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Abstract 

A meshfree method for nonlinear analysis of two-dimensional reinforced concrete structures 

subjected to monotonic static loading is presented. The concrete model is implemented in the 

context of the smeared rotating crack approach. The stress-strain relationship for steel bars accounts 

for the surrounding concrete bonded to the bar (tension stiffening effect). The principle of virtual 

work (variational form) is used to setup the nonlinear system of equations. Maximum-entropy basis 

functions are used to discretize the two-dimensional domain and background cells are adopted to 

facilitate the numerical integration. The generalized displacement control method is implemented to 

solve the nonlinear system of equations and to obtain the softened structural response beyond the 

maximum load capacity. The proposed meshfree methodology is used to study the nonlinear 

behavior of reinforced concrete shear walls. Comparisons with experimental data and finite element 

analysis indicate that the proposed maximum-entropy meshfree method is a viable approach for 

nonlinear simulations of planar RC structures. 
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1. Introduction 

The response of reinforced concrete (RC) structures is typically solved within the framework of the 

finite element (FE) method, thus requiring a priori discretization of the domain through the 

definition of a mesh. Because of the intrinsic (geometrical and/or material) nonlinearities in most 

problems of practical interest dealing with RC structures, significant effort has gone into improving 

existing models for simulating RC behavior as well as enhancing the accuracy and reliability of 

solutions obtained by FE methods. On the contrary, very little effort has gone into exploring new 

numerical methods for the analysis of RC structures that may have the potential to establish new 

and effective paradigms in modern structural analysis.  
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To this end, meshfree (or meshless or element-free) methods are gaining popularity as effective 

tools for advanced numerical analyses. To date, meshfree methods are routinely used for very 

specialized applications in computational and solid mechanics. In contrast, less effort has been 

devoted toward applying meshfree methods in common structural engineering problems.  

In order to explore the viability of meshfree-based computational tools in the field of structural 

engineering, Yaw and co-workers [1] presented a blended FE and meshfree Galerkin approximation 

scheme to study the inelastic response of plane steel frames with J2 plasticity. The same authors 

also proposed a meshfree co-rotational formulation for two-dimensional continua in the presence of 

small strains with elastic and elasto-plastic material behavior [2]. Current trends in meshfree 

applications on the analysis of RC structures essentially exploit their natural ability in modeling 

static or dynamic fracture phenomena in brittle materials. For instance, Rabczuk and co-workers [3] 

presented a geometrically non-linear three-dimensional crack method in which the element free 

Galerkin (EFG) method was used for concrete modeling, a cohesive zone model was adopted after 

crack initiation and the reinforcement (modeled by truss or beam elements) is connected by a bond 

model to the concrete. A coupled FE-meshfree method was also presented by Rabczuk and Eibl [4] 

for the analysis of pre-stressed concrete beams. 

In this paper, a meshfree method is developed for nonlinear analysis of two-dimensional RC 

structures subjected to static monotonic loading. To this end, concrete modeling issues are first 

addressed (Section 2), and then the adopted model for uncracked, partially cracked and fully 

cracked concrete under plane stress condition is presented. This is followed by the description of the 

steel constitutive model (Section 3). In Section 4, the meshfree-based nonlinear system of equations 

is derived from the variational weak form, and maximum-entropy basis functions are used to 

discretize the domain. Subsequently, the adopted numerical strategy to solve for the resulting 

nonlinear system of equations is discussed. In Section 5, the validity of the method is demonstrated 

through comparisons with experimental data and FE analysis of shear walls subjected to monotonic 

static loading. Finally, some closing remarks are made in Section 6 on the future development of the 

present work. 

2. Concrete modeling 

2.1. Modeling of cracked concrete 

The FE analysis of RC structures needs an appropriate approach for modeling cracked concrete, e.g. 

smeared crack [5] and discrete crack approaches [6]. Smeared crack based models tend to be more 

popular than the discrete crack models due to their improved ability to account for multi-axial stress 
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states in concrete, and also because they are more convenient from a programming point-of-view. A 

smeared crack approach is intended to preserve the continuity of the displacement field over the 

domain of influence of the cracked node by representing many (fictitious) finely spaced cracks 

parallel to the dominant discrete (real) crack. With this continuum approach, the local displacement 

discontinuities at cracks are artificially smeared over the tributary area, and the behavior of cracked 

RC is represented by average stress-strain relations for both concrete and steel.  

Although meshfree methods provide an effective theoretical background to deal with discrete 

representation of cracks, the use of a smeared crack approach aims at supporting future blended FE-

meshfree approaches for nonlinear analysis of RC structures. In fact, as long as standard FE 

methods have strong limitations in discrete crack modeling, a smeared approach can be used in both 

FE and meshfree domains, thus providing a unique framework for concrete crack modeling.  

A pure smeared rotating crack model is hence adopted in this study. Several studies demonstrate 

that smeared crack models for RC modeling are physically consistent and show good agreement 

with experimental data. On the other hand, it is well known that FE analyses using work-softening 

brittle materials within smeared crack models show significant mesh-sensitivity problems. Our 

preliminary analyses of unreinforced concrete structures with smeared crack models revealed that a 

similar issue also occurs in meshfree methods. In particular, it was found that the load capacity 

decreases moderately as the nodal spacing reduces whereas the slope of the softening branch 

increases considerably, which is consistent with FE analyses [7]. To alleviate the above issues, 

averaging concept in tension stiffening [8] and the crack band model [9,10] are implemented. The 

width h of the crack band is assumed to be equal to the square root of the area of the domain of 

influence for rectangular shapes or to its diameter in the case of circular shapes. The stress-locking 

problem in the vicinity of dominant cracks that is attributed to the smeared crack model can be 

reduced by employing the smeared rotating crack model, which is more popular than the smeared 

fixed crack model [5,8,9].     

2.2. Constitutive matrix for concrete 

The x-y coordinate system represents the geometrical coordinates at the integration point. On the 

other hand, the 1-2 coordinate system represents the mechanical (local) coordinates at the 

integration point and coincides with the principal stress directions. Plane stress condition is 

assumed and the angle between the x-axis and the 1-axis is denoted as θ. It has been experimentally 

observed that directions of principal strains in the concrete deviate somewhat from the directions of 

principal stress, Vecchio and Collins [11] concluded that it is a reasonable simplification to assume 

that the principal strain axes and the principal stress axes for the concrete coincide. Let ε = {εx εy 
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γxy}
T be the strain in the geometrical system of reference. Therefore, the following transformation 

holds 

( ) ( )12 c= θε Τ ε  (1) 

in which ε(12) = {ε1 ε2 γ12}
T is the strain vector in the local system of reference and Tc(θ) is the strain 

transformation matrix. For the implementation procedure in this study, a tangent material stiffness 

matrix is considered [8,12]. The relation between incremental stresses dσ(12)={dσ1 dσ2 dτ12}
T and 

incremental strains dε(12)={dε1 dε2 dγ12}
T in the 1-2 coordinate system of reference is 

( ) ( )12 12d dc=σ D ε  (2) 

Referring to the principal axis 1-2, it is assumed that the tangent constitutive matrix Dc for concrete 

before cracking takes the form [13]  

( )

1 1 2

1 2 22

2

0
1

0
1

0 0 1

c c c

c c c c

c

E E E

E E E
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 ν
 

= ν 
− ν  

− ν  

D  (3) 

in which Ec1 and Ec2 are the concrete tangent moduli, Gc is the shear modulus and ν is the Poisson 

ratio. Once concrete cracking is initiated either in 1-direction or 2-diretion, the tangent constitutive 

matrix given by Eq. (3) is replaced with the following   

1

22

0 0
1

0 0
1

0 0

c

c c

c

E

E

G

 
 =  − ν
  

D  (4) 

as in Ref. [12]. As the loading progresses, a set of smeared cracks fully opens into the concrete. In 

this case, Eq. (4) is replaced with the following [14]  

2

0 0 0

0 0

0 0
c c

c

E

G

 
 =  
 µ 

D  (5) 

where Ec2 is the tangent modulus of concrete parallel to the crack direction and µ is the shear 

retention factor introduced to provide for shear friction across fully opened cracks. Various forms of 

this shear factor have been proposed until now. However, numerous analytical results have 

demonstrated that the particular value chosen for µ (between 0 and 1) does not appear to be critical, 

but values greater than zero are suggested to prevent numerical instabilities [9,14].  
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Upon further loading, a second set of smeared cracks can form in the direction normal to the first 

set of smeared cracks. In this case, the constitutive matrix is: 

0 0 0

0 0 0

0 0
c

cG

 
 =  
 µ 

D  (6) 

Moreover, when the concrete strain exceeds the ultimate concrete strain in compression in one or 

two directions, concrete failure by crushing occurs. In this case, the element is assumed to lose its 

strength completely and is not able to carry any more stress. Because of material nonlinearities, all 

quantities in the above constitutive matrices usually vary as functions of the stress and strain fields.  

2.3. Concrete strength due to confinement effect 

Let fc be the uniaxial concrete compressive strength and εc the concrete strain at fc.. For unconfined 

concrete, c cf f ′=  and c c
′ε = ε , in which cf ′  and c

′ε  are the uniaxial compressive strength and the 

corresponding strain for concrete without (or with modest or inefficient) confinement 

reinforcement. It is well known that the uniaxial concrete compressive strength and the 

corresponding strain increase if appropriate confinement reinforcement is provided. To account for 

this phenomenon, the model proposed by Hoshikuma and co-workers [15] is considered 

1 ,

,
2

3.8

0.002 0.033

c c z y z

z y z
c

c

f f c f

f
c

f

′= + ρ

ρ
ε = +

′
 (7) 

where fy,z is the yielding stress of the confinement reinforcement and ρz the confinement 

reinforcement ratio. Parameters c1 and c2 depend on the shape of the confined section. For square 

sections, Hoshikuma and co-workers [15] suggested c1 = 0.2 and c2 = 0.4. It is assumed that 

confinement has no effect on concrete tensile strength.   

2.4. Concrete strength under biaxial stress 

It is well known that the concrete strength significantly depends on the current stress-strain state. It 

is assumed that both the uniaxial concrete compressive strength and the corresponding strain 

depend on the current stress- and/or strain-state at the considered integration point, i.e., 

cp cf f= α  (8) 

cp cε = αε  (9) 

where α is the scaling factor depending on stresses or strains in the assumed principal directions.  
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The strength enhancement factor for concrete subjected to compression in the 2-direction, arising 

from the compressive stress σ1 acting in the 1-direction, is given by [16]: 

2

1 1

c cf f

   σ σα =1+ 0.92 − − 0.76 −   
   

. (10) 

Similarly, the strength enhancement factor for concrete subjected to compression in the 1-direction, 

arising from the compressive stress σ2 acting in the 2-direction, is given by   

2

2 2

c cf f

   σ σα =1+ 0.92 − − 0.76 −   
   

 (11) 

In the tension-compression state, the major principal stress is tensile and it reduces the compressive 

strength in the minor principal direction. In this case, the scaling factor adopted in this study takes 

the form 

1
1

0.8 0.34
c

+
α = ≤ε+

ε

 (12) 

where ε+ is the principal tensile strain. It is assumed that the concrete tensile strength does not 

depend on the stress-strain state.  

2.5. Relationship between biaxial strains and uniaxial strains 

The uniaxial strains ( ) { }1 2 1212

T= ε ε γε are obtained from the biaxial strains as follows [5,8]: 

( ) ( )12 12=ε Vε  (13) 

The adopted projection matrix V is 

12

12 21 12 21

21

12 21 12 21

1
0

1 1

1
0

1 1

0 0 1

ν 
 − ν ν − ν ν
 

ν =  − ν ν − ν ν
 
 
 
 

V  (14) 

A lack of agreement exists on the numerical values to be used for ν12 and ν21. He and co-workers [5] 

considered ν12 = ν21 = ν, as is common in most of the existing literature. On the contrary, Zhu and 

Hsu [17] experimentally observed that the Poisson effect is characterized by the Poisson ratio for 

concrete before cracking whereas ν12 and ν21 are different from ν when concrete cracks, and 
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introduced the Zhu/Hsu ratios to replace it. All the above cited studies, however, claim that the final 

comparison with experimental data is satisfactory. Therefore, it seems that more experimental 

investigations are needed to resolve this issue. Following a conventional approach, in this study it is 

assumed that ν12 = ν21 = ν.  

As the current strength of concrete is calculated according to the biaxial stress state, the uniaxial 

stress-strain relationship reflects the biaxial stress state. Therefore, once the uniaxial strains are 

obtained and the concrete compressive strength is modified accounting for the biaxial stress state, 

the tangent modulus Ec1 or Ec2 can now be obtained by differentiating the uniaxial constitutive 

stress-strain relationship for concrete ( )c cσ ε  with respect to 1cε = ε  or 2cε = ε , respectively.  

2.6. Stress-strain relationship for concrete in tension 

The response of concrete in tension is usually regarded as linear until the tension strength fct has 

been reached, and is described by a Rankine-type principle stress criterion. At strain εct, crack 

initiation and localization of a narrow process zone occurs. Subsequently, a softening behavior 

starts and it is usually modeled as a straight line, a piecewise linear branch, or a descending-

exponential curve. In this study, the stress-strain relation for concrete in tension is based on the 

model proposed in Ref. [18]  

( )
0 0

ct c

ct c c ct

c c

ct c ct

E        if 

f e  if         
ε −ε

ϕ

ε ≤ ε ≤ ε
σ ε = 
 ε > ε

 (15) 

which is shown in Fig. 1. In Eq. (15), φ is a (positive) shape parameter and Ect0 is the initial 

Young’s modulus for concrete in tension. To reduce the lack of objectivity in the smeared crack 

model, the crack band theory by Bažant and Oh [10] is often adopted for the purpose of modeling 

tension in concrete [9,18,19]. Given Gf, the mode-I fracture energy of concrete, if the following 

condition is satisfied  

0

2

f ct

ct

G E
h

f
< , (16) 

then the shape parameter φ is 

1

2
f

ct
ct

G

hf
ϕ = − ε  (17) 

If Eq. (16) is not fulfilled, then Bažant and Oh [10] proposed to modify the concrete strength in 

tension as follows 
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02 f ct
ct

G E
f

h
=  (18) 

along with a vertical post-peak stress drop of the stress-strain relationship for concrete in tension. 

Since a tangent-based implementation is used in this study, a vertical post-peak stress drop may lead 

to numerical problems. Therefore, an exponential post-peak softening response is still adopted as in 

Eq. (15) and the concrete strength in tension given by Eq. (18). In doing so, the shape parameter φ 
and the ultimate strain of the concrete in tension εctu are now pure material parameters, and their 

numerical values should be quite small in order to approximate a vertical stress drop without 

causing numerical instabilities.  

Finally, the mode-I fracture energy of concrete Gf is calculated as specified in the CEB-FIP model 

code [20]  

[ ] [ ] 0.7
MPa

N mm
10

c
f f

f
G

′ 
= α  

 
 (19) 

with [ ]( )3
max1.25 mm 10f d−α =10 + , where dmax is the maximum aggregate size in concrete. 

Because of the lack of reliable experimentally-calibrated models, it is assumed that the fracture 

energy of concrete does not depend on confinement effect or biaxial stress states.    

2.7. Stress-strain relationship for concrete in compression 

The uniaxial strain-stress relationship proposed by Popovics [21] is used in this study for concrete  

( )
1

c
c c cp

cpc

cp

fβ

εβσ ε = −
ε ε

β − +   ε 

 (20) 

where β > 1 is a shape factor (see Fig. 1). 

The softening branch for confined concrete is modeled as proposed in Ref. [15]. In doing so, the 

post-peak Popovics’ model is replaced with a straight line having a slope:   

( )2

,

11.2 c
c

z y z

f
E

f

′
=

ρ
. (21) 

The model for confined concrete is illustrated in Fig. 1. Concrete failure by crushing occurs once 

the ultimate strain of concrete in compression is achieved..   
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2.8. Shear modulus for concrete 

Darwin and Pecknold [13] provided a rational tangent shear modulus to be used in Eq. (3) in such a 

way that the results are independent with respect to axis rotation. The pre-cracking shear modulus 

for concrete in this case is  

( ) ( )1 2 1 22

1

4 1
c c c c cG E E E E= + − 2ν

− ν
 (22) 

Several analytical, semi-analytical and empirical formulations have been proposed for the post-

cracking tangent shear modulus of concrete. In this study, the post-cracking value of concrete Gc is 

calculated as proposed in Ref. [22]  

( )
1 2

1 22cG
σ − σ=
ε − ε

 (23)  

2.9. Poisson ratio 

The Poisson ratio ν for concrete typically ranges between 0.15 and 0.22, but it has been 

experimentally observed that the Poisson ratio also depends on the current strain and stress states. A 

value for the Poisson ratio about 0.20 has been shown to be quite satisfactory for monotonic loading 

in tension-tension and compression-compression [13]. Because of the lack of well-settled 

experimental evidence, a constant Poisson ratio is assumed in this study.  

2.10. Unloading-reloading scheme for concrete 

Unloading-reloading can locally occur in concrete even under monotonic loading. It may be due to 

numerical issues (during iterations to achieve equilibrium) which depend on the smeared rotating 

crack model. Furthermore, a realistic RC structure has the ability to redistribute stress after a crack 

opens, which often leads to unloading in the concrete. To this end, the simplified unloading-

reloading scheme adopted by He and co-workers [23] is assumed in this study to deal with RC 

structures subjected to monotonic loading (see Fig. 1). This simple unloading-reloading scheme 

provides satisfactory results for cyclically loaded RC structures with typical steel reinforcing ratios 

[5]. On the contrary, it is observed a significant difference for low steel reinforcing ratios. 

Therefore, this unloading-reloading scheme is a reasonable simplification for monotonic loadings 

only, because the accuracy at the structural level is not affected. 
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3. Modeling of steel reinforcement 

3.1. Constitutive matrix for reinforcement 

Longitudinal reinforcing steel bars are treated as an equivalent uniaxial layered material placed at 

the depth of the centerline of the bars and smeared over the region of bar effect [8,14,24,25]. As 

many layers are used as there are layers of bars in the cross section, each with its uniaxial properties 

oriented along the axis of the bars. The tangent constitutive matrix for the kth steel reinforcement 

layer is 

0 0

0 0 0

0 0 0

sk sk

sk

Eρ 
 =  
  

D  (24) 

in which ρsk is the reinforcement ratio and Esk the tangent modulus for the kth steel reinforcement 

layer, both varying as function of the current strain state. A perfect bond between the concrete and 

the reinforcement is assumed. Steel bars were also modeled as smeared reinforcement with perfect 

bond by Bao and Kunnath [25] for post-peak FE-based analysis of two-dimensional RC structures 

under monotonic loadings. Since the bond degradation of reinforcing bars is one of the most 

important issues in assessing the seismic performance of RC structures, the bond-slip between the 

concrete matrix and the reinforcement needs to be modeled appropriately when considering cyclic 

loadings. 

For each reinforcement layer, the uniaxial strains of steel skε  are calculated from the uniaxial strains 

of concrete ( )12ε  in Eq. (13) as follows:  

( ) ( )12,sk s sk= θ θε Τ ε  (25) 

where Ts(θ,θsk) the strain transformation matrix and θsk is the angle between the x-axis and the 

centerline of the bars belonging to the kth reinforcement layer. Therefore, the tangent modulus Esk 

can be now obtained by differentiating the uniaxial constitutive stress-strain relation for steel 

( )s sσ ε  with respect to s skε = ε . The strain skε  will be the first element of the vector skε  calculated 

in Eq. (25). 

3.2. Stress-strain relationship for reinforcing steel 

A stress-strain relationship for steel bars embedded in concrete is somewhat different from that of a 

bare steel bar because the surrounding concrete bonded to the bar causes tension-stiffening effect.  

As a consequence, the smeared stress-strain relationship of steel bars embedded in concrete must be 
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obtained by averaging the stresses and strains between two cracks. In this study, the envelope 

stress-strain relation adopted by Mansour and co-workers [26] is assumed 

( ) ( )

0

0.91 2 0.02 0.25

s s s n

s s s
y s n

y

E                                                        if   

f B B     if    

 ε ε ≤ ε
   σ ε = ε − + + ε > ε     ε   

 (26) 

( )0.93 2n y Bε = ε −  (27) 

( ) { }1.5
maxct y sB f f= ρ ,0.25%  (28) 

where Es0 is the initial (elastic) modulus of steel, ρs the reinforcement ratio, fy 
the yielding stress and 

εy 
the yielding strain. The model is illustrated in Fig. 2. All these quantities are referred to the 

corresponding kth reinforcement layer. The ultimate strength of reinforcing steel is denoted as fsu.  

A simple bi-linear elasto-plastic hysteretic model with kinematic hardening is adopted to model the 

unloading-reloading behavior of reinforcing steel bars, see Fig. 2. This simplified model is routinely 

used in modeling reinforcing bars in RC structures, such as in Kabeyasawa and Milev [12] for 

modeling RC shear walls subjected to cyclic loadings. Although more accurate models were 

recently proposed to describe the unloading-reloading behavior of reinforcing steel bars, this 

simplified scheme provides satisfactory results at the structural level under the assumption of 

monotonic loading.  

4. Variational formulation and discrete equations 

4.1. Equilibrium equation 

The variational weak form is formulated in the global x-y coordinate system. The displacement 

approximation uh is of the form 

h T=u Φ d  (29) 

in which Φ is the matrix that consists of meshfree basis functions and d is the vector of nodal 

parameters. The strain-displacement relation is  

=ε Bd  (30) 

where B is the strain–displacement matrix. The weak form (principle of virtual work) for problems 

in structural mechanics leads to the equilibrium equations: 

ext int− =f f 0  (31) 
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where extf is the vector of external loads 

d d
t

ext T T

Ω Γ

= Ω + Γ∫ ∫f Φ b Φ t  (32) 

and intf the vector of internal forces  

dint T

Ω

= Ω∫f B σ  (33) 

In Eq. (32) and Eq. (33), b is the body force vector acting on Ω, t the prescribed traction on the 

natural boundary Γt and σ = {σx σy σxy}
T the stress vector. Generally Eq. (31) is a nonlinear system 

of equations, because the unknown stress field is a nonlinear function of the strain field. As a 

consequence, an appropriate incremental-iterative numerical procedure has to be adopted to solve 

for the unknown displacement field. The incremental-iterative form of the equilibrium equation is 

( ) ( )1 1
ˆi i i ext i

j jj j− −∆ = ∆λ +K d f r  (34) 

in which i denotes the current load increment step, j is the current iteration number, ∆di
j is the 

increment of the vector of nodal parameters, ˆext f  is the reference external load vector, ∆λ
i
j is the 

load increment parameter (proportional static loading), ri
(j–1) is the unbalanced force vector 

( ) ( ) ( )1 1 1
i ext i int i
j j j− − −= −r f f  (35) 

In Eq. (34), Ki
(j–1) is the tangent stiffness matrix formed at the beginning of the jth iteration and it is 

based on the known information carried out at the (j–1)th iteration. It is obtained as an assembly 

process of the 2×2 nodal tangent stiffness matrices KIJ(d
i
(j–1)) 

( ) ( )( ) ( )( )1 1 1, ,
d

n n
i i T i

IJ I Jj j jI J I J− − −
Ω

 
= = Ω 

 
∫K K d B C d BΑ Α  (36) 

where I, J = 1,…,n denote two nodes within Ω and C(di
(j–1)) is the tangent constitutive in the global 

system of reference x-y. The integral in Eq. (36) vanishes if I and J do not belong to the same local 

support domain. Once Dc(d
i
(j–1)) and Dsk(d

i
(j–1)) are calculated as in Eqs. (3)-(6) and in Eq. (24), they 

are rotated into the x-y coordinate system, thus obtaining Cc(d
i
(j–1)) and Csk(d

i
(j–1)), respectively. 

Having done so, the tangent constitutive matrix C(di
(j–1)) in Eq. (36) is  

( )( ) ( )( ) ( )( )1 1 1

kn
i i i

c skj j j
k

− − −= +∑C d C d C d  (37) 

where nk is the total number of reinforcing layers.  
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Numerical integration based on background cells is used to evaluate the integrals in Eq. (32), Eq. 

(33) and Eq. (36). For example, the 2×2 nodal tangent stiffness matrices KIJ(d
i
(j–1)) in Eq. (36) is 

evaluated as follows 

( )( ) ( ) ( )( ) ( )1 1

gc
nn

i T i
IJ g I Qg Qg J Qg gcj j

c g
− −= ω ;∑∑K d B x C x d B x J  (38) 

where ωg is the Gauss weighting factors for the gth Gauss point (g = 1,…,ng)  at xQg and Jgc is the 

Jacobian matrix for the area integration of the background cell c (c = 1,…,nc), at which the Gauss 

point xQg is located. 

4.2. On the solution of the nonlinear system of equations 

The main numerical issue lies in the solution of a set of equations which are nonlinear because of 

the nonlinear behavior of, both, concrete and reinforcing steel. Moreover, it should be kept in mind 

that limit points can occur in the final load-displacement curves due to material nonlinearities such 

as work-softening or geometric nonlinearities. Although the maximum load capacity of a structure 

is the main interest in structural analysis and design, it may be important to investigate the entire 

response even beyond the occurrence of a limit point in order to identify failure modes as well as 

post-peak behavior.   

Yang and Shieh [27] proposed the so-called Generalized Displacement Control Method (GDCM) 

with Generalized Stiffness Parameter (GSP). Cardoso and Fonseca [28] recently demonstrated that 

the GDCM is an arc-length method with orthogonal constraints. The method was originally applied 

to geometrically non-linear analyses and the results were found to be superior to most typical 

solvers. Recent results regarding the FE analysis of RC structures [29] and in-filled steel-concrete 

composite columns [30] demonstrated the validity of the GDCM in handling geometrically 

nonlinearities and softening-working materials such as concrete. In this work, the GDCM with GSP 

is used for nonlinear meshfree analyses, and the most important steps are described below.  

4.3. Generalized displacement control method 

A convenient decomposition for Eq. (34) is the following   

( )1
ˆˆi i ext

jj− ∆ =K d f  (39) 

( ) ( )1 1
i i i

jj j− −∆ =K d rɶ  (40) 

where 

ˆi i i i
j j j j∆ = ∆λ ∆ + ∆d d dɶ  (41) 



 

14 
 

Based on Eq. (41), the displacement increment vector ∆ui
j is determined by making use of the 

meshfree basis functions and enforcing the essential (displacement) boundary conditions. The total 

displacement vector of the structure at the end of the jth iteration ui
j is computed as 

( )1
i i i
j jj−= + ∆u u u  (42) 

The total applied load vector at the jth iteration of the ith incremental step extfi
j relates to the 

reference load vector ˆext f  as follows 

( ) ( )1 1
ˆext i ext i ext i ext i i ext

j j jj j− −= + ∆ = + ∆λf f f f f  (43) 

It is understood that the following initial conditions hold 

( ) ( ) ( )1 1 1
0 0 0

i i ii ext i ext i
l l l,  ,  − − −= = =K K f f u u  (44) 

where l is the last iteration of the last incremental step. 

The load increment parameter ∆λi
j is an unknown and is determined by imposing a constraint 

condition. For the first iterative step j = 1, the GSP is introduced.  For any load increment i at j = 1, 

GSP1
i is defined as 

( ) ( )
( )( ) ( )

1 1
1 11

1
1 1

1 1

ˆ ˆ
2

ˆ ˆ

T
i

T
i i

                           if  i                                

GSP
   if  i

−

=
 ∆ ∆=  ≥

∆ ∆

u u

u u

 (45) 

Therefore, for any load increment i at the first iterative step j = 1, ∆λi
1 is determined based on Eq. 

(45) 

1
1 1 1
i iGSP∆λ = ±∆λ  (46) 

where ∆λ1
1 is an initial value of the load increment parameter. The sign in Eq. (46) depends on the 

sign of the GSP. In fact, the GSP is negative only for the load step "immediately after" a limit point 

whereas it will always be positive for the other load steps. This is because the numerator is always 

positive, but the denominator could be negative if the two vectors have different directions. The GSP by 

itself is a useful indicator for changing the loading directions. Therefore, initially let ∆λi
1 be of the 

same sign as ∆λ1
(i–1): if GSPi

1 is negative, then ∆λi
1 is multiplied by –1 to reverse the direction of 

the loading.  

For the iterative step j≥2, the load increment parameter ∆λ
i
j is calculated as  
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( )( ) ( )
( )( ) ( )
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−

−

∆ ∆
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∆ ∆

u u

u u

ɶ

 (47) 

Here, ( )1
1ˆ i−∆u  is the displacement increments generated by the reference load ̂p  at the first iteration 

(j = 1) of the (i–1)th (previous) incremental step, and ̂ij∆u  and i
j∆uɶ  denote the displacement 

increments generated by the reference loads and unbalanced forces, respectively, at the jth iteration 

of the ith incremental step. Note that meshfree basis functions are required to calculate the 

displacement increments on solving the linear system of equations in Eq. (39) and Eq. (40). For the 

first increment i = 1, 0
1ˆ∆u  will be taken equal to 1

1ˆ∆u . A convergence criterion based on, both, the 

incremental displacements and the unbalanced force vector is used. The flowchart of the numerical 

method is shown in Fig 3. 

4.4. Maximum-entropy basis functions 

On denoting xa (a = 1,…m) as the nodal coordinates, the displacement field in Eq. (29) can be 

rewritten as  

( ) ( )
m

h
a a

a

φ=∑u x x d  (48) 

There are many choices to define meshfree basis functions, for example moving least squares 

(MLS) approximants, radial basis functions (RBF) and maximum-entropy (max-ent) approximants, 

to name a few. An overview about the construction of meshfree basis functions is presented in Ref. 

[31]. The principle of maximum entropy postulated by Jaynes [32] on the basis of the Shannon-

entropy was recently exploited in order to construct  meshfree basis functions. Shannon-entropy 

based construction of max-ent basis functions on polygons was proposed by Sukumar [33], and a 

modified entropy functional was exploited by Arroyo and Ortiz [34]. Introducing the notion of prior 

weight function, Sukumar and Wright [31] obtained the max-ent basis functions which generalizes 

the entropy functional considered in Ref. [34]. The first application of the maximum entropy 

meshfree (MEM) method in the field of structural engineering is presented in Ref. [2].  

Max-ent basis functions are promising because they are a convex combination and possess a 

variation diminishing property as well as a weak Kronecker-delta property on the boundary [34].  

An implication of the weak Kronecker-delta property is that essential boundary conditions can be 

imposed as in FE methods. This is a noteworthy advantage with respect to most meshfree 

approximants (i.e., MLS), which require special techniques to enforce essential boundary 

conditions. Max-ent approximants also allow to blend FE and meshfree basis functions in a 
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seamless fashion. For completeness, a short review about the derivation of max-ent basis functions 

follows.  

The max-ent basis functions aφ  (a = 1,…m) are obtained by solving the following optimization 

problem [31]  

( ) ( )
( )

max ln
m

m
a

a
a awφ

φ
φ

+∈

   −    
   
∑

x
x

xℝ

 (49) 

subjected to 

( ) 1
m

a
a

φ =∑ x  (50) 

( ) ( )
m

a a
a

φ =∑ x ξ x 0  (51) 

where ξa=xa–x are shifted nodal coordinates and wa(x) is the prior weight function (initial guess for 

aφ ). The first constraint in Eq. (50) imposes the partition of unity property in order to represent rigid 

body translations (zeroth-order reproducibility). Basis functions that satisfy the set of constrains in 

Eq. (51) can reproduce a constant strain field exactly (first-order reproducibility). Once the 

variational problem in Eqs. (49)-(51) is solved by means of the Lagrange multipliers technique, the 

following result for the max-ent basis functions is obtained [31]: 

( ) ( )
( )

a

a

Z

Z
φ

∗

∗

;
=

;

x η
x

x η
 (52) 

where 

( ) ( ) { }expa a aZ w∗ ∗; = − ⋅x η x η ξ  (53) 

and 

( ) ( )
m

b
b

Z Z∗ ∗; = ;∑x η x η  (54) 

is the so-called partition function. The Lagrange multipliers vector η* is obtained by solving the 

dual optimization problem 

( ){ }
2

arg min lnZ∗

∈
= ;

η

η x η
ℝ

 (55) 

that leads to the following system of nonlinear equations:  
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( ) ( ) ( )ln
m

a a
a

Z φ∇ = − =∑η
η x ξ x 0  (56) 

Standard Newton-based solvers can be used for Eq. (56), and the convergence is typically very fast. 

Once the converged Lagrange multipliers η* are calculated, the gradient of the max-ent basis 

functions are evaluated as follows: 

( )1 1
m

a b
a a a b

ba b

w w

w w
φ φ φ− − ∇ ∇∇ = ⋅ − ⋅ + − 

 
∑ξ H H A  (57)   

where 

m
b

b b
b b

w

w
φ ∇= ⊗∑A ξ  (58)   

and H is the Hessian matrix 

( )ln
m

b b b
b

Z φ= ∇ ∇ = ⊗∑η η
H η ξ ξ  (59) 

As the prior weight function,  quartic polynomials are used in this study: 

( )
2 3 41 6 8 3 0 1

0 1
a

q q q    q
w

                                    q

 − + − ≤ ≤
= 

>
x  (60)   

where a aq r= −x x  and ra is the radius of the basis function support at node a.  

5. Validation 

5.1. Analysis of RC shear walls 

The nonlinear response of a variety of two-dimensional RC structural elements under plane stress – 

e.g., beams and shear walls – may be analyzed by means of the MEM method.  

Current approaches in modeling RC shear walls can be classified as follows [25]: beam-column 

type models in which flexure is the dominant mode of response, multi-spring based macro-models 

and FE based microscopic models. In this study, the proposed MEM method is adopted as an 

alternative technique for the analysis of RC shear walls.  

5.2. Comparison with experimental data 

To verify the reliability of the presented meshfree method, the large scale RC shear walls tested by 

Lefas and co-workers [35] are investigated and numerical simulations are compared to experimental 
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results. In their work, Lefas and co-workers considered two types of RC shear walls having constant 

thickness. Type I walls were 750 mm high, 750 mm wide and 70 mm thick. Type II walls were 

1300 mm high, 650 mm wide and 65 mm thick. Specimens consisted of two lateral ribs, a top slab 

and a bottom base block. The vertical and horizontal reinforcement comprised high-tensile 

deformed steel bars of 8 and 6.25 mm diameter, respectively. Additional horizontal reinforcement 

in the form of stirrups confined the wall edges. Mild steel bars of 4 mm diameter were used for this 

purpose. Lateral ribs with confinement reinforcement provide two concealed columns with 

rectangular shape at each edge of the shear wall. The RC shear wall specimens were subjected to 

the combined action of a distributed vertical load and a horizontal load at the upper beam (load-

controlled testing). 

In this study, specimens SW14 and SW15 are investigated for Type I RC shear walls whereas 

specimens SW21 and SW22 are considered for Type II RC shear walls. Input data on the imposed 

load, concrete and reinforcing steel are listed in Table 1 and 2. The top slab served to distribute both 

the horizontal and the vertical loads. The base block, clamped to the laboratory floor, simulated a 

rigid foundation. Having this in mind, the base block is replaced with a set of deformation 

constraints and the vertical and horizontal load are uniformly distributed over the wall width. 

Starting from the input data listed in Table 1 and 2, the remaining mechanical data are determined 

as follows. Values for the concrete compressive strength cf ′  are specified as 85% of the cube 

compressive strength values. For concrete in tension, Ect0 is calculated on assuming εct = 0.00008 

[26] and fct = 0.33(fc’)
0.5 [16]. The mode-I fracture energy of concrete is calculated based on the 

maximum aggregate size dmax of 10 mm. The initial (elastic) modulus for steel is 200,000 MPa. A 

small number of preliminary runs were performed to investigate β, ν and µ values in the ranges 

[2.00,5.00], [0.15,0.20] and [0.10,1.00], respectively.  

The GDCM is performed by assuming ∆λ1
1 = 0.005 and the tolerance for convergence was set to 

10-5. A regular nodal arrangement is used at first. The adopted nodal spacing is 75 mm × 75 mm for 

specimens SW14 and SW15 and 65 mm × 65 mm for specimens SW21 and SW22.    

Assuming this set of input data, the final load-displacement curves in Fig. 4 are obtained. Numerical 

results appear to be in satisfactory agreement with the experimental observations. Obviously, some 

of the discrepancies may be attributed to the unavoidable uncertainties and approximations in, both, 

models and parameters, which are not insignificant in RC modeling. However, another factor may 

also be the source of disagreement between numerical and experimental results. It is observed that 

numerical results for the initial lateral stiffness are higher than those observed experimentally. This 

may be due to the foundation flexibility of the RC shear wall which has not been considered in this 

analysis. In this simulation the base block was replaced with a set of rigid constraints, thus 
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overestimating the shear wall foundation stiffness. The overestimation is less severe for walls with 

imposed axial loads. The presence of axial loading more closely approximates the rigid constraints 

assumed at the base block. Therefore, under  zero or very low axial loads, replacing the base block 

with a set of rigid constraints is less consistent with the experiment. Following this argument, one 

may justify why the agreement with experimental data is better for SW22 than for SW15. In fact, 

the shear wall flexibility increases considerably with respect to the base block as the shear wall 

height doubles, and then replacing the base block with rigid constraints is more appropriate in 

SW22 than in SW15. However, the foundation flexibility should have no significant effects on the 

load capacity as well as on its post-peak behavior because the failure mechanism essentially 

involves the behavior of the shear wall.  

About the numerical procedure, it is found that 2 iterations are needed for each increment when 

considering SW14 and SW21. A larger number of iterations (3 or 4) are needed to achieve the 

equilibrium at each increment for specimens SW15 and SW22.  

5.3. Comparison with FE methods 

Experimental data from Ref. [35] were also used by many other authors to validate their FE based 

analyses [16,24,36,37]. Likewise, the main features of the load-displacement curves obtained by the 

meshfree method presented in this paper are compared to FE simulations. A comparison between 

the obtained load-displacement curves and those presented in Ref. [36] is shown in Fig. 4. Kwan 

and He [36] adopted a smeared crack approach in concrete modeling as well as considering cracked 

concrete to be an orthotropic material, but there is no information on the reinforcing steel model in 

their work. They also considered the confinement effect in modeling the compressive concrete 

strength at the lateral ribs and a standard displacement control method was used to track the post-

peak behavior of the shear walls. Accounting for the differences in RC modeling, the presented 

MEM method and the FE analysis by Kwan and He [36] are in satisfactory agreement. 

The meshfree results are compared to that in Ref. [37]. Park and Kim [37] presented a microplane 

based FE analysis of planar RC structures, and validated their method using load-displacement 

curves also considered in the present study, that is the experimental responses for SW21 and SW22 

specimens. A qualitative comparison between the obtained results in Fig. 4 and those presented in 

Ref. [37] confirms the validity of the presented MEM method. Specifically, the illustrated meshfree 

method provides a better estimation of the load capacity for the SW21 specimen, along with a more 

consistent prediction of the corresponding displacement. The meshfree-based estimation of the 

ultimate displacement for this shear wall is in very good agreement with the FE results of Park and 

Kim [37]. A general good agreement is observed in the simulation of the SW22 specimen, even if 
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the meshfree-based prediction of the ultimate displacement seems to be lower than that in Ref. 

[37].    

5.4. Effects of different nodal arrangements  

The effects of different nodal arrangements on the load-displacement  response are shown in Fig. 5 

for specimen SW22. The irregular nodal arrangement was obtained by perturbing the regular one, 

and the magnitude of the perturbation was 3%. Further strategies may be implemented to improve 

the numerical method as well as the reliability of the final results. For instance, the use of nodal 

integration techniques along with appropriate stabilization methods can be exploited to achieve a 

completely meshfree method. Non-local approaches can also be used to improve the objectivity of 

smeared crack models based results.  

5.5. Stress-strain prediction 

Experimental data of the shear walls A2 and A3 tested by Pang and Hsu [38] are finally taken into 

account. The panels were 55 in. high, 55 in. wide and 7 in. thick. The maximum compressive 

cylinder concrete strength was 5.98 ksi and 6.04 ksi for A2 and A3, respectively. The corresponding 

strain values were 0.00210 and 0.00194. Reinforcement was arranged at 45 deg with respect to the x 

axis. The steel reinforcing ratio is 0.01193 for A2 and 0.01789 for A3, with equal amounts in the 

two perpendicular directions. The corresponding yield strengths were 67.10 ksi and 64.75 ksi, 

respectively. The principal compressive and tensile stresses of equal magnitude were applied in the 

vertical and horizontal direction, respectively. Such a proportional static loading leads to a shear-

based stress condition in the 45° direction. The applied shear stress and the shear strain were 

monitored along the system reference of the reinforcing bars.  

The results in Fig. 6 show a good agreement between experimental data and numerical simulations. 

The yielding point of the reinforcing steel is evident and well predicted. The maximum applied 

shear stress was reached when the concrete began crushing. From this point on, the curves went into 

the descending branches that are satisfactorily simulated. The meshfree-based simulation of the A3 

specimen is in good agreement with the FE analysis of Wang and Hsu [38]. 

6. Conclusions 

This study presented a maximum-entropy meshfree method for material nonlinear analysis of two-

dimensional RC structures subjected to proportional monotonic static loading. Concrete and 

reinforcing steel modeling were first discussed, and the generalized displacement control method 

was implemented in order to solve the final nonlinear system of equations. As a validation study, 

RC shear walls were considered, and comparison of numerical simulations with experimental data 
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as well as finite element (FE) analysis demonstrated the suitability of the presented maximum-

entropy meshfree method.  

However, meshfree methods are not exempt from drawbacks, i.e. a larger computational effort than 

FE approaches. A competitive computational framework can be formulated in such a way that FE 

methods are used where meshless approaches are not an efficient option whereas meshfree methods 

are adopted where FE based techniques are known to be problematic. Moving from this 

consideration, next studies will address a blended FE-meshfree analysis of RC structures subjected 

to cyclic loadings. In doing so, the use of max-ent approximants is particularly suitable because it 

provides a seamless bridge between FE and meshfree basis functions. 
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Shear wall 
identification 

Vertical load [kN] Cubic uniaxial concrete strength [MPa] 
Type Specimen 

I 
SW14 0 42.1 

SW15 185 43.3 

II 
SW21 0 42.8 

SW22 182 50.6 

Table 1 

 

Type Yield strength [MPa] Ultimate strength [MPa] 

8 mm high-tensile bar 470 565 

6.25 mm high-tensile bar 520 610 

4 mm mild-steel bar 420 490 

Table 2 
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