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SUMMARY

Over the past two decades, meshfree methods have undergoneigni cant development as a numerical tool
to solve partial di erential equations (PDESs). In contrast to nite elements, the basis functions in meshfree
method are smooth (nonpolynomial functions), and they do no t rely on an underlying mesh structure for
their construction. These features render meshfree methods to be particularly appealing for higher-order
PDEs and for large deformation simulations of solid continu a. However, a de ciency that still persists in
meshfree Galerkin methods is the inaccuracies in numerical integration, which a ects the consistency and
stability of the method. Several previous contributions ha ve tackled the issue of integration errors with an
eye on consistency, but without explicitly ensuring stabil ity. In this paper, we draw on the recently proposed
virtual element method, to present a formulation that guara ntees both the consistency and stability of the

approximate bilinear form. We adopt maximum-entropy meshf ree basis functions, but other meshfree basis
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functions can also be used within this framework. Numerical results for several two- and three-dimensional
elliptic (Poisson and linear elastostatic) boundary-valu e problems that demonstrate the e ectiveness of the

proposed formulation are presented.

key words: meshfree Galerkin methods, maximum-entropy approximants , numerical integration, virtual
element method, patch test, stability

1. INTRODUCTION

Meshfree methods ], 2] that are built from a weak form (referred to as meshfree Galerkinmethods)
require background integration cells on which the numerical integraéion of the weak form integrals
is carried out. Typically, the domain of an integration cell does not cancide with the region that
is de ned by the intersecting supports of two overlapping meshfre basis functions. In addition,
meshfree basis functions are nonpolynomial functions. These at@o key observations that introduce
integration errors when standard Gauss quadrature is used to nmerically integrate the sti ness
matrix in meshfree Galerkin methods. As a consequence, the congsicy, optimal convergence,
and even stability in some instances of the numerical solution can beampromised. In this paper,
we present a new methodology | based on the decomposition of the Hinear form in the virtual
element method B] | for the numerical integration of the sti ness matrix that preclu des integration
errors when using integration cells that are obtained from a Delaung tessellation. Furthermore,
this ensures that the meshfree Galerkin method is, both, consisté and stable.

Quadrature errors in meshfree Galerkin methods lead to consistay errors (patch test is not
passed), and underintegration can also compromise the stability othe method. In the literature,
various approaches have been put forth to address errors dueotnumerical integration. The

interested reader is referred to Reference4], where more details are provided on the topic of
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numerical integration in meshfree methods. Herein, we only mentiorpertinent studies that have
attempted to correct the integration errors. Babwska and coworkers have provided the theoretical
basis for the issue that arises in the numerical integration of rst-order meshfree methods4] as
well as higher-order meshfree approximationsd]. With the aim of satisfying the patch test, use of a
smoothed strain operator [7/] was rst adopted in nodally integrated meshfree methods by Chenet
al. [8]. Breitkopf et al. [9] developed a custom integration scheme for the di use element mébd [10]
based on the ideas drawn by Chen et al. to ensure patch test satisftion. Ortiz et al. [ 11] proposed
a strain-correction based on a smoothing procedure for linear appximations on triangular and
quadrilateral background meshes and extended these ideas tottahedral background meshes in
Reference 12). A similar idea is used to correct integration errors in polygonal and mlyhedral
nite element methods [13]. Chen et al. [4] proposed a variationally consistent integration method
for higher-order meshfree approximations that generalizes the ation of nodal integration and is
applicable for Gauss quadrature within triangles and squares. Duaet al. [14] proposed a smoothing
procedure for second-order approximations on triangular backgund meshes, and have used to the
Hu-Washizu three- eld variational principle to shown the variationa | consistency of the integration
scheme on triangular meshes1p]. The corresponding second-order accurate integration scheme
for four-node tetrahedral meshes is presented in Referencdfg. On adopting the techniques of
Duan et al. [15, 16], Ortiz-Bernardin and coworkers [17, 18] presented formulations to treat nearly-
incompressible elasticity in the small- and nite-deformation regimes. All these aforementioned
integration methods are developed to remove the consistency esr from the numerical solution;
none of them theoretically guarantee stability.

Recently, the virtual element method [3] (VEM) has been presented, where an algebraic

(exact) construction of the stiness matrix is realized without the explicit construction of basis
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functions (basis functions arevirtual). In the VEM, the sti ness matrix is decomposed into two

parts: a consistent term that reproduces a given polynomial spag and a correction term that
provides stability. Such a decomposition (herein referred to as thevirtual element decomposition)

is formulated in the spirit of the Lax equivalence theorem (consisteay + stability ! convergence)
for nite-di erence schemes and is su cient for the method to pass the patch test [19].

The formulation in the virtual element method constitutes a suitable framework to correct
integration errors in meshfree methods. Talischi and Paulino 20 and Manzini et al. [21] have
applied these concepts to ameliorate numerical integration errordn polygonal and polyhedral
nite elements. In this paper, we follow similar ideas for meshfree metods and adopt the virtual
element decomposition to construct the stiness matrix, which ensires both consistency and
stability of the solution. We note in passing that meshfree nodal integration methods, which require
corrections to ensure consistency and stability §, 22{ 25, can likely also be formulated using the
virtual element framework. Maximum-entropy basis functions [26{28] are adopted to exemplify
our procedure (see Sectior?), though other meshfree basis functions can also be used in this
approach. The governing equations for elliptic (Poisson and linear ektostatic) boundary-value
problems are summarized in Section Sectio. The methodology to construct the sti ness matrix
using meshfree basis functions and the virtual element decomposgiin is presented in Section4.
Delaunay tessellations (three-node triangles and four-node tethedra) are considered to obtain the
nodal information for basis functions computation and for numerical integration. In Section 5,
it is shown how the patch test is satis ed for the proposed method. Numerical examples for
two- and three-dimensional Poisson and linear elastostatic probles and eigenvalue analyses are
presented in Sections, which demonstrate the consistency, stability and e ectiveness bthe proposed

formulation. We close with some nal remarks in Section7.
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2. MAXIMUM-ENTROPY BASIS FUNCTIONS

Consider a convex domain represented by a set of scattered nodes and a prior (weight) function
Wy (x) associated with each nodea. We can write down the approximation for a scalar-valued

function u(x) in the form:

xo
u(x) = a(X)u(xa); 1)
a=1
where u(x ;) are nodal coe cients. On using the Shannon-Jaynes (or relativg entropy functional,

the max-ent basis functionsf ,(x) 0gjL; are obtained via the solution of the following convex

optimization problem [28]:

min X (x)In _alx) (2a)
2R a Wa (X)
subject to the linear reproducing conditions:
xn xn
a(x)=1 a(x)ca = 0; (2b)
a=1 a=1

wherec, = X, X are shifted nodal coordinates and K' is the nonnegative orthant. In this paper,

we use as the prior weight function the Gaussian radial basis functio given by [27]
Wa(X) = exp h—gkcak2 :

where is a parameter that controls the support size of the basis functiorand h, is a characteristic
nodal spacing associated with node.

On using the method of Lagrange multipliers, the solution to (2) is given by [2§]

wa(x)exp( (x) ca(x)). _ _x .
AT D Z(x; (x)= ~ wp(x)exp( (x) cp(x));  (3)

where the Lagrange multiplier vector (x) is obtained as the minimizer of the dual optimization

a(x; )=

problem (x is xed):
(x)=arg min InZ(x; );
2R¢

5
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where is the converged solution for the Lagrange multiplier vector. The bais functions ,(x)

are obtained by using = in (3). Finally, the gradient of the basis function is [27]:
roa()= a( )X ) Tealx);

where

X0 X0
J(x; )= a(X; )ca(x) ca(x) r(x; ) r(x; ); r(x; )= a(X; )ca(x):

a=1 a=1
3. GOVERNING EQUATIONS

The numerical solution of two boundary-value problems are consided: Poisson problem with
nonhomogeneous Dirichlet boundary conditions and linear elastostas. The eld variables in both
problems are discretized using meshfree (maximum-entropy) basiginctions that span the space of

linear polynomials.

3.1. Poisson problem

Consider an open bounded domain RY (d = 2;3) that is bounded by the (d 1)-dimensional
surface  whose unit outward normal is n. The Dirichlet boundary is denoted by 4. The closure
of the domain is [ . Let u(x): ! R be the eld variable and f (x) : I R be

the source term. The imposed Dirichlet (essential) boundary condibns areg(x) : ¢! R. The

boundary-value problem that governs the Poisson problem is: ndu(x): ! R such that
reu=f 8x2; (4a)
u=g 82 g (4b)

The corresponding weak form is: ndu(x) 2 U such that
Z Z
a(u;v) = “(v) 8v(x)2V; a(uyv)= rurvdx; “(v)= fvdx; (5)

6
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whereU and V are the trial and test spaces:

u

ux):u2Ww( ) HY ) u=gon 4 ;

\Y

v(x):v2W( ) HY( );v=0on g4 ;

where the spaceW ( ) includes a ne functions. In the weak form ( 5), we substitute trial and test
functions of the form given in (1), and apply a standard Galerkin procedure to obtain the following

system of linear equations:

4 Z
Kd =f; Ka= rar pdx; fa= f adx; (7

where K is the sti ness matrix, f the nodal force vector, andd is the vector of nodal coe cients

associated with the eld variable.

3.2. Linear elastostatic boundary-value problem

Consider an elastic body that occupies the open domain R¢ (d = 2;3) and is bounded by
the (d 1)-dimensional surface whose unit outward normal is n. The boundary is assumed to
admit decompositions = 4[ n and; = g4\ 1, where 4 is the Dirichlet boundary and
h is the Neumann boundary. The closure of the domain is [ .Letu(x): ! RYbe
the displacement eld at a point x of the elastic body when the body is subjected to external
tractions h(x) : n ! RY and body forcesb(x) : ! RY. The imposed Dirichlet (essential)

boundary conditions areg(x) : ¢! RY. The boundary-value problem for linear elastostatics is:

nd u(x): ! RYsuch that
r +b=0 8x2; (8a)
u=g 8x2 g; (8b)
n=h 8x2 y; (8c)
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where is the Cauchy stress tensor. The corresponding weak form is: ndi(x) 2 U such that

z Y4 z
a(u;v)= “(v) 8v(x)2V; a(u;v)= (w:"(v)dx; “(v)= b vdx+ h vds; (9)

h

where" is the small strain tensor, andU and V are the displacement trial and test spaces:

U u):u2 W( )Y HY( NG u=gon g ;

\Y

vx):v2 [W( )Y HY )% v=0o0n ¢ ;

where the spaca/V ( ) includes linear displacement elds. We substitute vector-valued trial and test
functions of the form (1) into ( 9), and apply a standard Galerkin procedure to obtain the following

system of linear equations:

Z Z Z
Kd = f; Ka= BlCB,dx; fa= abdx + 2h ds; (11)

h

whereK is the sti ness matrix, f the nodal force vector,d the vector of nodal coe cients associated
with the displacement eld, C is the constitutive matrix for an isotropic linear elastic material, and

B , is the nodal matrix of basis function derivatives.

4. VIRTUAL ELEMENT DECOMPOSITION

Galerkin meshfree methods typically provide better convergence qoperties and smoother solutions
than standard nite elements. However, in meshfree methods thenumerical integration of the

sti ness matrix using Gauss quadrature leads to inaccuracies thatdeteriorate the consistency and
asymptotic convergence of the solution. If the solution to a problen that is governed by (4) or (8)

is a linear polynomial, consistency means that the numerical solution mst exactly reproduce the
linear polynomial. On the other hand, insu cient nhumber of quadratu re points can compromise
the stability of the method. Currently, there are integration schemes for meshfree methods that

8
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recover the consistency of the solution (for example, see Chen el. [4], Duan et al. [15, 16], Ortiz
et al. [11, 12)) but none of them resolves the stability issue from a theoretical pespective. The
virtual element decomposition [3, 29] constitutes a sound theoretical basis that can be used to
construct a sti ness matrix that is consistent and stable. In the method that is proposed herein,
the unknowns are solved using {) or (11), but the sti ness matrix is constructed using the virtual
element decomposition.

The essential features of the virtual element decomposition are n@sented; the exposition closely
follows the notation and description in Gain et al. [30]. Let the domain  be partitioned into
nonoverlapping integration cells. In this paper, the cells are restrited to be three-node triangles
or four-node tetrahedra. An integration cell is denoted by E and its volume by jEj. The boundary
of the integration cell is dS and the normal to this boundary is ng =[nf n§ nE]". The mean

value of a function h over the vertices of the integration cell is de ned as

h= h(xy); (12)

1
N
J=1
whereN is the number of nodes that de ne the integration cell whose vert& nodes have coordinates
x 3. For instance, x = [x; X2 Xx3]' is the geometric center of the integration cell. The partition
of the domain is denoted byT so that each cellE 2 T . Note that on using this partitioning, the

bilinear form given in (5) or (9) can be written as the following summation:

X
a(; )= a(; ) (13)
E2T
where = uand = v for the Poisson problem, and = u and = v for the linear elastostatic

boundary-value problem. In the virtual element decomposition, the sti ness matrix is constructed

on each cellE 2 T using projection operators.

4.1. Poisson problem
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4.1.1. Projection operator. For the Poisson problem, a single projection operator is needed.
For the construction of this operator, we denote the space of ane functions by P(E). As a
consequence of using meshfree basis functions to construct thgal function, the scalar- eld is
composed of a (linear) polynomial part plus some additional nonpolyomial part, which implies
that u(x) 2 W(E) P (E). Now, a projection operator  that allows to extract the polynomial

part of the eld u(x) 2 W (E) is de ned as follows:

"W(E)!IP (E); p =p 8p2P(E): (14)

In addition, it is required that satis es the following orthogonality condition [ 3]:

ag(u  up)=0 8p2P(E); u2W(E); (15)

which means that the nonpolynomial partu  u is energetically orthogonal toP.

An exact decomposition of an arbitrary u into a polynomial part and a nonpolynomial part is:

u= u +(u u);

which after substituted into the bilinear form associated with a representative integration cell

see (L3) yields

as(u;v)=ag(u +(u u ) v +(v Vv))

ag(u; v )+ag(u uv v)+taUu uv )+a(uyv V)

ag(u; v )+as(u uv v ); (16)

where we have use@dg (U u; v )= ag(u;v v ) = 0 due to the orthogonality condition ( 15).
The rst term on the right-hand side of the last equality in ( 16) provides consistency and the second
term stability. A clear separation of the consistency and stabilization terms is the missing ingredient
in existing integration schemes for meshfree methods}| 11, 12, 15, 16].

10
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A projection map that satis es ( 14) and (15) is [31]:

U = uSp+ .1S1 + V.28, + U.3S3; (17a)
1 z
0; = —  unEds; (17b)
IE] e@E
whereu is computed using (L2), and sp;:::;s3 are the components of a scaled basis for the space of

ane functions givenby s=[1 Xx; X1 X» X» X3 xz]'. The rationale for the speci c choice

given in (1738 for the projection operator is presented in Appendix A.

4.1.2. Stiness matrix. To facilitate the understanding of the use of the virtual element
decomposition to construct the meshfree stiness matrix, the vitual element partitioning into
cells needs to be placed within the meshfree context. In meshfreeathods, the partitioned domain
is used for two purposes: to obtain the nodal coordinates to comyte the meshfree basis functions
and to provide a suitable domain to perform the numerical integration of the weak form integrals.
Therefore, if the cell-centric viewpoint of the virtual element decanposition is to be adopted for
these purposes, then nodal basis functions of nodes that are tside a cell will contribute to the
trial function space associated to this cell. The connection betweaethe virtual element partitioning
and the meshfree approximation is achieved through the de nition d a nodal contribution¥ that
represents the entire integration cell.

On each integration cell E, two types of Gauss points are considered: volume Gauss points dh
are de ned in the interior of the cell and surface Gauss points thatare de ned on the cell faces.
In some instances, we will use both types of Gauss points and in othe only the surface Gauss

points. Each of these Gauss points has its own nodal contributionWe merge these independent

YThe nodal contribution at a given sampling point (usually a G auss point) with coordinate x is de ned as the indices

of the nodes whose basis functions have a nonzero value at x.

11
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nodal contributions into one larger structure that is representaive of the entire cell. The local
nodal indices in the merged nodal contribution are labelled from 1 tom. The coordinates of a
representative node in the merged nodal contribution is denotedp X, = [X1a X2a X3a]". Figure 1
illustrates the construction of the merged nodal contribution for a three-node triangular cell when

both types of Gauss points are used.

Figure 1: Schematic representation of the construction of the meged nodal contribution for a three-
node triangular cell. The volume Gauss point is shown as a and the boundary Gauss points as
. The nodes shown (open circles) are those nodes of the mesh thedntribute within the triangle.
The local index of the rst node in the nodal contribution is labelled as 1 and the index of the last

node asm. A representative node in the nodal contribution is labelled asa.

To obtain the consistent and stable sti ness matrices, we begin by witing the trial (or test)

12
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approximation of a scalar-valued function within each integration cdl as a linear combination of
max-ent basis functions:

uh(x) = X a(X)ua; (18)

a=1

where u, are nodal coe cients. The max-ent basis functions are also usedd represent the scaled

basis for the space of a ne functions, as follows:

h(yy = X :
s"(x) a(x)s(xa): (19)

a=1

The discrete version of the projection map to extract the polynonial part is obtained by

substituting (18) and (19) into ( 173), which yields

u = NPd;
where
—_ . — T
N —[ 1 a m], d—[Ul Ua Um]
and
P=HWT,
with 2
(H)1
H=8 H)az: (H)a= 1 xia X1 Xaa X2 Xza Xa

13
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and 2 3
(W)

W=8 W) 2:(W)a= a 201a 20pa 208y Ya = 5= anE ds:

(W)m
It is noted that ¢, is computed approximately by using 1-point Gauss quadrature on tke cell face

since the meshfree basis function cannot be integrated exactly.

For the Poisson problem, the discrete version of the bilinear form is iyen by the virtual element

decomposition on each cell see (6) as:

ag(uv) = ag(u " v rag u vt v

VIWH Tag((NT;N)HW Td+v (I, P)Tag(NT;N)(In P)d

VIWH TKHW Td+ v (lm P) ' K(m P)d; (20)

where | , is the identity (m m) matrix, with m being the number of nodes that contribute in
the cell, K is the exact sti ness matrix, and v is a vector of arbitrary nodal coe cients that is

associated with the scalar test function.

By observing that the projection can be written as u " = Wds, the consistency term in (20)

can be developed as

as(u " v M= vIW ag(sT;s)w Td; (21)

14
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2
0 0 0O
01 0O
lc= ;
0 01O

0 0 01

where ag (s7;s) = | (JEj with

and thus the computation of (21) involves only the evaluation of few meshfree basis functions on
the boundary of the cell | their derivatives are not needed. As poin ted out in Reference P1], the
exact sti ness matrix that appears in the second term on the right-hand side of the last equality
in (20) can be replaced by an approximate sti ness without compromising he stability but gaining

e ciency in the computations. In particular, we choose the approach adopted in Reference1] and
thus compute an approximate sti ness using 1-point Gauss quadraure on simplicial cells, which
we denote byK 2. Other options for the sti ness matrix in the stability term are poss ible and will
be discussed in Sectior.2. On replacing K by K 2 in the second term in (20), the nal expression

for the sti ness matrix associated with the integration cell is:

Ke =JEJWIW T +(Im P)'KZ2(Im P):

4.2. Linear elastostatics

4.2.1. Projection operators. For the construction of the projection operators in linear elastosatics,
three spaces are de ned3Q]: the space of rigid body motions (denoted byR), the space of constant
strain modes (denoted byC), and the space of linear displacement (denoted byP) that is able
to represent rigid body motions and states of constant strains. he trial displacement eld is
composed of a (linear) polynomial part plus an additional nonpolynonial part, which implies that
u(x)2 W(E)* [PE).

Three projection operators are constructed to allow the extration of rigid body motions, constant

15
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strain modes and the polynomial part of any displacement eldu(x) 2 W (E) as follows:
rRIWEN! RE)N,  rr=r; 8 2[R(E) (22)
for extracting the rigid body motions,
c:WEN! [CE)NY  cc=c 82 [ME) (23)
for extracting the constant strain modes, and
piWEN! PEN:  ep=p; 8p2[P(E)

for extracting the polynomial part. These operators are requirel to satisfy the following

orthogonality conditions:

rCc=0; 8c2[QE)" (24)

cr =0; 8r2[R(E) (25)

so that elements ofC have no rigid body motions and elements oR have no constant strain modes,

whichmeans ¢ R = R c=0and
pP= R*T i (26)

A properly de ned projection map cu i.e., it veries (23) and (25 will satisfy the following

orthogonality property [ 30]:
ag (u cu;c)=0 8c2[CE)Y; u 2 [W(E)%: (27)

which means thatu cu is energetically orthogonal toC; and since r must satisfy (22) and (24),

rigid body motions have zero strain energy and thus the energy ottogonality property extends to

ag (u puU;p)=0 8p2I[P(E)Y% u2[W(E)" (28)

16
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So, anyu 2 W (E) can be decomposed into three terms as follows:
u= RrU+ cu+(u pu); (29)

that is, into a rigid body part, a constant strain part and the remain ing nonpolynomial part. On
substituting (29) into the bilinear form de ned in ( 9), and relying on the properties (27) and (28)

yields the bilinear form as B0|
ag(u;v)=as( cu; cv)+ as(u pUV  pV); (30)

where the rst term on the right-hand side is the bilinear form assodated with the constant strain
modes that provides consistency and the second term is the bilineaform associated with the
nonpolynomial terms that provides stability.

The symmetric gradient tensor is given by
"(u) = % ru+(r u)T

and its volume average by

Z Z

1 "(u)dx = =— (u ng+ng u)ds: (31)
E @E

Nu) = —
(u) E]
The skew-symmetric gradient tensor is given by

ru (r u)T

I'(u) =

NI =

and its volume average is

Z 4

1 1
Nu)= — I (u)dx = =— u n n u)ds:
W= W=z @ one ne u)

17
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translation modes andr 4, rs, rg pure rotations modes aboutx de ned as [30]

re=[1 0 0] ra=[xz X2 x1 xi O]
r.=[0 1 0] rs=[x3 X3 0 x1 xiI"
rs=[0 0 1] re=[0 Xz X3 X2 Xo]':

A projection map to extract rigid body motions of u that veri es ( 22) and (24) is given by [30]
RU= Uil + Uplp+ Ugl3+ Mol g+ % a1rs + P osle: (32)

Let the basis for the space of constant strain modes be[] -1 ... 6, Wherecs, C,, C3 are constant

normal strains and c4, Cs, Cg are constant shear strains, which are de ned asJ(]

ci=[x1 x1 0 Of Ca=[x2 X2 X1 x1 O]
c2=[0 xz x2 O] c5=[x3 Xz 0 X1 xi]
cs=[0 0 x3 xs]' c=[0 Xz Xz Xz Xg]':

A projection map to extract constant strain modes of u that veri es ( 23) and (25) is given by [30]

cU = M11C1 + ™22Co + M33C3 + M12Cq + M31C5 + M 23Cs! (33)

4.2.2. Stiness matrix. To obtain the consistent and stable stiness matrix, we start by

discretizing with max-ent basis functions the following quantities on each integration cell:

" xo
u'(x) = a(X)ua (34)
a=1
for the displacement eld,
xn
r"(x)= = a(X)r (xa) =1;:::;6 (35)
a=1

for the components of the basis for the space of rigid body motionsand

c"(x) = X a(x)c (xa) =1;:::;6 (36)

a=1

18
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for the components of the basis for the space of constant straimodes. The discrete version of
the projection map to extract the rigid body motions is obtained by substituting ( 34) and (35)

into (32), which yields

R uh = NP Rd;
where 2 3
a O 0
N =[(N): (N)a (N)m]:(N)a=§ 0 . 017
0O 0 3
d= uI U; U; T 7 Ua =[Uia U2a USa]T
and
Pr = HRWZ
with
2 37
2 1 0 0
(Hr)1
. 0 1 0
0 0 1
Hr =8 (Hgr)a z; (HRr)a=
_ (X2a  X2) (X1a  X1) 0
(X3a  X3) 0 (X1a  X1)
(H R)m
0 (Xza  X3) (X2a  X2)

19
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and
2 3
2 3 a 0 0
(Wr)1
0 a 0
_ 0 0 a _ 1 £ o
Wg = (WR)a Z° (Wr)a = v Oa = ﬁ . ang dS:
Gpa Ga O @
OBa 0 Gha
(WR)m
0 OBa Cha

Similarly, on substituting ( 34) and (36) into ( 33) leads to the following discrete version of the

projection map to extract the constant strain modes:

cuh = NP Cd;
where
Pc=HcW/
with 2 3T
2 3 (X1a  X1) 0 0
(Ho)1
. 0 (X2a  X2) 0
0 0 (Xza  X3)
Hc=8 (He)a 77 (Ho)a=
_ (X2a  X2) (X1a X1) 0
(X3a  X3) 0 (X1a  X1)
(H C)m
0 (Xza  X3) (X2a X2)
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and 2

37
2 3 S O O
(We)1
] 0 20, 0
_ . — O O z:ba . _ 1 z E .
WC_ (WC)a ’ (WC)a - y Ga = ﬁ ot ah; ds:
. tha Cha 0
OBa 0 Gia
(WC)m
0 Ba Cha
By virtue of (26), pu" = RgruPM+ cuM and Pp = PR + Pc. For the linear elastostatic

boundary-value problem, the discrete version of the bilinear form isgiven by the virtual element

decomposition on each cell see @0) as follows:

ag (uMuM) = ag( cu"; cvM+ag "  puMvh  pvh)

VIWeHZ ae (NT;N)HWJId+ v (lam Pp)Tac(NT;N)(lsm Pp)d

VIWCHIKH cWdd+vTi(lam Pp)'K(Ism Pp)d; (37)

where | 3, is the identity (3m  3m) matrix, with  m being the number of nodes that contribute
in the cell, K is the exact sti ness matrix, and v is a vector of arbitrary nodal coe cients that is
associated with the displacement test functions.

Regarding the rst term on the right-hand side of the last equality in (37), in Reference B(] it
was shown thatH [KH ¢ = jEjD, whereD is the constitutive matrix for an isotropic linear elastic
material; and regarding the second term, the exact stiness can onveniently be replaced by an
approximate sti ness denoted by S. Thus, the nal expression for the sti ness matrix associated

with the integration cell can be written as:

Ke =JE]WcDW I +(lsm Pp)'S(lam Pp);
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where
2
1 0 0 0
1 0 0 0
E 1 0 0 0
D= ——F—— ;

1+ )2 2)8 o 0 0 20 2) 0 0
0 0 0 0 20 2) 0

0 0 0 0 0 20 2)

where E is the Young's modulus and is the Poisson's ratio.

With respect to the stability sti ness, any choice for S that leads to a stability sti ness that is
symmetric positive de nite and scales like the exact bilinear forma( ; ) is su cient [ 3]. Herein we
adopt S given as B2

1

S= lan Hp HEHp "HY = M; (39)

whereHp = Hg+Hcand = trace JEjWcDW [ is the scaling parameter. In this approach,
is a positive constant and is usually chosen by studying its in uence orthe H! seminorm (see

References 29, 30).

5. PATCH TEST SATISFACTION

In this section, it is shown that the patch test is satis ed for the proposed formulation. To this
end, we choose the linear elastostatic problem and impose the lineareld u(x) = p(x) 2 [P(E)]¢
on the entire boundary. Hence, the exact solution for the patch &st must beu(x) = p(x). Since

p pp =0, then from (30) and from the de nition of a(u;v) in (9), we obtain
z
ag (p;Vv) = ( cp):"( cv)dx: (40)
E

We also note that"( pp) = "( rpP)+ "( cp)= "( cp) = "(p), where pp = p and the fact
that rigid body motions g p have zero strains have been used. In addition, ( ¢cp)= D :"( ¢p),
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where D is the elastic modulus tensor, and using the preceding result,40) can be rewritten as

z
ag (p;v) = i (P):"( cv)dx: (41)

Now, sinceu(x) = p(x) 2 [P(E)]Y is the exact solution, (p) is a constant. Let ¢ denote the

constant stress eld and observe that the strain associated with cv is the volume average of the

strain, i.e., "( ¢v) = "™(v). Thus, from (41) we get
z z

ag(p;v)= ©: E"‘(v)dx: ¢ (v ng+ng v)ds: (42)

" 2Ej @&
The nal step is to substitute the nodal approximation vM(x) = a(x)va into (42). We also use

the symmetry of the stress tensor and sum over all the cells to get

Z
X X 1
ag (p;vh) = = Bl °dS va=fa va;
£ e JEl ee
where 2 3
ant 0 0
0 ans 0
0 0 n§
B\a = :

anf  anf 0
ang 0 ant
0 an§  ang

and f 5 is an interior nodal force. Since the patch test produces a state foconstant strains (and
stresses), all the interior nodal forces must be identically equald zero. Therefore, for the patch test

to be satis ed it su ces to show that

fa= — BT cds= 0; 43
a T e (43)

where the assembly is over all the cells that have a non-zero intersgon with the support of 5.

To compute (43), we choose Gauss integration over the faces of the integratioretls, and since the
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evaluation of B, at a given interior face will arise from two adjacent cells in the assemly, the two
contributions cancel each other. Thus, the net contribution to f ; from all the interior faces vanishes,

and hence @3) is satis ed.

6. NUMERICAL EXAMPLES

Numerical examples are presented to demonstrate the consistey and stability of the maximum-
entropy meshfree method using the virtual element decompositionWe adopt the acronym MEM-
VED to refer to this method in the remainder of this section. In the computations, the following
guadrature rules are used for numerical integration over a backgund mesh of three-node triangular
and four-node tetrahedral cells: 1-point Gauss rule on each facef the cell (surface Gauss point) to
compute the surface integrals that appear in the consistency andtability sti ness matrices, and
in the stability sti ness of the Poisson problem an additional 1-point Gauss rule within each cell
(volume Gauss point). Note that at the surface Gauss points only lasis functions are computed |
derivatives are not needed.

In the standard maximum-entropy meshfree method (MEM), the i ness matrix contains the
usual volume integral and hence it is numerically integrated using stadard Gauss integration within

each cell. The same background mesh is adopted for the MEM and MEM/ED approaches.

6.1. Poisson problem

6.1.1. Patch test. The boundary-value problem (4) is solved with f (x) =0 and g(x) =1+2 x+3y
within a unit square. The background meshes used in the study aret®wn in Figure 2. Numerical
results for the relative error in the L? norm and the H* seminorm are presented in Tables and II,

respectively. The basis function support parameter is set to = 2:0 in the Gaussian prior weight
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function. For the standard Gauss integration, several choicesdr the number of volume Gauss points
are tested. Numerical results con rm that the patch test is met to machine precision only for the

MEM-VED scheme.

@) (b) ©

Figure 2: Background meshes used for the patch test on the Poisa problem. (a) Regular mesh,

(b) distorted mesh, and (c) unstructured mesh.

Table I: Relative error in the L2 norm for the patch tests on the Poisson problem.

Method Gauss rule Regular Distorted Unstructured
MEM 1-point 1.5 10* 1.0 102 1.1 10 2
MEM 3-point &1 10° 98 104 14 10°
MEM 6-point 64 10° 69 104 1.0 10°3
MEM 12-point 1:7 10° 19 10* 25 10°*

MEM{VED  1-pt/l-pt 30 10 37 10® 76 10

25
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Table II: Relative error in the H® seminorm for the patch tests on the Poisson problem.

Method Gauss rule  Regular Distorted Unstructured
MEM 1-point 15 10® 1.3 10! 20 10!
MEM 3-point 68 104 1.3 102 31 10?2
MEM 6-point 66 104 88 10° 23 10?2
MEM 12-point 1:2 10* 22 10°%® 57 10°

MEM{VED 1-pt/1-pt 16 10® 12 10® 23 10%

6.1.2. Convergence. The convergence rates in theL? norm and H! seminorm are studied for the
two-dimensional Poisson problem §). The unstructured meshes shown in Figure3 are considered
for the convergence tests. In the Poisson problemf (x) is chosen in accordance with the exact
solution u(x) =16xy(1 x)(1 y). The Dirichlet boundary condition g(x) = 0 is imposed on the

entire boundary of the domain.
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Figure 3: Sequence of background meshes used for the converge study on the Poisson problem.
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As a rst test, we compare the convergence rates that are deliveed by the MEM using various
standard Gauss integration rules and the MEM-VED approach. The support parameter of the
maxent basis functions is set to = 2:0. The optimal rates of convergence are 2 and 1 in th&?
norm and the H! seminorm, respectively. Figure4 depicts the convergence rates for both the MEM
and the MEM-VED approaches, and the reference rates for the lassical three-node FE triangle. It
is observed that the optimal rate of convergence is delivered by th MEM-VED approach in the L2
norm, and in the H! seminorm the convergence rate is higher than the optimal rate of lwhich is,
however, not surprising since this rate in meshfree methods can bienproved because the support
of the meshfree basis function is larger than its nite element coungerpart.

For the MEM method, the convergence rate in theL. 2 norm is suboptimal for 1-point Gauss rule,
and with 3-point rule the accuracy is improved and the convergenceate becomes optimal. On the
other hand, the convergence rate in theH® seminorm is suboptimal for 1- to 6-point Gauss rules;
a 12-point Gauss rule is needed to recover the optimal rate with aagracy that is comparable to
the MEM-VED approach. It is also evident from these plots that the accuracy of the MEM-VED
approach is superior to the accuracy of the classical three-nodeE triangle.

The e ect of the support size of the nodal basis function on the cavergence rates is investigated.
Three values for are considered. The resulting rates of convergence are providad Figure 5,
where it is observed that optimal convergence ratesl(?> and H!) are delivered by the MEM-VED

scheme for all three values of .

6.2. Linear elastostatics

6.2.1. Two-dimensional patch test. We solve the boundary-value problem 8) with b = 0 and

g="fxy x1+ ngT prescribed along the entire boundary. Plane strain condition is assmed with
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Relative L? error

—&— FEM
—A— MEM (1-pt)
—O— MEM @3pt) | |
—B— MEM (6-pt)
—%— MEM (12-pt)
————— MEM-VED

10

_ 10" _ 10
Maximum edge sizeh

@

10"

Relative H* error

—&— FEM
—A— MEM (1-pt)
—O— MEM @3pt) | |
—B— MEM (6-pt)
—%— MEM (12-pt)
————— MEM-VED

Figure 4: Rates of convergence for the Poisson problem. (&)? norm and (b) H* seminorm. Optimal
rates of 2 and 1 in theL 2 norm and the H® seminorm, respectively, are delivered by the MEM-VED
approach. For the MEM approach to exhibit optimal rates with accuracy that is comparable to the

MEM-VED approach, 3-point Gauss rule (L2 norm) and 12-point Gauss rule H! seminorm) are

needed.

_ 10" _ 10
Maximum edge sizeh

(b)
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Figure 5: Rates of convergence of the MEM-VED scheme for the Rsson problem. Three values
for the support parameter are chosen in the Gaussian prior weight function. For all cases, the

MEM-VED method delivers optimal convergence rates in theL? norm and the H* seminorm.

the following material parameters: E =1 10’ and = 0:3. The background meshes used in this
study are the same meshes that were used in the patch test for thPoisson problem (see Figure).
The basis function support parameter is set to = 2:0 in the Gaussian prior weight function.
Numerical results for the relative error in the L2 norm and the H! seminorm are presented in
Tables Il and IV, respectively. For Gauss integration, several choices for the maber of volume
Gauss points are tested. Numerical results con rm that the patd test is met to machine precision

only for the MEM-VED scheme.

6.2.2. Three-dimensional patch test. The boundary-value problem (8) is solved with b = 0 and

g="fxy X1+ X2 Xi+ X2+ x3gT applied along the entire boundary. The material parameters
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Table III: Relative error in the L? norm for the two-dimensional elastostatic patch tests.

Method Gauss rule Regular Distorted Unstructured
MEM 1-point 47 104 30 102 26 10°?
MEM 3-point 1.8 104 28 10°® 38 10°
MEM 6-point 19 104 1.2 10°® 14 10°3
MEM 12-point 32 10° 58 10* 72 10°

MEM{VED  1-pt/l-pt 87 10 17 10® 25 108

Table IV: Relative error in the H! seminorm for the two-dimensional elastostatic patch tests.

Method Gauss rule Regular Distorted Unstructured
MEM 1-point 22 10°® 21 10!' 27 10!
MEM 3-point 97 104 19 102 42 10?2
MEM 6-point 84 104 65 10°® 1.5 102
MEM 12-point 1.5 10* 34 10°% 77 10°

MEM{VED  1-pt/l-pt 92 10 52 10 1.0 10 *
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are settoE =1 10’ and = 0:3. The background meshes considered in this study are shown
in Figure 6. The basis function support parameter is set to = 2:0 in the Gaussian prior weight

function. The relative error in the L2 norm and the H! seminorm for the numerical solution are

@) (b) ©

Figure 6: Background meshes used for the three-dimensional pett test on the linear elastostatic

boundary-value problem. (a) Regular mesh, (b) distorted mesh, ad (c) unstructured mesh.

presented in TablesV and VI, respectively. For Gauss integration, several choices for the maber
of volume Gauss points are tested. Numerical results con rm thatthe patch test is met to machine

precision only for the MEM-VED scheme.

6.2.3. Cantilever beam. The convergence upon mesh re nement is studied on a cantilever laen of
unit thickness subjected to a parabolic end loadP. Figure 7 presents the geometry and boundary
conditions. The sequence of unstructured meshes used in the sty are shown in Figure 8. Plane

strain condition is assumed. The essential boundary conditions onhe clamped edge are applied
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Table V: Relative error in the L? norm for the three-dimensional elastostatic patch tests.

Method Gauss rule Regular Distorted Unstructured
MEM 1-point 65 10° 36 102 55 10?2
MEM 4-point 84 104 66 10° 15 10?2
MEM 10-point 11 10* 24 10°%® 57 10°
MEM 24-point 16 10°% 27 10°%® 2.8 10°

MEM{VED  1-pt/l-pt 1.0 10" 1.4 10 16 10

Table VI: Relative error in the H' seminorm for the three-dimensional elastostatic patch tests.

Method Gauss rule Regular Distorted Unstructured
MEM 1-point 39 102 38 10! 71 10!
MEM 4-point 54 10°® 76 102 23 10!
MEM 10-point 66 10* 26 102 88 10?2
MEM 24-point 12 102 26 102 49 10?2

MEM{VED  1-pt/l-pt 45 10" 61 108 77 10
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according to the analytical solution given by Timoshenko and Goodier[33]:

Py , 3D2
= L +(2+ = 1+ :
Ux GE| (6L  3x)x+(2+ )y > @+ )
= 3y3(L x)+@BL x)x% ;
Y BEI ’
where E = E= 1 2 with the Young's modulus setto E = 107 psiand = =(1 ) with

the Poisson's ratio set to = 0:3; L = 8 in. is the length of the beam, D = 4 in. is the height of
the beam, and| is the second-area moment of the beam section. The total load orhe traction

boundary is P = 1000 Ibf.

2

Py

2

Figure 7: Model geometry and boundary conditions for the cantileer beam problem.

In order to set the scaling parameter in the stability sti ness, a sersitivity analysis of in the
H?® seminorm is performed over the background mesh shown in Figur&(c). The basis function
support parameter is set to =2:0 in the Gaussian prior weight function. The sensitivity analysis
is shown in Figure 9, where a minimum is attained at around =10 4. Smaller values for  give
almost the same error. The reference error value for the thre@ode FE triangle is also shown in the
plot. =10 “is adopted in the remainder of this example.
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@) (b) (© (d)

Figure 8: Sequence of background meshes used for the convarge study on the cantilever beam

problem.
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Figure 9: Cantilever beam problem. Sensitivity analysis of in the H! seminorm.

The next study is devoted to comparing the convergence rates it are delivered by the MEM
using various standard Gauss integration rules and the MEM-VED approach upon mesh re nement.
Results for the three-node FE triangle are also shown for referae purposes. Convergence plots are
shown in Figure 10. From Figure 10(a), we observe that theL ? rate using the MEM-VED scheme is

optimal, whereas the MEM needs a 3-point Gauss rule to deliver the ojimal rate with comparable
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accuracy. The convergence rates in thél * seminorm are shown in Figure10(b), where it is observed
that the MEM-VED approach delivers a convergence rate that is hicher than the optimal rate of 1,
which is, however, not surprising since the convergence rate in mbkee methods can be a ected by
the support size of the basis functions. The support size is contited by the parameter , which in
this example was set to 20. On the other hand, the convergence for the MEM behaves ertially for
1- and 3-point Gauss rule with poor accuracy; a 6-point Gauss rule iseeded to recover the optimal
rate with an accuracy comparable to MEM-VED approach. It is also evident from these plots that
the accuracy of the MEM-VED method is superior to the accuracy d the classical three-node FE
triangle.

A nal study is performed to investigate the e ect of the support size of the nodal basis function.
Three values are considered for . The resulting rates of convergence are provided in Figurell,
where it is observed that the convergence rates in thé.2 norm and H! seminorm are optimal for

all three values of .

6.2.4. Pressurized thick-walled cylinder. Rates of convergence are studied for the problem of a
pressurized thick-walled cylinder. Figure 12 depicts the geometry and boundary conditions. The
sequence of unstructured meshes used in the study are shown ingire 13. The cylinder is assumed
to be su ciently long so that plain strain conditions are valid. The exac t solution to this problem

is obtained from the analytical solution in the radial direction and is given by [34]

_ @+ p r3 .
“EEw oy ¢ 20

wherer; r rq is the radius of thick-walled cylinder with r; =3 in. and r, =9 in; the Young's
modulus is set toE = 1000 psi and the Poisson's ratio to = 0:3. The internal pressure is set to

p=1 psi.
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Figure 10: Rates of convergence for the cantilever beam problenOptimal rates of 2 and 1 in
the L2 norm and the H! seminorm, respectively, are delivered by the MEM-VED approach. The
convergence in theH! seminorm behaves erratically for the MEM method using 1- and 3-poih

Gauss rules due to integration errors; a 6-point Gauss rule is needeo recover the optimal rate.
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Figure 11: Rates of convergence for the cantilever beam problemsing the MEM-VED scheme.
Three values for the support parameter are chosen in the Gaussian prior weight function. Optimal

convergence rates in the_? norm and the H! seminorm are obtained for all three cases.

To set the scaling parameter in the stability stiness, a sensitivity analysis of in the H?!
seminorm is performed over the background mesh shown in Figure3(d). The basis function support
parameter is setto = 2:0 in the Gaussian prior weight function. The sensitivity analysis is showm
in Figure 14, where a minimum is attained at around =10 “. Smaller values for  give almost
the same error. The reference error value for the three-node - triangle is also shown in the plot.

=10 *is adopted in the remainder of this example.

We compare the convergence rates that are delivered by the MEMdf various standard Gauss
integration rules and the MEM-VED approach. Results for the three-node FE triangle are also
included for reference purposes. The basis function support pameter is set to = 2:0 in the

Gaussian prior weight function. Figure 15 presents the convergence rates for the MEM and the
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Figure 12: Model geometry and boundary conditions for the preasrized thick-walled cylinder

problem.

@ (b) (© (d) ()

Figure 13: Sequence of background meshes used for the convamnge study on the pressurized thick-

walled cylinder problem.

MEM-VED approaches, and the three-node FE triangle. It is obseved that the optimal rates of
convergence are delivered by the MEM-VED approach in both thel.?2 norm and the H* seminorm.
On the other hand, for the MEM approach, the convergence in theH® seminorm is erratic for 1-

and 3-point Gauss rules, and 6-point rule is needed to recover theptimal convergence rate. A
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Figure 14: Pressurized thick-walled cylinder problem. Sensitivity andysis of  in the H* seminorm.

similar trend is observed for the L2 norm. It is also evident that the MEM approach with 1-point
and 3-point rules is less accurate than the MEM-VED scheme. The suerior accuracy exhibited by
the MEM-VED approach over the classical three-node FE triangle isalso evident in these plots.
A study to investigate the e ect of the support size of the nodal basis function is conducted.
Three values are considered for . The rates of convergence are provided in Figurd 6, where it is
observed that the optimal rates of convergence are delivered bihe MEM-VED scheme in both the

L2 norm and the H! seminorm for the three values of .

6.2.5. In nite elastic stratum. As the last example, we consider the problem of an in nite elastic
stratum subjected to a uniform pressure on the top surface ashown in Figure 17. In addition, the
gravitational eld of magnitude g = 9:8 m/s? acts over the stratum. The height of the stratum

is h =1 m and the uniform pressure isq = 10° Pa. Given the in nite length along the x and z
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Figure 15: Rates of convergence for the pressurized thick-wallecylinder problem. Optimal rates of
convergence are delivered by the MEM-VED approach in theL? norm and the H! seminorm. The

convergence in theH' seminorm is erratic for the MEM approach due to integration errors
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Figure 16: Rates of convergence for the MEM-VED scheme for theroblem of a pressurized thick-
walled cylinder. Three values for the support parameter are chosen in the Gaussian prior weight

function. Optimal rates of convergence are obtained for all thre cases.

directions, the stratum is cut through the planes (3;y;z) and (x;y; 3), which results in an analysis
domain whose dimensions are 3 1 3. We consider a sequence of unstructured meshes, which is

shown in Figure 18. The exact solution for this problem is obtained from Reference 16]:

Ux = Uz =0;

u= 020 g L oy

where the Young's modulus isE =4 10’ Pa, the Poisson's ratio = 0:3, and the density of the
stratum is = 1900 kg/m?. The exact solution u, = 0 is applied on the boundary at x = 3 and
the exact solution u, = 0 on the boundary at z = 3. Although the in nite elastic stratum can be

readily solved using a one-dimensional model, it illustrates the large eors that are introduced by
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the standard Gauss integration in three dimensions.

Figure 17: Model geometry and boundary conditions for the in nite elastic stratum problem.

As in the previous examples, the scaling parameter in the stability sti ness is set after performing
a sensitivity analysis of  in the H! seminorm. The background mesh that is shown in Figurel 8(c)
is used in the analysis. The basis function support parameter is chen as = 2:0 in the Gaussian
prior weight function. The sensitivity analysis is shown in Figure 19, where a minimum is attained
ataround =10 4. Smaller values for  give almost the same error. The reference error value
for the four-node FE tetrahedron is also shown in the plot. =10 “is adopted in the remainder
of this example.

A study is conducted to compare the convergence rates that arelelivered by the MEM using
various standard Gauss integration rules and the MEM-VED formulation upon mesh re nement.
The basis function support parameter is set to = 2:0 in the Gaussian prior weight function.
Figure 20 presents the convergence rates for both the MEM and the MEM-\ED approaches, and

the four-node FE tetrahedron. It is observed that the optimal rates of convergence are delivered by
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Figure 18: Sequence of background meshes used for the conwmge study on the in nite elastic

stratum problem.

the MEM-VED formulation in both the L2 norm and the H' seminorm. For the MEM approach,
not only is the convergence erratic for the complete sequence ofdass rules (even a 24-point Gauss
rule is inadequate), but it also exhibits poor accuracy. This is a someWwat expected behavior since
integration errors are signi cantly more pronounced in three dimersions p0]; and when comparing
the MEM-VED approach with the classical four-node FE tetrahedron, superior accuracy is exhibited
by the former. We emphasize that in three dimensions, the MEM-VED formulation only needs a
total of four Gauss points to evaluate basis function | derivatives are not needed | on the faces of
the cell, which can be exploited for computational e ciency. Figure 21 provides the computational

cost of the proposed MEM-VED formulation and the MEM approach using various standard Gauss
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Figure 19: In nite elastic stratum problem. Sensitivity analysis of in the H! seminorm.

integration rules. It is observed that for the same CPU time the MEM-VED approach o ers much
better accuracy than all the MEM cases. It is also observed that he computational cost of the MEM-
VED approach is about the same as the computational cost of the EM with 4-point standard
Gauss rule, but its accuracy is far superior. Hence, this example keals the better performance of
the proposed MEM-VED formulation over the standard MEM approach.

Finally, three values for are considered to study the e ect of the support size of the nodbbasis
function in three dimensions. The resulting rates of convergencera provided in Figure 22, where it
is observed that the optimal rates of convergence are deliveredylthe MEM-VED scheme in both

the L2 norms and the H1 seminorm for all three values of .

6.2.6. Numerical stability. To assess the stability of the proposed meshfree method using the

virtual element decomposition, eigenvalue analyses are performed linear elastostatics using the
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Figure 20: Rates of convergence for the in nite elastic stratum poblem. The MEM-VED method
delivers the optimal rates of convergence in theL? norm and the H!' seminorm. For the MEM

method, integration errors lead to erratic convergence and pooaccuracy.
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Figure 21: Computational cost of the meshfree schemes in the in ite elastic stratum problem. The
computational cost of the MEM-VED approach is about the same asthe computational cost of the

MEM with 4-point standard Gauss rule, but its accuracy is far supetior.

data of the in nite elastic stratum problem (see Section6.2.5). The basis function support parameter
is chosen as = 2:0. The three-dimensional eigenvalue analyses deliver six zero eigatwes for both
the MEM and MEM-VED methods, which correspond to the six normal rigid body modes. The
three mode shapes that follow the six rigid body modes are depicted iRigure 23. Figures 23(a) (c)
depict the mode shapes for MEM with 1-point Gauss rule and Figures23(d){ (f) for MEM with

24-point Gauss rule. Although the sixth and seventh mode shapes &tk smooth for both MEM cases,
the stability issue due to integration errors in the standard Gauss inlegrated sti ness appears in the

ninth mode. In stark contrast, Figures 23(g}{ (i) show the smooth mode shapes that are obtained
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Figure 22: Rates of convergence of the MEM-VED method for the imite elastic stratum problem.
Three values for the support parameter are chosen in the Gaussian prior weight function. The

MEM-VED approach delivers the optimal rates of convergence forall three cases.

in the MEM-VED approach.

7. CONCLUDING REMARKS

In this paper, a new methodology for meshfree Galerkin methods that precludes integration
errors was presented. Maximum-entropy meshfree basis functis were adopted, and the stability
and consistency of the numerical solution are inherited by appealingto the virtual element
decomposition B]. We referred to this new approach as MEM-VED. In the MEM-VED fo rmulation,
a new sti ness matrix is realized as the summation of a consistency shess and a stability sti ness.

The sti ness matrix is then used in the weak form. Several numerichexamples were presented for
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Figure 23: Three dimensional eigenvalue analyses. Depiction of théhtee mode shapes that follow

the six rigid body modes. (a)-(c) MEM (1-pt), (d)-(f) MEM (24-pt ), (9)-(i) VEM-VED.

the Poisson and linear elastostatic problems using Delaunay tesselians (three-node triangles and
four-node tetrahedra) as background cells for numerical integation of the sti ness matrix.

The numerical examples were tailored to compare the performancef the MEM-VED approach
and the standard MEM. In the MEM-VED formulation, the integratio n of the consistent and
stability sti ness matrices requires 1-point Gauss rule per face of he cell and only involves the
evaluation of basis functions (no derivatives are needed); and dutd the particular choice adopted

in the construction of the stability sti ness in the Poisson problem, an additional 1-point Gauss
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rule in the interior of the cell is required for the integration of this sti ness. The numerical results
reveal that only the MEM-VED approach provides patch test satisfaction to machine accuracy.

In the standard MEM, the convergence rates are problem depereht as summarized as follows:
in the two-dimensional Poisson problem, 3-point Gauss rule was reqred to obtain the optimal
rate of convergence in theL? norm and 12-point Gauss rule for optimal convergence in theH !
seminorm; in the cantilever beam problem, 3-point Gauss rule was ragred to obtain the optimal
rate of convergence in theL? norm and 6-point Gauss rule for optimal convergence in theH?!
seminorm; in the two-dimensional pressurized thick-walled cylinder6-point Gauss rule was needed
to obtain the optimal convergence rates in both theL. 2 norm and H! seminorm. In three dimensions,
the inaccuracies that are introduced by the quadrature errors vere manifested by large errors and
erratic convergence | even an expensive 24-point Gauss rule proed to be insu cient. On the
other hand, the MEM-VED formulation delivered the optimal rates of convergence in two and
three dimensions. Finally, we conducted numerical eigenvalue analgs to establish the stability of

the three-dimensional MEM-VED formulation.

APPENDIX A: ON THE CHOICE FOR THE PROJECTION OPERATOR

We brie y explain the particular form of the projection operator ch osen in the Poisson problem.
The procedure is given in Referenced[l]. We start by showing that (178 can be obtained from (L5).

Sincep 2 P (E), its gradient is a constant vector, and therefore (L5) becomes

Z
JEjfrpr u=rp r udx: (46)
E
The constant part of p leads to the equality 0 = 0 in (46) (and thus in (15)) leading to its

indeterminancy. To x this, we rst consider the linear monomials p; = fx; X, x3g" and the
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constant monomial is treated separately. On replacingp = p; into (46) and applying the divergence
theorem yields

Z Z

1 1
r u = — rudx = — un dS = g(u): 47
IE] E IE] @E o) “7)

Hence, the following projection veri es (47):
u =x g(u+c (48)

where c is a constant function that depends onu. This means that (48) is de ned up to a constant
and explains why the constant monomial needs to be treated sepately. To nd c, we need a

projection operator onto constants de ned as
0:W(E)! R; o(u u=0 8u2W(E): (49)
A typical choice for ¢ is given by [3]]
u= 1 u(xy); (50)
oy — ﬁ J)

J=1

which is the same as the mean value ofi over the vertices of the integration cell computed

through (12). Now, we apply (49) to (48) to obtain:
o(u )= ofx) guy+ oc= ou (51)

Due to the de nition of ¢ in (50) and that c is a constant function, oc= c. Also, ou=u
and o(x) = x, where the bared quantities are exactly as de ned in {2). By using the preceding

equalities, the constant function ¢ can be obtained from 61) as follows:
c= ou  o(x) g(u)=u x g(u): (52)
Finally, on substituting ( 52) into (48) leads to

u =(x x) glu)+u (53)
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which is the choice given in (L73).
Equation (53) also satis es (14) since
Pp1=(x x) g(p)+ pr=1(X X)+X=X=pg

whereg(p1) = | has been used by virtue of 47).
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