACM Transactions on Mathematical Software, 22:469-483, 1996.

20
C. B. Barber and H. T. Huhdanpaa.
Qhull (Computer Program).
Available at http://www.geom.umn.edu/software/qhull/, The Geometry Center, University of Minnesota, 1300 South Second Street, Minneapolis, MN 55454, 1994.

21
C. L. Lawson.
Software for $ {C}^1$ surface interpolation.
In J. R. Rice, editor, Mathematical Software III, volume 3, New York, N.Y., 1977. Academic Press.

22
G. Strang and G. Fix.
An Analysis of the Finite Element Method.
Prentice-Hall, Englewood Cliffs, N.J., 1973.

23
B. Donning.
Meshless methods for shear-deformable beams and plates.
Master's thesis, Northwestern University, 1997.



N. Sukumar