Bibliography

1
C. E. Shannon.
A mathematical theory of communication.
The Bell Systems Technical Journal, 27:379-423, 1948.

2
S. Kullback.
Information Theory and Statistics.
Wiley, New York, NY, 1959.

3
E. T. Jaynes.
Information theory and statistical mechanics.
In K. Ford, editor, Statistical Physics: The 1962 Brandeis Lectures, pages 181-218, New York, 1963. W. A. Benjamin.

4
J. E. Shore and R. W. Johnson.
Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy.
IEEE Transactions on Information Theory, 26(1):26-36, 1980.

5
E. T. Jaynes.
Information theory and statistical mechanics.
Physical Review, 106(4):620-630, 1957.

6
T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl.
Meshless methods: An overview and recent developments.
Computer Methods in Applied Mechanics and Engineering, 139:3-47, 1996.

7
S. N. Atluri and S. Shen.
The Meshless Local Petrov-Galerkin (MLPG) Method.
Tech Science Press, Encino, CA, 2002.

8
G. R. Liu.
Mesh Free Methods: Moving Beyond the Finite Element Method.
CRC Press, Boca Raton, FL, 2003.

9
S. Li and W. K. Liu.
Meshfree Particle Methods.
Springer-Verlag, New York, NY, 2004.

10
T. P. Fries and H. G. Matthies.
Classification and overview of meshfree methods.
Technical Report Informatikbericht-Nr. 2003-03, Institute of Scientific Computing, Technical University Braunschweig, Braunschweig, Germany, 2004.

11
N. Sukumar.
Construction of polygonal interpolants: A maximum entropy approach.
International Journal for Numerical Methods in Engineering, 61(12):2159-2181, 2004.

12
M. Arroyo and M. Ortiz.
Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods.
International Journal for Numerical Methods in Engineering, 65(13):2167-2202, 2006.

13
N. Sukumar.
Maximum entropy approximation.
AIP Conference Proceedings, 803(1):337-344, 2005.

14
N. Sukumar and R. W. Wright.
Overview and construction of meshfree basis functions: From moving least squares to entropy approximants.
International Journal for Numerical Methods in Engineering, 70(2):181-205, 2007.

15
N. Sukumar and R. J-B Wets.
Deriving the continuity of maximum-entropy basis functions via variational analysis.
SIAM Journal of Optimization, 18(3):914-925, 2007.

16
N. Agmon, Y. Alhassid, and R. D. Levine.
An algorithm for finding the distribution of maximal entropy.
Journal of Computational Physics, 30:250-258, 1979.

17
S. Boyd and L. Vandenberghe.
Convex Optimization.
Cambridge University Press, Cambridge, UK, 2004.

18
R. L. Burden and J. D. Faires.
Numerical Analysis.
Thomson/Brooks/Cole, Belmont, CA, eight edition, 2004.

19
D. C. Liu and J. Nocedal.
On the limited memory BFGS method for large scale optimization methods.
Mathematical Programming, 45:503-528, 1989.
Available at http://www.netlib.org/opt/lbfgs_um.shar.



N. Sukumar
Copyright © 2008