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Abstract

This manual describes the Fortran 90 implementation of maximum-entropy basis
functions. The main ingredients of the theory are presented, and then the numerical
implementation is touched upon. Instructions on the installation and execution of the
code, as well as on writing an interface to the library are presented. Each program
module and the most important functions in each module are discussed. The F90
library can be used for different applications of maximum-entropy basis functions
such as meshfree Galerkin methods and data approximation in lower- and higher-
dimensional parameter spaces (IRd, d ≥ 1).



1 Information-Theoretic Entropy Approximants

Shannon [1] introduced the concept of entropy in information theory, with an eye on
its applications in communication theory. The general form of informational entropy
(Shannon-Jaynes or relative entropy functional) is [2–4]:

H(p,m) = −
n
∑

i=1

pi ln

(

pi
mi

)

or H(p,m) = −
∫

p(x) ln

(

p(x)

m(x)

)

dx, (1.1)

where m is a p-estimate (prior distribution). The quantity D(p‖m) = −H(p,m) is
also referred to as the Kullback-Leibler (KL) distance. As a means for least-biased
statistical inference in the presence of testable constraints, Jaynes’s used the Shannon
entropy to propose the principle of maximum entropy [5], and if the KL-distance is
adopted as the objective functional, the variational principle is known as the principle
of minimum relative entropy [4].

Consider a set of distinct nodes in IRd that are located at xi (i = 1, 2, . . . , n),
with D = con(x1, . . . , xn) ⊂ IRd denoting the convex hull of the nodal set. For a
real-valued function u(x) : D → IR, the numerical approximation for u(x) is:

uh(x) =
n
∑

i=1

φi(x)ui, (1.2)

where x ∈ D, φi(x) is the basis function associated with node i, and ui are coefficients.
The use of basis functions that are constructed independent of an underlying mesh
has become popular in the past decade—meshfree Galerkin methods are a common
target application for such approximation schemes [6–10]. The construction of basis
functions using information-theoretic variational principles is a new development [11–
14]; see Reference [14] for a recent review on meshfree basis functions. To obtain basis
functions using the maximum-entropy formalism, the Shannon entropy functional
(uniform prior) and a modified entropy functional (Gaussian prior) were introduced
in References [11] and [12], respectively, which was later generalized by adopting the
Shannon-Jaynes entropy functional (any prior) [14]. The implementation of these new
basis functions has been carried out, and this manual describes a Fortran 90 library
for computing maximum-entropy (max-ent) basis functions and their first and second
derivatives for any prior weight function.

We use the relative entropy functional given in Eq. (1.1) to construct max-ent
basis functions. The variational formulation for maximum-entropy approximants is:
find x 7→ φ(x) : D → IRn

+ as the solution of the following constrained (convex or
concave with min or max, respectively) optimization problem:

min
φ∈IRn

+

−f(x;φ) = max
φ∈IRn

+

f(x;φ), f(x;φ) = −
n
∑

i=1

φi(x) ln

(

φi(x)

wi(x)

)

, (1.3a)
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subject to the linear reproducing conditions:

n
∑

i=1

φi(x) = 1, (1.3b)

n
∑

i=1

φi(x)(x
i − x) = 0, (1.3c)

where IRn
+ is the non-negative orthant, wi(x) : D → IR+ is a non-negative weight

function (prior estimate to φi), and the linear constraints form an under-determined
system. On using the method of Lagrange multipliers, the solution of the variational
problem is [14]:

φi(x) =
Zi(x;λ)

Z(x;λ)
, Zi(x;λ) = wi(x) exp(−λ · x̃i), (1.4)

where x̃i = xi − x (x, xi ∈ IRd) are shifted nodal coordinates, λ ∈ IRd are the
d Lagrange multipliers (implicitly dependent on the point x) associated with the
constraints in Eq. (1.3c), and Z(x) =

∑

j Zj(x;λ) is known as the partition function
in statistical mechanics. The smoothness of maximum-entropy basis functions for the
Gaussian prior was established in Reference [12]; the continuity for any Ck (k ≥ 0)
prior was proved in Reference [15].

2 Numerical Implementation

On considering the dual formulation, the solution for the Lagrange multipliers can be
written as [16, 17]

λ∗ = argminF (λ), F (λ) := lnZ(λ), (1.5)

where λ∗ is the optimal solution that is desired. Since F is strictly convex in the
interior of D, convex optimization algorithms (for example, Newton’s method and
families of gradient descent) are a natural choice. The steps in these algorithm are:

1. Start with iteration counter k = 0. The initial guess λ0 = 0 and let ǫ be the
desired convergence tolerance. For the convergence tolerance, ǫ = 10−14–10−10

is suitable (see sample input data files in the tests sub-directory);

2. Compute gk := ∇λF (λk) (gradient of F ) and Hk := ∇λ∇λF (λk) (Hessian of
F );

3. Determine a suitable search direction, ∆λk. For steepest descent, ∆λk = −gk
and for Newton’s method, ∆λk = −

(

Hk
)

−1
gk (matrix-vector notation) are

used;
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4. Update: λk+1 = λk + α∆λk, where α is the step size. For steepest descent, a
variable step size (line search) algorithm, which is presented in Reference [18],
is used to determine α, and for Newton’s method (damped or guarded), the line
search is used to set the step size if the error is greater than 10−4 and otherwise,
α = 1 is used;

5. Check convergence: if |gk+1| > ǫ, increment the iteration counter, k ← k + 1,
and goto 2, else continue;

6. Set λ∗ = λk+1 and compute the max-ent basis functions using Eq. (1.4).

3 Installing and Testing the Code

Unpack the tar archive on a UNIX machine using the command

tar -xvf maxent.tar

The archive consists of the main directory MAXENT-V1.4 and several sub-directories.
Use the command cd MAXENT-V1.4 to change to the MAXENT-V1.4 directory. Now,
you will see the following sub-directories and files:

• README: README file that points to this document for instructions on the
installation and use of the library;

• COPYING: License file that contains the GNU GPL version 3 license;

• COPYING.LESSER: License file that contains the GNU LGPL version 3 license;

• bin: executable is placed here after compiling and linking the code;

• doc: user’s manual (PDF) is available in the doc/manual directory;

• lib: static library file libmaxent.a is placed here when make maxentlib is
executed;

• makefile: a makefile at the top directory that depending on the desired
action, executes the makefile in the sub-directory src;

• makefile.inc: file that is included in makefile; contains the settings for the
compilers, compiler-options, and flags;

• run: a directory from where the program can be executed;

• src: all source files are located in this directory—two Fortran 90 module files
(maxent.f90 and priorweightfunction.f90) and the public domain Fortran
77 program lbfgs.f [19]. The subroutines dpotrf and dpotri from the Lapack
library are used; linking to the blas and lapack libraries is required to have
access to these subroutines. These subroutines are used only if d > 3. If data
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approximation in 1-, 2-, or 3-dimensions is to be performed, these libraries are
not needed. If so, set the DEFS macro to be empty in the file makefile.inc in
the src directory; also see the makefile that resides in this sub-directory.

• tests: sample input data files are provided; the outputs that are generated
when these input files are used in the program execution are available in the
tests/results directory;

3.1 Compiling and linking

If you have changed directories, go back to the MAXENT-V1.4 directory. Four options
are available in the makefile in this directory:

1. Typing make or make maxent will result in transfer of control to the makefile
in the src directory, where make maxent will be executed. The g95 Fortran 90
compiler/linker and the g77 (GNU Fortran 77 compiler) are used. If all goes
well in the compiling and linking phases, the executable file, bin/maxent, will
be created.

2. Typing make maxentlib will result in transfer of control to the makefile in
the src directory, where make maxentlib will be executed, and if all goes well
in the compiling phase, the library file, lib/libmaxent.a, will be created.

3. Typing make check will result in the execution (by default, output will be sent
to the terminal) of all the example input files in the tests sub-directory.

4. Typing make clean will result in the deletion of all object files, mod files, library
file, and the executable.

3.2 Testing the code using a sample input file

If the executable (bin/maxent) has been installed by invoking make or make maxent

in the top-directory, then one can run the program. A few sample input data files
are provided in the tests sub-directory. All the input data files can be run in the
top-directory by executing:

make check > <output-file>

and the output is piped to the <output-file>. If you would like to run individual
test examples, then use the command cd run to change to the run directory. To
execute the program from this directory, you have to invoke the following command:

../bin/maxent < <path-to-input-data-file> > <output-file>

For example, if the input data file tests/8nodes3d.dat is used, then execute the
following command:

../bin/maxent < ../tests/8nodes3d.dat > 8nodes3d-output.dat

A file check.dat is created, where the input parameters are printed out. The sample
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input data file tests/8nodes3d.dat is reproduced below.

-----------------------------------

Input data file: tests/8nodes3d.dat

-----------------------------------

NSD and NODES

3 8

POINT

0.25 0.15 0.05

COORDS

0.0000000000000e+00 0.0000000000000e+00 0.0000000000000e+00

1.0000000000000e+00 0.0000000000000e+00 0.0000000000000e+00

0.0000000000000e+00 1.0000000000000e+00 0.0000000000000e+00

1.0000000000000e+00 1.0000000000000e+00 0.0000000000000e+00

0.0000000000000e+00 0.0000000000000e+00 1.0000000000000e+00

1.0000000000000e+00 0.0000000000000e+00 1.0000000000000e+00

0.0000000000000e+00 1.0000000000000e+00 1.0000000000000e+00

1.0000000000000e+00 1.0000000000000e+00 1.0000000000000e+00

MAXITER AND TOL

100 1.d-14

RMAX AND PRIOR AND SOLUTION-SCHEME

1 uniform newton

All lines with non-numeric data are not read, but to facilitate understanding of the
input data file it is advisable to indicate on these lines what parameters are expected
to be read on the very next line. Referring to the above input data file, on the first
line, NSD and NODES are the number of spatial dimensions and number of nodes, re-
spectively. On the next line, NSD = 3 and NODES = 8 are indicated. On the third
line, POINT refers to the Cartesian coordinates of the point in NSD-dimensions (for
example, a Gauss integration point in a meshfree computation or an output point in
a data approximation problem) where the evaluation of the maximum-entropy basis
functions is needed. On the fourth line, POINT = {0.25,0.15,0.05} is indicated. On
the fifth line, COORDS appears, which indicates that in the next 8 (NODES = 8) lines,
the coordinates of the nodes are specified. In the above case, the nodal coordinates
of a unit cube are specified. On line 14, MAXITER (maximum number of iterations)
and TOL (convergence tolerance) are listed, and these values are set on line 15. On
line 16, RMAX, PRIOR, and SOLUTION-SCHEME are indicated, and one particular setting
for these parameters is shown on line 17. RMAX is the support size if a compactly-
supported weight function is used as a prior. This value must be picked so that the
POINT has at least NSD+1 neighbors. There are five options that are available for the
choice of a prior: PRIOR = {uniform, cubic, quartic, gaussian, gaussian-rbf }. For a
uniform prior, RMAX should be set to the characteristic linear dimension of the do-
main. It is assumed that for any non-uniform prior, all the nodes listed in the input
file are neighbors. Hence, do ensure that the value of the support size is appropri-
ately set, so that for x ∈ D, wi(x) > 0 for all i. Three different solution schemes
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are available to solve the convex optimization problem (steepest descent, Newton’s
method, and Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algo-
rithm): SOLUTION-SCHEME = {descent, newton, lbfgs}.

The output file 8nodes3d-output.dat and tests/results/8nodes3d.output

must match; the latter is shown below (in the interest of space, only φi are listed).
For the input file tests/3nodes1d-uniform.dat, the exact solution for the max-ent
basis functions is presented in Reference [14, Eq. (31)]. In the tests directory, in ad-
dition to 1D, 2D, and 3D data, an input file with nodes at the vertices of a hypercube
in four dimensions (D = [0, 1]4) is also provided. You can repeat the above checks for
all the input data files that are available in the tests sub-directory to ensure that
the installation and program output are correct.

------------------------------------------

Output file: tests/results/8nodes3d.output

------------------------------------------

. . . .

ITER and ERROR: 0 0.6224949798994366

ITER and ERROR: 1 0.06695084055654463

ITER and ERROR: 2 0.006905786017980535

ITER and ERROR: 3 0.00017430863425530217

ITER and ERROR: 4 5.2009267516942105E-8

ITER and ERROR: 5 1.0552434222233532E-14

*****************************************************

***************** NEWTON METHOD *********************

*****************************************************

POINT = 0.25 0.15 0.05

CONVERGENCE ATTAINED IN ITERATIONS = 6

ASKING TOLERANCE = 1.E-14

ERROR = 3.2148521626575033E-17

LAGRANGE MULTIPLIERS

1 1.0986122886681E+00

2 1.7346010553881E+00

3 2.9444389791664E+00

BASISFUNCTIONS

1 6.0562500000000E-01

2 2.0187500000000E-01

3 1.0687500000000E-01

4 3.5625000000000E-02

5 3.1875000000000E-02

6 1.0625000000000E-02

7 5.6250000000000E-03

8 1.8750000000000E-03
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3.3 Linking external programs with the max-ent library

If one wants to use the max-ent library with any other program, then first create
the static library file libmaxent.a by invoking make maxentlib in the top-directory.
Let the environment variable MAXENTDIR point to where MAXENT-V1.4 is located. The
library file is at $(MAXENTDIR)/MAXENT-V1.4/lib/libmaxent.a. To link this library
file with any other Fortran 90 program, the following command can be used:

g95 -o a.out <object-files> -L $(MAXENTDIR)/MAXENT-V1.4/lib -lmaxent

If an interface from a C or C++ program is required, the appropriate call (depending
on the compiler and the operating system) should be invoked. The subroutine call
from a Fortran 90 program to compute the max-ent basis functions is given below
(see main.f90 and also maxent.f90 for further details):

call drivermaxent(n,nsd,scheme,prior,xyz,p,rmax,D,maxit,eps,printflag,errorflag,
lengthscale,dettol,phi,dphi,ddphi)

The input parameters in the above subroutine are as follows:

1. n : number of neighbors of point p (a positive integer);

2. nsd : spatial dimension (a positive integer);

3. scheme : either descent, newton, or lbfgs (a string);

4. prior : either uniform, cubic, quartic, gaussian, or gaussian-rbf (a string);

5. xyz : nodal coordinates of the n neighbors (double precision array xyz(n,nsd));

6. p : coordinates of the point p (double precision array p(nsd));

7. rmax : support sizes of the n neighbors (double precision array rmax(n));

8. D : anisotropic metric (double precision array D(nsd,nsd,n));

9. maxit : maximum number of iteration (a positive integer);

10. eps : convergence tolerance (double precision);

11. printflag : print convergence information (logical—.true. or .false.);

12. errorflag : error flag (0 : pass, 1 : Hessian too small; 2 : non-convergence in
maxit iterations);

13. lengthscale : length scale for domain (optional argument) so that conver-
gence criterion is independent of the magnitude of nodal coordinates;

14. dettol : determinant tolerance (optional argument) with default of 10−16
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The output variables (phi, dphi, and ddphi) in the parameter-list are defined as
optional:

1. phi : basis function vector (double precision phi(n));

2. dphi : 1st derivatives of basis functions (double precision dphi(nsd,n));

3. ddphi : 2nd derivatives of basis functions (double precision ddphi(nsd*nsd,n));

Please note that any calling subroutine must first determine for every point p, the
number of neighbors n for p, assign the nodal coordinates of these n nodes to the
array xyz, and the support sizes of these n nodes must be assigned to the array rmax.
Then only can a call to the subroutine drivermaxent(. . .) be invoked. It is assumed
that computations for dphi and/or ddphi are requested in conjunction with phi.
Hence, in the parameter-list, phi (φi is computed), phi and dphi (φi and ∇φi are
computed), phi and ddphi (φi and ∇∇φi are computed), or all three (φi, ∇φi and
∇∇φi are computed) are valid.

4 Fortran 90 Source Files

There are two Fortran 90 modules that are part of the max-ent library. These are
in the source files maxent.f90 and priorweightfunction.f90, and implementations
for steepest descent and Newton’s method are available. To provide access to the
L-BFGS algorithm, a driver subroutine is included in maxent.f90, with a call to the
public-domain limited-memory BFGS subroutine (Fortran 77 implementation) [19].
If a different convex optimization algorithm is desired, the appropriate driver routine
can be added in maxent.f90 to provide an interface to the subroutine/function in
which the algorithm of interest is implemented. We now discuss some of the main
features and computational details that are contained in the two Fortran 90 modules.

4.1 Maximum-entropy module

In maxent.f90, all subroutines and functions are contained within the maxent module.
The basis functions are computed in function phimaxent(), where Eq. (1.4) is used.
To this end, the Lagrange multipliers are determined using the convex optimization
algorithms that are presented in Section 2. Most of the functions and subroutines in
this module are self-explanatory. We elaborate on the computation of the gradient
of F (λ) := lnZ(λ), and also on the Hessian H, which is required in the Newton
method. On taking the gradient (with respect to λ) of F (λ), we obtain the negative
of the left-hand side of the linear reproducing conditions in Eq. (1.3c):

g = −
n
∑

i=1

φix̃
i, (1.6)
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where x̃i = xi − x (i = 1, 2, . . . , n). This is coded in function dfunc(). The
expressions for the Hessian of F (λ) are given in Reference [11] (matrix form) as well
as in the Appendix of Reference [12]. By definition, the components of the Hessian
are:

Hrs(λ) =
∂2F (λ)

∂λr∂λs

, (r, s = 1, . . . , d). (1.7)

The Hessian matrix (see Eq. (45) in Reference [11]) in three dimensions (d = 3) is:

H =





<x̃2
1>−<x̃1>

2 <x̃1x̃2>−<x̃1><x̃2> <x̃1x̃3>−<x̃1><x̃3>
<x̃1x̃2>−<x̃1><x̃2> <x̃2

2>−<x̃2>
2 <x̃2x̃3>−<x̃2><x̃3>

<x̃1x̃3>−<x̃1><x̃3> <x̃2x̃3>−<x̃2><x̃3> <x̃2
3>−<x̃3>

2





(1.8)
where < ·> is the expectation operator, which for a scalar-valued function u(x) is:

<u(x)> =
n
∑

i=1

φi(x)ui, ui = u(xi). (1.9)

The Hessian matrix and its inverse are computed in function hessian(flag) (flag
is an optional Boolean argument) and function invhessian(flag), respectively.

Let λ = λ∗ denote the converged solution for the Lagrange multipliers and φ∗

i the
corresponding basis function solution for the ith node. Since <x̃r>

∗ = 0 (r = 1–3),
the Hessian (hessian(.true.) is the call) is

H∗ =





<x̃2
1>

∗

<x̃1x̃2>
∗ <x̃1x̃3>

∗

<x̃1x̃2>
∗ <x̃2

2>
∗

<x̃2x̃3>
∗

<x̃1x̃3>
∗ <x̃2x̃3>

∗ <x̃2
3>

∗



 , H∗ =
n
∑

k=1

φ∗

kx̃
k ⊗ x̃k. (1.10)

The expressions for the derivatives of the basis functions are given below. We adopt
the notations and approach presented in Arroyo and Ortiz [12]; in the interest of
space, just the final results are indicated. We can write Eq. (1.4) as

φ∗

i (x;λ
∗) =

exp[f ∗

i (x;λ
∗)]

∑n

j=1
exp[f ∗

j (x;λ
∗)]

, f ∗

i (x;λ
∗) = lnwi(x)− λ∗ · x̃i, (1.11)

where λ∗ is implicitly dependent on x. On using Eq. (1.11), we have

∇φ∗

i = φ∗

i

(

∇f ∗

i −
n
∑

j=1

φ∗

j∇f ∗

j

)

, (1.12a)

where ∇f ∗

i is given by

∇f ∗

i =
∇wi

wi

+ λ∗ + x̃i ·
[

(H∗)−1 − (H∗)−1 · A∗
]

, A∗ =
n
∑

k=1

φ∗

k x̃
k ⊗ ∇wk

wk

, (1.12b)
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and therefore the gradient of φ∗

i is

∇φ∗

i = φ∗

i

{

x̃i ·
[

(H∗)−1 − (H∗)−1 · A∗
]

+
∇wi

wi

−
n
∑

j=1

φ∗

j

∇wj

wj

}

. (1.13)

If the prior wi(x) is a Gaussian radial basis function (see Reference [13]), then
wi(x) = exp(−β|xi − x|2) and Eq. (1.13) reduces to ∇φ∗

i = φ∗

i (H
∗)−1 · x̃i! This result

appears in the Appendix of Reference [12]. In general, ∇φ∗

i depends on ∇wi through
the expression given in Eq. (1.13). The gradient of the basis functions is computed
in function dphimaxent().

On taking the gradient of Eq. (1.13), we obtain the following expression for the
second derivatives of the max-ent basis functions:

∇∇φ∗

i =
∇φ∗

i ⊗∇φ∗

i

φ∗

i

+ φ∗

i

{

−(H∗)−1 + x̃i · ∇
(

(H∗)−1
)

+ A∗T · (H∗)−1
}

− φ∗

i

{

x̃i · ∇
(

(H∗)−1
)

· A∗ + x̃i · (H∗)−1 · ∇A∗
}

+ φ∗

i

{

∇
(∇wi

wi

)

−
n
∑

j=1

∇wj

wj

⊗∇φ∗

j −
n
∑

j=1

φ∗

j∇
(∇wj

wj

)

}

,

(1.14)

where on using the identity H∗ ·(H∗)−1 = I, the gradient of the inverse of the Hessian
can be written as

∇
(

(H∗)−1
)

= −(H∗)−1 · ∇H∗ · (H∗)−1, ∇H∗ =
n
∑

k=1

x̃k ⊗ x̃k ⊗∇φ∗

k, (1.15)

and therefore

x̃i · ∇
(

(H∗)−1
)

= −x̃i ·
(

n
∑

k=1

ṽk ⊗ ṽk ⊗∇φ∗

k

)

, ṽk = x̃k · (H∗)−1. (1.16)

The term −x̃i · ∇
(

(H∗)−1
)

· A∗ in Eq. (1.14) is given by

− x̃i · ∇
(

(H∗)−1
)

· A∗ = x̃i ·
(

n
∑

k=1

ṽk ⊗ w̃k ⊗∇φ∗

k

)

, w̃k = ṽk · A∗, (1.17)

and the term −x̃i · (H∗)−1 · ∇A∗ is:

−x̃i · (H∗)−1 · ∇A∗ = −ṽi · A∗

1 + A∗

2 ⊗ ṽi − ṽi · A∗

3, (1.18a)

where

A∗

1 =
n
∑

k=1

x̃k ⊗ ∇wk

wk

⊗∇φ∗

k, A∗

2 =
n
∑

k=1

φ∗

k

∇wk

wk

, A∗

3 =
n
∑

k=1

φ∗

kx̃
k ⊗∇

(∇wk

wk

)

.

(1.18b)

The Hessian of the basis functions is computed in function ddphimaxent(). It
satisfies the conditions

∑

i∇∇φ∗

i = 0 and
∑

i∇∇φ∗

i ⊗ x̃i = 0.
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4.2 Prior weight function module

In priorweightfunction.f90, all subroutines and functions are contained within
the priorweightfunction module. The radius of support for the nodal weight func-
tions, metric D, and the prior are set in subroutine setrmaxandpriorweight(. . .).
This is done via a call to this function from an external program or from subroutine

drivermaxent(. . .), which is contained in the maxent module. The main program,
main.f90, serves as an illustrative reference. The variables rmax, D, and prior are pri-
vate variables, and hence once they are set, all functions within the module can access
them. The weight functions are defined in function weightfunction(k,x̃k,Dkx̃

k,q).
Here, k runs from 1 to n, x̃k := xk−x, and Dk 6= I renders the nodal weight function
support to be anisotropic. The variable q :=

√
x̃kDkx̃k/ρkmax, where ρ

k
max is the radius

of support of the nodal weight function. The following weight functions are available:

1. uniform: a constant weight function, i.e., w(q) = 1.

2. cubic: the weight function is a C2 cubic spline function, which is given by

w(q) =



















2

3
− 4q2 + 4q3 if 0 ≤ q ≤ 1

2
,

4

3
− 4q + 4q2 − 4q3

3
if
1

2
< q ≤ 1,

0 otherwise

. (1.19)

3. quartic: the weight function is a C2 quartic polynomial function, which is given
by

w(q) =

{

1− 6q2 + 8q3 − 3q4 if 0 ≤ q ≤ 1,

0 otherwise
. (1.20)

4. gaussian: the weight function is a C∞ Gaussian function, which is given by

w(q) =







exp

(

− 1

1− q2

)

if 0 ≤ q ≤ 1,

0 otherwise
. (1.21)

5. gaussian-rbf : a C∞ Gaussian radial basis function, w(r) = exp (−βr2) [12],
where β ≡ ρkmax is a constant for each node.

If a different prior is desired, it can be added in function weightfunction(. . .).
The gradient is defined in function dweightfunction(. . .), and the Hessian of the
weight function is defined in function ddweightfunction(. . .).
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