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Abstract

A meshfree method for nonlinear analysis of two-<sional reinforced concrete structures
subjected to monotonic static loading is presenidte concrete model is implemented in the
context of the smeared rotating crack approach.siifess-strain relationship for steel bars accounts
for the surrounding concrete bonded to the bars{tenstiffening effect). The principle of virtual
work (variational form) is used to setup the noadinsystem of equations. Maximum-entropy basis
functions are used to discretitee two-dimensional domain and background cellsaai@pted to
facilitate the numerical integration. The generdizlisplacement control method is implemented to
solve the nonlinear system of equations and toirlkee softened structural response beyond the
maximum load capacity. The proposed meshfree metbgd is used to study the nonlinear
behavior of reinforced concrete shear walls. Compas with experimental data and finite element
analysis indicate that the proposed maximum-entmogghfree method is a viable approach for

nonlinear simulations of planar RC structures.

Keywords. generalized displacement control method, meshfiethod, maximum-entropy basis

functions, nonlinear static analysis, reinforcedaete, shear wall.

1. Introduction

The response of reinforced concrete (RC) structigrggically solved within the framework of the
finite element (FE) method, thus requiring a pridiscretization of the domain through the
definition of a mesh. Because of the intrinsic (getrical and/or material) nonlinearities in most
problems of practical interest dealing with RC stuwes, significant effort has gone into improving
existing models for simulating RC behavior as vasl enhancing the accuracy and reliability of
solutions obtained by FE methods. On the contnaeyy little effort has gone into exploring new
numerical methods for the analysis of RC structtiines may have the potential to establish new

and effective paradigms in modern structural anslys
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To this end, meshfree (or meshless or element-freethods are gaining popularity as effective
tools for advanced numerical analyses. To date hfrees methods are routinely used for very
specialized applications in computational and sofidchanics. In contrast, less effort has been
devoted toward applying meshfree methods in comstmctural engineering problems.

In order to explore the viability of meshfree-basminputational tools in the field of structural
engineering, Yaw and co-workers [1] presented addd FE and meshfree Galerkin approximation
scheme to study the inelastic response of plared Bmes withJ, plasticity. The same authors
also proposed a meshfree co-rotational formuldmomwo-dimensional continua in the presence of
small strains with elastic and elasto-plastic makebehavior [2]. Current trends in meshfree
applications on the analysis of RC structures asglgnexploit their natural ability in modeling
static or dynamic fracture phenomena in brittleanats. For instance, Rabczuk and co-workers [3]
presented a geometrically non-linear three-dimerai@rack method in which the element free
Galerkin (EFG) method was used for concrete mogghncohesive zone model was adopted after
crack initiation and the reinforcement (modeledtiags or beam elements) is connected by a bond
model to the concrete. A coupled FE-meshfree metvelalso presented by Rabczuk and Eibl [4]
for the analysis of pre-stressed concrete beams.

In this paper, a meshfree method is developed &limear analysis of two-dimensional RC
structures subjected to static monotonic loading.tfis end, concrete modeling issues are first
addressed (Section 2), and then the adopted modeliricracked, partially cracked and fully
cracked concrete under plane stress conditioresenited. This is followed by the description of the
steel constitutive model (Section 3). In Sectiothé, meshfree-based nonlinear system of equations
is derived from the variational weak form, and mmaxm-entropy basis functions are used to
discretizethe domain. Subsequently, the adopted numericategly to solve for the resulting
nonlinear system of equations is discussed. Ini@e&t the validity of the method is demonstrated
through comparisons with experimental data and ridtyais of shear walls subjected to monotonic
static loading. Finally, some closing remarks aeglenin Section 6 on the future development of the

present work.

2. Concrete modeling

2.1. Modeling of cracked concrete
The FE analysis of RC structures needs an appte@pmproach for modeling cracked concrete, e.g.
smeared crack [5] and discrete crack approachesSf6¢ared crack based models tend to be more

popular than the discrete crack models due to thmgiroved ability to account for multi-axial stress
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states in concrete, and also because they areaoovenient from a programming point-of-view. A
smeared crack approach is intended to preserveahgnuity of the displacement field over the
domain of influence of the cracked node by reprissgrmany (fictitious) finely spaced cracks
parallel to the dominant discrete (real) crack.Wfitis continuum approach, the local displacement
discontinuities at cracks are artificially smeaos@r the tributary area, and the behavior of crdcke
RC is represented by average stress-strain resafiiwrboth concrete and steel.

Although meshfree methods provide an effective rbigmal background to deal with discrete
representation of cracks, the use of a smeare#t efgroach aims at supporting future blended FE-
meshfree approaches for nonlinear analysis of RQctstres. In fact, as long as standard FE
methods have strong limitations in discrete crackleting, a smeared approach can be used in both
FE and meshfree domains, thus providing a unicaradiwork for concrete crack modeling.

A pure smeared rotating crack model is hence adaptehis study. Several studies demonstrate
that smeared crack models for RC modeling are phlgiconsistent and show good agreement
with experimental data. On the other hand, it il @own that FE analyses using work-softening
brittle materials within smeared crack models shmgnificant mesh-sensitivity problems. Our
preliminary analyses of unreinforced concrete stm@s with smeared crack models revealed that a
similar issue also occurs in meshfree methods.ahtiqular, it was found that the load capacity
decreases moderately as the nodal spacing reduceseag the slope of the softening branch
increases considerably, which is consistent withdfalyses [7]. To alleviate the above issues,
averaging concept in tension stiffening [8] and ¢h&ck band model [9,10] are implemented. The
width h of the crack band is assumed to be equal to thareqoot of the area of the domain of
influence for rectangular shapes or to its diameteéhe case of circular shapes. The stress-locking
problem in the vicinity of dominant cracks thatafributed to the smeared crack model can be
reduced by employing the smeared rotating crackemadhich is more popular than the smeared
fixed crack model [5,8,9].

2.2. Constitutive matrix for concrete

The x-y coordinate system represents the geometrical owies$ at the integration point. On the
other hand, the 1-2 coordinate system represerm@snibchanical (local) coordinates at the
integration point and coincides with the principgtess directions. Plane stress condition is
assumed and the angle betweenxtlagis and the 1-axis is denotedfadt has been experimentally
observed that directions of principal strains ia toncrete deviate somewhat from the directions of
principal stress, Vecchio and Collins [11] conclddiat it is a reasonable simplification to assume

that the principal strain axes and the principedsst axes for the concrete coincide. et {&, &,



yXy}T be the strain in the geometrical system of refegei herefore, the following transformation
holds

€1y = T, (6)8 (1)

in whichgu2)={e1 & v12} | is the strain vector in the local system of refiereandT (0) is the strain
transformation matrix. For the implementation pehoe in this study, a tangent material stiffness
matrix is considered [8,12]. The relation betweecrémental stressesgh={do; do, dri} ' and
incremental strainssg»={de; de, dy15} " in the 1-2 coordinate system of reference is

do(, = D08y (2)

Referring to the principal axis 1-2, it is assuntieat the tangent constitutive matid for concrete

before cracking takes the form [13]

1 Ecl vV V EclEc2 O
Dc = 1 2 V\] EclECZ Ec2 O (3)

Y 0 0 (1—v2)G

c

in which E andE.; are the concrete tangent mod@i, is the shear modulus amds the Poisson
ratio. Once concrete cracking is initiated eithref +direction or 2-diretion, the tangent constitati

matrix given by Eq. (3) is replaced with the foliogy

E, 0 O
1
Dc:l_V2 0 E, O (4)
0 0 G

C

as in Ref. [12]. As the loading progresses, a tstreared cracks fully opens into the concrete. In

this case, Eq. (4) is replaced with the followidd]

0 0 O
D.=|0 E, O (5)
0 0 uG

where E.; is the tangent modulus of concrete parallel to dreck direction and. is the shear
retention factor introduced to provide for sheation across fully opened cracks. Various forms of
this shear factor have been proposed until now. é¥@w numerous analytical results have
demonstrated that the particular value chosen ftretween 0 and 1) does not appear to be critical,
but values greater than zero are suggested tomgrauenerical instabilities [9,14].



Upon further loading, a second set of smeared sraak form in the direction normal to the first

set of smeared cracks. In this case, the consttatiatrix is:

(6)

O
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Moreover, when the concrete strain exceeds thmaté concrete strain in compression in one or
two directions, concrete failure by crushing occumsthis case, the element is assumed to lose its
strength completely and is not able to carry anyenstress. Because of material nonlinearities, all

guantities in the above constitutive matrices Uguary as functions of the stress and strain §eld

2.3. Concrete strength due to confinement effect
Let fc be the uniaxial concrete compressive strengthegtite concrete strain &. For unconfined

concrete, f, = f, and e, =¢€_, in which f and €, are the uniaxial compressive strength and the

corresponding strain for concrete without (or withodest or inefficient) confinement
reinforcement. It is well known that the uniaxiabncrete compressive strength and the
corresponding strain increase if appropriate camiant reinforcement is provided. To account for
this phenomenon, the model proposed by Hoshikurdaasworkers [15] is considered

f.=f. +3.8p,f,,

f 7
e =0.002+ 0.038, P2 vz (7)

fl

C

where fy, is the yielding stress of the confinement reindonent andp, the confinement
reinforcement ratio. Parametarsandc, depend on the shape of the confined section. ¢igere
sections, Hoshikuma and co-workers [15] suggesied 0.2 andc, = 0.4. It is assumed that

confinement has no effect on concrete tensile gthen

2.4. Concrete strength under biaxial stress
It is well known that the concrete strength sigrafitly depends on the current stress-strain dtate.
is assumed that both the uniaxial concrete compeessrength and the corresponding strain

depend on the current stress- and/or strain-stake @onsidered integration point, i.e.,

f =af (8)

cp c

€, =OE, 9

wherea is the scaling factor depending on stresses ainstin the assumed principal directions.
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The strength enhancement factor for concrete stdgjedo compression in the 2-direction, arising

from the compressive stressacting in the 1-direction, is given by [16]:

2
a=1+092| -2 |-0.76) -2 | | (10)
f f

C

Similarly, the strength enhancement factor for cetecsubjected to compression in the 1-direction,
arising from the compressive stressacting in the 2-direction, is given by

2
a=1+092| -22 |-076| - 22 (1)
f f

c

In the tension-compression state, the major praigpress is tensile and it reduces the compressive
strength in the minor principal direction. In tltase, the scaling factor adopted in this studystake
the form
1

a :—5S1 (12)

0.8+ 0.34*

aC

wheree, is the principal tensile strain. It is assumed titee concrete tensile strength does not
depend on the stress-strain state.
2.5. Relationship between biaxial strainsand uniaxial strains

The uniaxial straing,,, ={€, &, V. are obtained from the biaxial strains as followS[5
Ty = Ve (13)

The adopted projection matix is

1

V12

1_V12V 21

1-v 1Y 21
1

V - V21
1_V12V 21

0

1-v 1Y 21
0

0

0

1

(14)

A lack of agreement exists on the numerical vatodse used fovi, andv,;. He and co-workers [5]

consideredn, = vo; = v, as is common in most of the existing literatue. the contrary, Zhu and

Hsu [17] experimentally observed that the Poisdbeceis characterized by the Poisson ratio for

concrete before cracking wherees andv,; are different fromv when concrete cracks, and



introduced the Zhu/Hsu ratios to replace it. A# @ibove cited studies, however, claim that thd fina
comparison with experimental data is satisfactdryerefore, it seems that more experimental
investigations are needed to resolve this issuéowing a conventional approach, in this studysit i
assumed that ;= vo1=v.

As the current strength of concrete is calculatetbading to the biaxial stress state, the uniaxial
stress-strain relationship reflects the biaxiabsdrstate. Therefore, once the uniaxial strains are
obtained and the concrete compressive strengthodified accounting for the biaxial stress state,

the tangent modulukg; or E; can now be obtained by differentiating the unibxianstitutive

stress-strain relationship for concretg(,) with respect tce, =€, or €, =&,, respectively.

2.6. Stress-strain relationship for concrete in tension

The response of concrete in tension is usuallyrdeghas linear until the tension strenggthas
been reached, and is described by a Rankine-tyipeigde stress criterion. At straigy, crack
initiation and localization of a narrow process easccurs. Subsequently, a softening behavior
starts and it is usually modeled as a straight, lmeiecewise linear branch, or a descending-
exponential curve. In this study, the stress-stralation for concrete in tension is based on the

model proposed in Ref. [18]
o (e)=7 w= (15)

which is shown in Fig. 1. In Eq. (15 is a (positive) shape parameter dggh is the initial

Young’s modulus for concrete in tension. To redtlee lack of objectivity in the smeared crack
model, the crack band theory by Bazant and Oh id0ften adopted for the purpose of modeling
tension in concrete [9,18,19]. Givé&®s, the modd- fracture energy of concrete, if the following

condition is satisfied

Gf ECtO

h<——, (16)
fct
then the shape parameters
G
= -, a7)
hf, 2

If Eq. (16) is not fulfilled, then Bazant and OhO[lproposed to modify the concrete strength in

tension as follows



fct — /ZthEcto (18)

along with a vertical post-peak stress drop ofdtress-strain relationship for concrete in tension.
Since a tangent-based implementation is usedsrstbdy, a vertical post-peak stress drop may lead
to numerical problems. Therefore, an exponentiatpeak softening response is still adopted as in
Eq. (15) and the concrete strength in tension gbxeieq. (18). In doing so, the shape parameter
and the ultimate strain of the concrete in tensignare now pure material parameters, and their
numerical values should be quite small in orderapproximate a vertical stress drop without
causing numerical instabilities.

Finally, the modd-fracture energy of concre(: is calculated as specified in the CEB-FIP model
code [20]

Mj | 19)

Gf[N/mm]:af( 0

with o :10'3(1.25dmax[mrﬂ+ 1(), where dmax IS the maximum aggregate size in concrete.

Because of the lack of reliable experimentallytwalied models, it is assumed that the fracture
energy of concrete does not depend on confinenitatt @r biaxial stress states.

2.7. Stress-strain relationship for concrete in compression

The uniaxial strain-stress relationship propose®bpovics [21] is used in this study for concrete

c)__ B_ B@fm
B—1+(|8C|J 8CP

€p

(20)

wherep > 1 is a shape factor (see Fig. 1).
The softening branch for confined concrete is medlels proposed in Ref. [15]. In doing so, the

post-peak Popovics’ model is replaced with a shvidige having a slope:

N2
E, :11.2ﬂ. (21)
pz fy,z

The model for confined concrete is illustrated ig.A. Concrete failure by crushing occurs once
the ultimate strain of concrete in compressiorclseved..



2.8. Shear modulusfor concrete
Darwin and Pecknold [13] provided a rational tarigdrear modulus to be used in Eqg. (3) in such a
way that the results are independent with resgeekis rotation. The pre-cracking shear modulus

for concrete in this case is

_ 1
G, —m(Ecl’fEcz 2V EclEcz) (22)
Several analytical, semi-analytical and empiriaainfulations have been proposed for the post-
cracking tangent shear modulus of concrete. Inghidy, the post-cracking value of concrétes

calculated as proposed in Ref. [22]

G, -_0.70, (23)

2(g, -¢,)
2.9. Poisson ratio
The Poisson ratiov for concrete typically ranges between 0.15 and ,0/2& it has been
experimentally observed that the Poisson ratio @gmends on the current strain and stress states. A
value for the Poisson ratio about 0.20 has beewrsho be quite satisfactory for monotonic loading
in tension-tension and compression-compression. [Bicause of the lack of well-settled

experimental evidence, a constant Poisson raissamed in this study.

2.10. Unloading-reloading scheme for concrete

Unloading-reloading can locally occur in concretereunder monotonic loading. It may be due to
numerical issues (during iterations to achieve ldium) which depend on the smeared rotating
crack model. Furthermore, a realistic RC struchas the ability to redistribute stress after alcrac
opens, which often leads to unloading in the cdecré&o this end, the simplified unloading-

reloading scheme adopted by He and co-workers iR2aksumed in this study to deal with RC
structures subjected to monotonic loading (see Big.This simple unloading-reloading scheme
provides satisfactory results for cyclically loade@ structures with typical steel reinforcing ratio

[5]. On the contrary, it is observed a significatifference for low steel reinforcing ratios.

Therefore, this unloading-reloading scheme is gaeable simplification for monotonic loadings
only, because the accuracy at the structural isvedt affected.



3. Modeling of steel reinfor cement

3.1. Constitutive matrix for reinforcement

Longitudinal reinforcing steel bars are treatechasequivalent uniaxial layered material placed at
the depth of the centerline of the bars and smeaved the region of bar effect [8,14,24,25]. As
many layers are used as there are layers of b#ng icross section, each with its uniaxial properti
oriented along the axis of the bars. The tangensttotive matrix for thekth steel reinforcement

layer is
PgEs 0 O

De=| 0 00 (24)
0O 0O

in which p« is the reinforcement ratio arilk the tangent modulus for theh steel reinforcement
layer, both varying as function of the current istristate. A perfect bond between the concrete and
the reinforcement is assumed. Steel bars werenadgteled as smeared reinforcement with perfect
bond by Bao and Kunnath [25] for post-peak FE-bas®alysis of two-dimensional RC structures
under monotonic loadings. Since the bond degradadioreinforcing bars is one of the most
important issues in assessing the seismic perfazenahRC structures, the bond-slip between the
concrete matrix and the reinforcement needs to béeted appropriately when considering cyclic
loadings.

For each reinforcement layer, the uniaxial strainsteels, are calculated from the uniaxial strains

of concreteg, in Eq. (13) as follows:
%, =T,(6,0, )%, (25)

where T46,0«) the strain transformation matrix aig is the angle between theaxis and the
centerline of the bars belonging to tkib reinforcement layer. Therefore, the tangent rheslbg
can be now obtained by differentiating the uniaxaahstitutive stress-strain relation for steel

o, (€,) with respect tce, =€, . The straing, will be the first element of the vect@, calculated

in Eq. (25).

3.2. Stress-strain relationship for reinforcing steel

A stress-strain relationship for steel bars embéddde&oncrete is somewhat different from that of a

bare steel bar because the surrounding concretdedao the bar causes tension-stiffening effect.

As a consequence, the smeared stress-strain nslaifioof steel bars embedded in concrete must be
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obtained by averaging the stresses and strainsebatwwo cracks. In this study, the envelope

stress-strain relation adopted by Mansour and cdeve [26] is assumed

E,E, if [g|<e,
(&)= fy[(0.91— 2B)+{0.02+ 0.2B§—SD if [g|>¢, (20)
y
e, =¢,(0.93- B) (27)
B=(f,/1,)" /max{p,,0.25%) (28)

whereEy is the initial (elastic) modulus of stepl the reinforcement ratidy the yielding stress and
gy the yielding strain. The model is illustrated igFR. All these quantities are referred to the
correspondingdgth reinforcement layer. The ultimate strength arificrcing steel is denoted &s.

A simple bi-linear elasto-plastic hysteretic modéh kinematic hardening is adopted to model the
unloading-reloading behavior of reinforcing steatd) see Fig. 2. This simplified model is routinely
used in modeling reinforcing bars in RC structus;h as in Kabeyasawa and Milev [12] for
modeling RC shear walls subjected to cyclic loaginglthough more accurate models were
recently proposed to describe the unloading-ref@adiehavior of reinforcing steel bars, this
simplified scheme provides satisfactory resultsthe structural level under the assumption of

monotonic loading.

4. Variational formulation and discrete equations

4.1. Equilibrium equation

The variational weak form is formulated in the gbl-y coordinate system. The displacement

approximatioru” is of the form

u"=@'d (29)

in which @ is the matrix that consists of meshfree basistfans andd is the vector of nodal
parameters. The strain-displacement relation is

¢ =Bd (30)

whereB is the strain—displacement matrix. The weak fopnngiple of virtual work) for problems

in structural mechanics leads to the equilibriuraatipns:

etf —nf = Q (31)
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where®f is the vector of external loads

etf = j ®"bdQ + j o"tdr (32)
Q

rl
and'™f the vector of internal forces

ntf = j B'6dQ (33)
Q

In Eq. (32) and Eg. (33) is the body force vector acting @& t the prescribed traction on the
natural boundary; ande = {ox oy cxy}T the stress vector. Generally Eg. (31) is a noalirsystem

of equations, because the unknown stress field n®rdinear function of the strain field. As a
consequence, an appropriate incremental-iterativeenical procedure has to be adopted to solve

for the unknown displacement field. The incremeiteative form of the equilibrium equation is
KijyAd) = AN +r (34)

in which i denotes the current load increment sjfejs, the current iteration numbeﬁdij is the

increment of the vector of nodal parametéfs, is the reference external load vectak); is the

load increment parameter (proportional static Ing):iiri(j_l) is the unbalanced force vector
i _ extgi _intgi
"y = Ty ™ Ty (35)
In Eq. (34),Ki(j_1) is the tangent stiffness matrix formed at the beigig of thejth iteration and it is
based on the known information carried out at fré)th iteration. It is obtained as an assembly

process of the 2x2 nodal tangent stiffness matkggs';_1)
i — A i — A T i
Kiiy =AK, (d(j_l))_ﬁus,c(d(j_g)BJde (36)

wherel, J = 1,...n denote two nodes withi® andC(d'j_1) is the tangent constitutive in the global
system of referencey. The integral in Eg. (36) vanished iandJ do not belong to the same local
support domain. Ondéc(di(j_l)) anstk(di(j_]_)) are calculated as in Egs. (3)-(6) and in Eq.,(8®y
are rotated into the-y coordinate system, thus obtainiﬁg(dig_l)) and Csk(di(j_l)), respectively.

Having done so, the tangent constitutive maﬂwjxli(j_l)) in EqQ. (36) is

C(di(i—)) :CC(di(j—l))J’i::Csk (di(j—l)) (37)

whereny is the total number of reinforcing layers.
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Numerical integration based on background cellgsisd to evaluate the integrals in Eq. (32), Eq.
(33) and Eqg. (36). For example, the 2x2 nodal tahgéffness matriceKu(di(j_l)) in Eqg. (36) is
evaluated as follows

(38)

) N Mg .
K (dl(i-l)) = ;;wgBIT (XQg )C(ng;d'(j_l)) B, (XQQ)‘JQC

whereawy is the Gauss weighting factors for tjid Gauss pointg(= 1,...ng) atxgg andJy is the
Jacobian matrix for the area integration of thekigamund cellc (c = 1,...nc), at which the Gauss

pointXqq is located.

4.2. On the solution of the nonlinear system of equations

The main numerical issue lies in the solution e of equations which are nonlinear because of
the nonlinear behavior of, both, concrete and ceaihg steel. Moreover, it should be kept in mind
that limit points can occur in the final load-digpément curves due to material nonlinearities such
as work-softening or geometric nonlinearities. Aligh the maximum load capacity of a structure
is the main interest in structural analysis andgiedt may be important to investigate the entire
response even beyond the occurrence of a limitt peiorder to identify failure modes as well as
post-peak behavior.

Yang and Shieh [27] proposed the so-called GerzedIDisplacement Control Method (GDCM)
with Generalized Stiffness Parameter (GSP). CardosbFonseca [28] recently demonstrated that
the GDCM is an arc-length method with orthogonalstmaints. The method was originally applied
to geometrically non-linear analyses and the reswire found to be superior to most typical
solvers. Recent results regarding the FE analysi®&Qstructures [29] and in-filled steel-concrete
composite columns [30] demonstrated the validity tké GDCM in handling geometrically
nonlinearities and softening-working materials saskconcrete. In this work, the GDCM with GSP

is used for nonlinear meshfree analyses, and tls important steps are described below.

4.3. Generalized displacement control method

A convenient decomposition for Eq. (34) is thedaling

K{jyAd) = = (39)
Ki98d) =riy (40)
where

Ad, = AN Ad' +Ad! (41)
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Based on Eq. (41), the displacement increment r/emmb is determined by making use of the
meshfree basis functions and enforcing the essddisgplacement) boundary conditions. The total
displacement vector of the structure at the erttiejth iterationui,- is computed as

u'j :u'(j_) +Au'j (42)

The total applied load vector at tljign iteration of theith incremental steﬁ)“fij relates to the

reference load vectd¥'f as follows

extf} - extfi

extegi _ extgi
(o FATT =7

(o *ON, (43)
It is understood that the following initial conditis hold
K=K (™, =y = =)yt =y (44)

wherel is the last iteration of the last incremental step

The load increment parametﬁfki,- is an unknown and is determined by imposing a tcaim$
condition. For the first iterative stg¢p= 1, the GSP is introduced. For any load incremanj = 1,
GSP,' is defined as

(45)

Therefore, for any load incremeinat the first iterative step= 1, AX'; is determined based on Eq.
(45)

D\, = +AM}, |G| (46)

whereA\!; is an initial value of the load increment parametée sign in Eq. (46) depends on the
sign of the GSP. In fact, the GSP is negative émiyhe load step "immediately after” a limit point
whereas it will always be positive for the otheadosteps. This is becausg® thumerator is always
positive, but the denominator could be negatithéftwo vectors have different directiodfie GSP by
itself is a useful indicator for changing the lasglidirections. Therefore, initially letA'; be of the
same sign aar ™" if GSP; is negative, ther\'; is multiplied by —1 to reverse the direction of
the loading.

For the iterative stepr2, the load increment paramete?; is calculated as

14



(47)

Here, Aﬁf'l) is the displacement increments generated by fleeerece loadd at the first iteration
( = 1) of the (=1)th (previous) incremental step, amklﬁij and Al]ij denote the displacement

increments generated by the reference loads analamded forces, respectively, at flieiteration
of the ith incremental step. Note that meshfree basis ium&tare required to calculate the

displacement increments on solving the linear systéequations in Eq. (39) and Eq. (40). For the
first increment = 1, AG] will be taken equal ta\(;. A convergence criterion based on, both, the

incremental displacements and the unbalanced fgrctr is used. The flowchart of the numerical

method is shown in Fig 3.

4.4. Maximum-entropy basis functions
On denotingx, (a = 1,..m) as the nodal coordinates, the displacement fielig. (29) can be

rewritten as
u"(x) =2 @(x)d, (48)

There are many choices to define meshfree basistifuns, for example moving least squares
(MLS) approximants, radial basis functions (RBF)l anaximum-entropy (max-ent) approximants,
to name a few. An overview about the constructibmeshfree basis functions is presented in Ref.
[31]. The principle of maximum entropy postulateg Jaynes [32] on the basis of the Shannon-
entropy was recently exploited in order to construneshfree basis functions. Shannon-entropy
based construction of max-ent basis functions dggoems was proposed by Sukumar [33], and a
modified entropy functional was exploited by Arrogod Ortiz [34]. Introducing the notion of prior
weight function, Sukumar and Wright [31] obtaindéeé tmax-ent basis functions which generalizes
the entropy functional considered in Ref. [34]. Timst application of the maximum entropy
meshfree (MEM) method in the field of structuragereering is presented in Ref. [2].

Max-ent basis functions are promising because #reya convex combination and possess a
variation diminishing property as well as a wealo@cker-delta property on the boundary [34].
An implication of the weak Kronecker-delta propeidythat essential boundary conditions can be
imposed as in FE methods. This is a noteworthy mategge with respect to most meshfree
approximants (i.e., MLS), which require special hteiques to enforce essential boundary
conditions. Max-ent approximants also allow to bleRE and meshfree basis functions in a
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seamless fashion. For completeness, a short reabewt the derivation of max-ent basis functions
follows.

The max-ent basis functiong (a = 1,..m) are obtained by solving the following optimizatio

problem [31]

max{—zr::qg (x) In[ % ((f())} (49)

¢IRT

subjected to

> a(x)=1 (50)

> a(x)e.(x)=0 (51)

where&,=x,—x are shifted nodal coordinates ang(x) is the prior weight function (initial guess for

@). The first constraint in Eq. (50) imposes thetiian of unity property in order to represent dgi

body translations (zeroth-order reproducibilityjads functions that satisfy the set of constrams i
Eqg. (51) can reproduce a constant strain field #xadirst-order reproducibility). Once the
variational problem in Egs. (49)-(51) is solvedrhgans of the Lagrange multipliers technique, the

following result for the max-ent basis function®lgtained [31]:

2(x)= % (52)
where

Z, (x;m) = w, (x)exp{ -n"Z,} (53)
and

z(xn")= Z:: Z, (x") (54)

is the so-called partition function. The Lagrangeltipliers vectorn* is obtained by solving the
dual optimization problem

n’=argmin{ InZ (x;n)} (55)

nOR?
that leads to the following system of nonlinearaepns:
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m

0,InZ(n)=-> @(x)&.(x)=0 (56)

a

Standard Newton-based solvers can be used for5BYy.gdnd the convergence is typically very fast.
Once the converged Lagrange multipliers are calculated, the gradient of the max-ent basis

functions are evaluated as follows:

Ow, & Ow
0@ = HY-H?RA)+—2- ° 57
2=q|%.1 A (57)
where
i Lw,
A=> g, 0— (58)
b W,
andH is the Hessian matrix
H=0,0,InZ(n)=> ¢, 0¢, (59)
b
As the prior weight function, quartic polynomialse used in this study:
N2 3_ 4 <
w, ()= {0 T AT A= (60
0 q>1

where g =|x, =X|/r, andra is the radius of the basis function support atered

5. Validation

5.1. Analysis of RC shear walls

The nonlinear response of a variety of two-dimemaidRC structural elements under plane stress —
e.g., beams and shear walls — may be analyzed agsr# the MEM method.

Current approaches in modeling RC shear walls @wcléssified as follows [25]: beam-column
type models in which flexure is the dominant mofleesponse, multi-spring based macro-models
and FE based microscopic models. In this study,pittposed MEM method is adopted as an

alternative technique for the analysis of RC shells.

5.2. Comparison with experimental data
To verify the reliability of the presented meshfraethod, the large scale RC shear walls tested by

Lefas and co-workers [35] are investigated and migalkesimulations are compared to experimental
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results. In their work, Lefas and co-workers coaesd two types of RC shear walls having constant
thickness. Type | walls were 750 mm high, 750 mmdevand 70 mm thick. Type Il walls were
1300 mm high, 650 mm wide and 65 mm thick. Specsrmmsisted of two lateral ribs, a top slab
and a bottom base block. The vertical and horizorganforcement comprised high-tensile
deformed steel bars of 8 and 6.25 mm diametergeotisiely. Additional horizontal reinforcement
in the form of stirrups confined the wall edgesldviteel bars of 4 mm diameter were used for this
purpose. Lateral ribs with confinement reinforcem@novide two concealed columns with
rectangular shape at each edge of the shear waldl.RIC shear wall specimens were subjected to
the combined action of a distributed vertical lGadl a horizontal load at the upper beam (load-
controlled testing).

In this study, specimens SW14 and SW15 are inwasiigfor Type | RC shear walls whereas
specimens SW21 and SW22 are considered for TyR€lshear walls. Input data on the imposed
load, concrete and reinforcing steel are listefldble 1 and 2. The top slab served to distributh bo
the horizontal and the vertical loads. The basekylolamped to the laboratory floor, simulated a
rigid foundation. Having this in mind, the base diois replaced with a set of deformation
constraints and the vertical and horizontal loag aniformly distributed over the wall width.
Starting from the input data listed in Table 1 &)dhe remaining mechanical data are determined

as follows. Values for the concrete compressivenstth f. are specified as 85% of the cube

compressive strength values. For concrete in tangig is calculated on assumirag = 0.00008
[26] andfy = 0.33¢.)%° [16]. The mode-fracture energy of concrete is calculated basethen
maximum aggregate sizhk,.x of 10 mm. The initial (elastic) modulus for stee200,000 MPa. A
small number of preliminary runs were performednweestigatef, v andp values in the ranges
[2.00,5.00], [0.15,0.20] and [0.10,1.00], respesityv
The GDCM is performed by assuming'; = 0.005 and the tolerance for convergence wasoset
10°. A regular nodal arrangement is used at first. &thepted nodal spacing is 75 mm x 75 mm for
specimens SW14 and SW15 and 65 mm x 65 mm formmpesi SW21 and SW22.
Assuming this set of input data, the final loadethsement curves in Fig. 4 are obtained. Numerical
results appear to be in satisfactory agreement tivélexperimental observations. Obviously, some
of the discrepancies may be attributed to the uidabte uncertainties and approximations in, both,
models and parameters, which are not insignificaf®C modeling. However, another factor may
also be the source of disagreement between nurharideexperimental results. It is observed that
numerical results for the initial lateral stiffnes® higher than those observed experimentallys Thi
may be due to the foundation flexibility of the RBear wall which has not been considered in this
analysis. In this simulation the base block wadamgd with a set of rigid constraints, thus
18



overestimating the shear wall foundation stiffnédse overestimation is less severe for walls with
imposed axial loads. The presence of axial loadwge closely approximates the rigid constraints
assumed at the base block. Therefore, under zererg low axial loads, replacing the base block
with a set of rigid constraints is less consisigith the experiment. Following this argument, one
may justify why the agreement with experimentaladatbetter for SW22 than for SW15. In fact,
the shear wall flexibility increases considerablghwespect to the base block as the shear wall
height doubles, and then replacing the base blothk mgid constraints is more appropriate in
SW22 than in SW15. However, the foundation flexipishould have no significant effects on the
load capacity as well as on its post-peak behabewause the failure mechanism essentially
involves the behavior of the shear wall.

About the numerical procedure, it is found thatétations are needed for each increment when
considering SW14 and SW21. A larger number of itens (3 or 4) are needed to achieve the

equilibrium at each increment for specimens SWibaw22.

5.3. Comparison with FE methods

Experimental data from Ref. [35] were also usedriany other authors to validate their FE based
analyses [16,24,36,37]. Likewise, the main featofabe load-displacement curves obtained by the
meshfree method presented in this paper are coohparEE simulations. A comparison between
the obtained load-displacement curves and thosgepted in Ref. [36] is shown in Fig. 4. Kwan
and He [36] adopted a smeared crack approach kret@modeling as well as considering cracked
concrete to be an orthotropic material, but therea information on the reinforcing steel model in
their work. They also considered the confinememctfin modeling the compressive concrete
strength at the lateral ribs and a standard disptent control method was used to track the post-
peak behavior of the shear walls. Accounting far thfferences in RC modeling, the presented
MEM method and the FE analysis by Kwan and He g86]in satisfactory agreement.

The meshfree results are compared to that in B&}f. Park and Kim [37] presented a microplane
based FE analysis of planar RC structures, andlatalil their method using load-displacement
curves also considered in the present study, shiiel experimental responses for SW21 and SW22
specimens. A qualitative comparison between thaioétl results in Fig. 4 and those presented in
Ref. [37] confirms the validity of the presented MEnethod. Specifically, the illustrated meshfree
method provides a better estimation of the loadciy for the SW21 specimen, along with a more
consistent prediction of the corresponding displamat. The meshfree-based estimation of the
ultimate displacement for this shear wall is inyvgood agreement with the FE results of Park and

Kim [37]. A general good agreement is observedhm gimulation of the SW22 specimen, even if
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the meshfree-based prediction of the ultimate dgghent seems to be lower than that in Ref.
[37].

5.4. Effects of different nodal arrangements

The effects of different nodal arrangements onldhd-displacement response are shown in Fig. 5
for specimen SW22. The irregular nodal arrangenaerst obtained by perturbing the regular one,
and the magnitude of the perturbation was 3%. Eurskrategies may be implemented to improve
the numerical method as well as the reliabilitytlod final results. For instance, the use of nodal
integration techniques along with appropriate $tediion methods can be exploited to achieve a
completely meshfree method. Non-local approachesatso be used to improve the objectivity of

smeared crack models based results.

5.5. Stress-strain prediction

Experimental data of the shear walls A2 and A3etksty Pang and Hsu [38] are finally taken into
account. The panels were 55 in. high, 55 in. widd @ in. thick. The maximum compressive
cylinder concrete strength was 5.98 ksi and 6.040kA2 and A3, respectively. The corresponding
strain values were 0.00210 and 0.00194. Reinforoémas arranged at 45 deg with respect tocthe
axis. The steel reinforcing ratio is 0.01193 for &2d 0.01789 for A3, with equal amounts in the
two perpendicular directions. The correspondinddyigtrengths were 67.10 ksi and 64.75 Ksi,
respectively. The principal compressive and tersilesses of equal magnitude were applied in the
vertical and horizontal direction, respectively.cBla proportional static loading leads to a shear-
based stress condition in the 45° direction. Thpliep shear stress and the shear strain were
monitored along the system reference of the reaniigrbars.

The results in Fig. 6 show a good agreement betwgparimental data and numerical simulations.
The yielding point of the reinforcing steel is esd and well predicted. The maximum applied
shear stress was reached when the concrete begdring. From this point on, the curves went into
the descending branches that are satisfactorilylated. The meshfree-based simulation of the A3

specimen is in good agreement with the FE anabfsf§ang and Hsu [38].

6. Conclusions

This study presented a maximum-entropy meshfre@adeior material nonlinear analysis of two-

dimensional RC structures subjected to proportiomainotonic static loading. Concrete and
reinforcing steel modeling were first discussed] #me generalized displacement control method
was implemented in order to solve the final nordingystem of equations. As a validation study,

RC shear walls were considered, and comparisomumiencal simulations with experimental data
20



as well as finite element (FE) analysis demondirdke suitability of the presented maximum-
entropy meshfree method.

However, meshfree methods are not exempt from daekd) i.e. a larger computational effort than
FE approaches. A competitive computational framé&wamn be formulated in such a way that FE
methods are used where meshless approaches ae efficient option whereas meshfree methods
are adopted where FE based techniques are knowhet@roblematic. Moving from this
consideration, next studies will address a blerfeleaneshfree analysis of RC structures subjected
to cyclic loadings. In doing so, the use of max-gmproximants is particularly suitable because it

provides a seamless bridge between FE and mesidseefunctions.
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Shear wall

identification
Vertical load [kN] Cubic uniaxial concrete strengihPa]
Type | Specimen
SW14 0 42.1
SW15 185 43.3
Sw21 0 42.8
! SwW22 182 50.6
Tablel
Type Yield strengthiMPa] Ultimate strengthMPa]
8 mm high-tensile bar 470 565
6.25 mm high-tensile bar 520 610
4 mm mild-steel bar 420 490
Table2
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