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Abstract
Barycentric coordinates can be used to express any point inside a triangle as a unique convex combination of the
triangle’s vertices, and they provide a convenient way to linearly interpolate data that is given at the vertices of
a triangle. In recent years, the ideas of barycentric coordinates and barycentric interpolation have been extended
to arbitrary polygons in the plane and general polytopes in higher dimensions, which in turn has led to novel
solutions in applications like mesh parameterization, image warping, and mesh deformation. In this paper we
introduce a new generalization of barycentric coordinates that stems from the maximum entropy principle. The
coordinates are guaranteed to be positive inside any planar polygon, can be evaluated efficiently by solving a
convex optimization problem with Newton’s method, and experimental evidence indicates that they are smooth
inside the domain. Moreover, the construction of these coordinates can be extended to arbitrary polyhedra and
higher-dimensional polytopes.

Categories and Subject Descriptors(according to ACM CCS): G.1.1 [Numerical Analysis]: Interpolation formulas
G.1.6 [Numerical Analysis]: Constrained optimization I.3.5 [Computer Graphics]: Geometric algorithms

1. Introduction

Barycentric coordinates were first introduced by Möbius as
a special kind of homogeneous coordinates with respect
to the vertices of a simplex [Möb27]. While unique for
simplices, they can be generalized in several ways to ar-
bitrary polygons [Wac75, Flo03, MLD05, FHK06], polyhe-
dra [FKR05,JSW05,LBS06], higher dimensional polytopes
[War96,JLW07], and even curves [Bel06,SJW07,DF08].

Let Ω⊂Rd be an arbitrary polytope (e.g., a polygon inR2

or a polyhedron inR3), with verticesv1, . . . ,vn. The func-
tionsbi : Ω→ R, i = 1, . . . ,n are calledbarycentric coordi-
nateswith respect toΩ if they form apartition of unity,

n

∑
i=1

bi(v) = 1, (1)

allow to write any pointv ∈ Ω as anaffine combinationof
the vertices,

n

∑
i=1

bi(v)vi = v, (2)

and satisfy theLagrange property

bi(v j ) = δi j . (3)

Due to the property in (3), barycentric coordinates can be
used as basis functions forbarycentric interpolation: indeed,
it is clear that the function

f (v) =
n

∑
i=1

bi(v) fi (4)

interpolates the datafi at the verticesvi for i = 1, . . . ,n,
and properties (1) and (2) further guarantee the reproduc-
tion of affine functions by barycentric interpolation. Obvi-
ously, the interpolantf inherits the smoothness from the
functionsbi and if thebi can be evaluated efficiently, then
so canf . Barycentric interpolation has many useful applica-
tions, ranging from Gouraud and Phong shading, rendering
of quadrilaterals [HT04], image warping [HF06,WSHD07],
and mesh deformation [JSW05,LKCOL07,JMD∗07,LS08]
to generalized Bézier surfaces [LD89, LS07] and finite ele-
ment applications [AO06,SM06,WBG07,MP07,TS08].

Many of these applications require or at least benefit from
the barycentric coordinates beingnon-negative,

bi(v)≥ 0, (5)

so that (2) and (4) becomeconvex combinationsand sof (v)
is guaranteed to lie inside the convex hull of the datafi .
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Figure 1: Barycentric coordinates for the green (top row) and the red vertex (bottom row) of an L-shaped polygon. Note that
the MVC for the green vertex is negative inside the grey region of the polygon and that the PMVC for that vertex is constant
zero there. Moreover, PMVC are only C0 along the dashed lines and C1 along the dotted lines.

1.1. Related Work

If Ω is a simplex (e.g., a triangle inR2 or a tetrahedron
in R3), then the barycentric coordinates are uniquely de-
termined by conditions (1) and (2), and they automatically
satisfy properties (3) and (5). For general polytopes, this
uniqueness breaks down and the non-negativity is not always
guaranteed by the several constructions that have been pro-
posed in the past.

Wachspress [Wac75] was the first to come up with
a generalization of barycentric coordinates for finite ele-
ment applications. TheseWachspress coordinatesas well as
their higher-dimensional extensions [War96,WSHD07] sat-
isfy (5) as long asΩ is convexand can further be evalu-
ated efficiently [MLBD02]. For planar polygons, alternative
generalizations are thediscrete harmonic coordinates[PP93,
EDD∗95] and themetric coordinates[MLD05, SM06], but
they both can be negative even inside a convex polygon.

A major breakthrough came with the advent ofmean
value coordinates(MVC) that were discovered by Floater
[Flo03] in the context of mesh parameterization and later
generalized to polyhedra [FKR05, JSW05, LBS07]. In con-
trast to Wachspress coordinates, they are well-defined even
if Ω is non-convex [HF06], but they can take on negative
values then (see Figure1).

By modifying the transfinite description of mean value co-
ordinates [JSW05, Bel06], Lipman et al. [LKCOL07] were
able to overcome this drawback, which significantly im-
proves the results in applications like mesh deformation.
Their positive mean value coordinates(PMVC) no longer
have a simple closed form, but they can still be evaluated ef-
ficiently with the GPU. However, these coordinates are only
piecewise smooth (see Figure1).

Up to now, the only known barycentric coordinates that
are smooth and non-negative for arbitrary polytopes are the
harmonic coordinates(HC), which have first been men-
tioned by Floater et al. [FHK06] and later realized by Joshi
et al. [JMD∗07] for animating characters. The drawback of
harmonic coordinates is that they are rather costly to evalu-
ate because they require to compute the solution of Laplace’s
equation subject to suitable Dirichlet boundary conditions.

Another approach for constructing generalized barycen-
tric coordinates that has been suggested independently by
Sukumar [Suk04] and Arroyo and Ortiz [AO06] is based
on Jaynes’s principle of maximum entropy [Jay57]. By con-
struction, these coordinates are non-negative and always sat-
isfy conditions (1) and (2), but the Lagrange property (3)
holds only ifΩ is strictly convex(see Figure2).

1.2. Contribution

In this paper we show how to adapt the maximum entropy
approach in order to get non-negative barycentric coordi-
nates for arbitrary polygons that also satisfy the Lagrange
property and can thus be used for barycentric interpolation.
In contrast to PMVC, these new coordinates are smooth and
unlike HC, they can be evaluated directly.

After a brief introduction to informational entropic mea-
sures and the maximum entropy formalism (Section2), we
review how to derive barycentric coordinates fromprior es-
timatesby maximizing the Shannon-Jaynes entropy with re-
spect to linear constraints (Section3). We then present two
choices of appropriate prior functions (Section4) that yield
maximum entropy coordinates(MEC) with all the desired
properties for arbitrary polygons (see Figure1) and explain
how to extend the construction to higher dimensions. We
further describe how Newton’s method can be used to ef-
ficiently evaluate these coordinates (Section5). Finally, we
compare MEC with previous constructions (MVC, PMVC,
and HC) by studying some application examples (Section6)
and discuss their limitations as well as interesting open ques-
tions for future research (Section7).

2. Principle of Maximum Entropy

Shannon [Sha48] introduced the concept of entropy as a
measure of uncertainty in information theory, with an eye
on its applications in communication theory. TheShannon
entropyof a discrete probability distribution is

H(p) = <− ln p> =−
n

∑
i=1

pi ln pi , (6)
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Figure 2: Barycentric coordinates for the rightmost vertex of this convex polygon. For convex polygons, MVC and PMVC are
the same, and the maximum entropy coordinates based on constant [Suk04] and Gaussian priors [AO06] (with β = 5 in this
example) satisfy the Lagrange property. Note that the coordinate derived from constant priors is very steep near the vertex and
would lose the Lagrange property if the polygon wasweakly convexand the vertex and its neighbours were collinear.

where< ·> is the expectation operator,pi = p(xi) is the
probability of the occurrence of the eventxi , andpi ln pi

.= 0
if pi = 0. Note that the above form ofH satisfies the ax-
iomatic requirements of an uncertainty measure [Khi57].

As a means for least-biased statistical inference in the
presence of testable (known) constraints, Jaynes used the
Shannon entropy to propose theprinciple of maximum en-
tropy [Jay57]. While Jaynes’s initial emphasis was on ap-
plications in statistical mechanics, the principle has broader
appeal and can be applied to any ill-posed problem that re-
quires inductive inference [Jay03]. In a nutshell, maximizing
entropy provides theleast-biasedstatistical inference solu-
tion when insufficient information is available.

To illustrate this statement, consider a coin toss experi-
ment and letpH and pT be the unknown probabilities of
heads and tails, respectively. Here, the only known constraint
is pH + pT = 1, which involves two unknowns but only one
equation. But if we regularize the problem by maximizing
the Shannon entropy (6) subject to this constraint, then the
unique maximum entropy solution ispH = pT = 1/2, which
is consistent with our expectations for an unbiased coin.

It was later recognized that forH to be invariant under
invertible mappings of the continuous random variablex, the
general form of the continuous entropy should be

H(p,m) =−
Z

p(x) ln

(
p(x)
m(x)

)
dx,

wherem is called ap-estimateor prior distribution [KL51,
Jay63,SJ80]. In this paper we use the discrete version of the
Shannon-Jaynes entropy functional:

H(p,m) =−
n

∑
i=1

pi ln

(
pi

mi

)
. (7)

In the literature, the quantityD(p‖m) =−H(p,m) is known
as the Kullback-Leibler (KL) distance. If the KL-distance is
adopted as the objective functional, the variational princi-
ple is known as the principle of minimum relative entropy
[SJ80]. Obviously, maximizing the Shannon-Jaynes entropy
functionalH(p,m) is equivalent to minimizing the relative
entropy functionalD(p‖m).

3. Maximum Entropy Coordinates

Historically, discrete probability measures have been seen as
weights and hence their association with the construction of
barycentric coordinates is natural. As in condition (1), dis-
crete probability measures sum to one, and condition (2) is
the counterpart of the expectation value of the first moment
(or mean) of a discrete probability distribution being known.

Sukumar [Suk04] adopted the Shannon entropy (6) to
construct non-negative barycentric coordinates for strictly
convex polygons, whereas Arroyo and Ortiz [AO06] used
a modified entropy functional in the variational principle to
derive basis functions for meshfree methods. The modified
entropy chosen in [AO06] is a linear combination of Rajan’s
functional [Raj94] and the Shannon entropy, and the solu-
tion of the variational problem provides a smooth transition
from Delaunay interpolation as a limiting case at one end to
global maximum entropy approximation at the other end of
the spectrum.

Sukumar and Wright [SW07b] later realized that both
constructions can be described in a unifying framework that
uses the Shannon-Jaynes entropy functional with a prior (7).
The variational formulation for maximum entropy coordi-
nates in general then is: findb = (b1, . . . ,bn) : Ω → Rn

+ as
the solution of the constrained optimization problem

max
b(v)∈Rn

+

H(b,m), H(b,m) =−
n

∑
i=1

bi(v) ln

(
bi(v)
mi(v)

)
(8a)

subject to the linear precision conditions

n

∑
i=1

bi(v) = 1, (8b)

n

∑
i=1

bi(v)(vi −v) = 0 (8c)

for any v ∈ Ω. In (8a), Rn
+ is the non-negative orthant and

mi : Ω → R+ is a prior estimate forbi . Note that if Ω is
a simplex inRd, thenn = d + 1 and the linear constraints
yield a unique solution for thebi . Forn> d+1, which is the
case of interest in this paper, the linear constraints form an
under-determined system.
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Figure 3: Barycentric coordinates for the lower left vertex of this non-convex polygon and prior estimate of MEC-1. In this
example, all functions are between zero and one. Note that PMVC is constant zero over the region shaded in red and also attains
a local maximum just above the vertex in the centre.

In the present context, the prior functions can be seen
as weight functions associated with each vertexvi , and the
variational principle provides acorrectionthat modifies the
weight functionsmi in a minimal (i.e., least-biased) way to
form coordinatesbi that satisfy the constant and linear pre-
cision conditions. For non-negativemi , the objective func-
tionalH(b,m) is strictly concave, and therefore the problem
posed in (8) admits a unique non-negative solution forbi .
Note that this construction of barycentric coordinates is also
valid for pointsv inside the convex hullΩc = [v1, . . . ,vn] of
the polytope as long as the priors are well-defined overΩc.

It now turns out that the coordinates of Sukumar [Suk04]
are the solutions of (8) for constant priorsmi(v)≡ 1 and that
Gaussian prior functionsmi(v) = exp(−β‖vi−v‖2) result in
the coordinates proposed by Arroyo and Ortiz [AO06] (see
Figure 2). We further note that one obtainsbi(v) = mi(v)
for i = 1, . . . ,n if the priors mi a priori satisfy the lin-
ear constraints. Moreover, if we omit the linear precision
condition (8c) and use just the constant precision con-
dition (8b) as a constraint, then the solution of (8) is
bi(v) = mi(v)/∑n

j=1 mj (v), which we recognize as having
the same form as the Shepard function [She68].

The key ingredient in the maximum entropy formulation
is the selection of the prior functionsmi , and this flexibility
presents the possibility of designing tailored barycentric co-
ordinates. The next section describes the specific choices for
prior functions that we make to construct non-negative bary-
centric coordinates for arbitrary polygons and polyhedra.

4. Prior Functions

To obtain non-negative barycentric coordinates for an arbi-
trary polygonΩ, we first construct non-negative priorsmi
that possess the desired boundary properties. We then use
these within the entropy formulation to obtain functionsbi
that are non-negative, interpolate on the boundary ofΩ, and
are linearly precise.

To this end, letei be the edge of the polygon betweenvi
andvi+1 and consider theedge weight function

ρi(v) = ‖v−vi‖+‖v−vi+1‖−‖vi+1−vi‖ (9)

that vanishes alongei and is positive elsewhere, by virtue
of the triangle inequality. Note thatρi is also used in the
construction of metric coordinates [MLD05,SM06]. It then
follows that the product

πi(v) = ∏
j 6=i−1,i

ρ j (v)

is non-negative and vanishes on all edges that are not adja-
cent to vertexvi . The same clearly holds for the prior func-
tionsmi that we derive from theπi through normalization,

mi(v) =
πi(v)

∑n
j=1 π j (v)

.

Note that after dividing both the numerator and the denomi-
nator by the product of allρ j , we get the equivalent form

mi(v) =
π̃i(v)

∑n
j=1 π̃ j (v)

with π̃i(v) =
1

ρi−1(v)ρi(v)
, (10)

which renders it amenable to stable numerical computations.

Now solving the optimization problem (8) with thesemi
as input yields functionsbi with all the desired properties.
Due to the linear constraints (8b) and (8c), thebi clearly sat-
isfy conditions (1) and (2) and as themi are non-negative,
then so are thebi . It remains to be shown that thebi in-
herit the Lagrange property from the prior functionsmi . If
mi(v∗) = 0 for somei ∈ {1, . . . ,n} andv∗ ∈ Ω, then solv-
ing (8) givesbi(v∗) = 0 because

lim
v→v∗

bi(v) ln

(
bi(v)
mi(v)

)
is zero ifbi(v∗) = 0 and diverges otherwise. Therefore, the
functionsbi have the same zero sets as their prior estimates
mi , and the only function that does not vanish at vertexvi
is bi . The Lagrange property (3) now follows because of (1)
and we similarly conclude that thebi are linear on the edges
of Ω. Hence, the functionsbi are non-negative barycentric
coordinates. We call them “MEC-1” and Figure3 shows an
example of such a functionbi and its prior estimatemi .

We would like to point out that this construction of
barycentric coordinates is rather general and also works for
any other choice of edge weight functions as long asρi is

c© 2008 The Author(s)
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Figure 4: Image warping using different barycentric coordinates and backward mapping (cf. [HF06]). The bottom row shows
a close-up of the region around the concave vertex of the target polygon. Note that the result using PMVC is only C0.

non-negative and vanishes alongei . For example, using the
alternative edge weight functions

ρi(v) = ‖v−vi‖ · ‖v−vi+1‖+(v−vi) · (v−vi+1)

in (10) gives the barycentric coordinates that we refer to as
“MEC-2” in our examples.

Moreover, the construction can be extended to higher di-
mensions. For example, ifΩ is a polyhedron inR3 with con-
vex planar faces, then we first define for each facefi a func-
tion ρi that vanishes onfi and is positive elsewhere. Iffi has
k verticesvi1, . . . ,vik , then the analogue of the edge weight
function (9) is theface weight function

ρi(v) =
k

∑
j=1

A(vi j ,vi j+1,v)−A(vi1, . . . ,vik),

whereA(v1, . . . ,vm) denotes the area of the polygon with
verticesv1, . . . ,vm. The prior functionmi for any vertexvi
of Ω is then computed as in (10) with the product in the de-
nominator ofπ̃i ranging over all faces adjacent tovi .

5. Numerical Algorithm

In order to use the proposed maximum entropy coordinates
for practical applications, it is essential to be able to effi-
ciently solve the constrained optimization problem in (8).
We resort to the method of Lagrange multipliers to first con-
vert (8) into an unconstrained problem and then use New-
ton’s method to solve it.

Let λ0 ∈ R be the Lagrange multiplier for the con-
straint (8b) andλ ∈Rd be the Lagrange multipliers for thed
constraints (8c). Then the Lagrangian for problem (8) is

L(b;λ0,λ) =
n

∑
i=1
−bi(v) ln

(
bi(v)
mi(v)

)
−λ0

( n

∑
i=1

bi(v)−1

)
−λ ·

( n

∑
i=1

bi(v)ṽi

)
,

whereṽi = vi −v. On setting the first variation ofL to zero,
namelyδL(b;λ0,λ) = 0, we obtain[

−1− ln

(
bi(v)
mi(v)

)
−λ0−λ · ṽi

]
δbi(v) = 0

for i = 1, . . . ,n, and since the variationδbi(v) is arbitrary, the
term within the bracket must be identically equal to zero:

−1− ln

(
bi(v)
mi(v)

)
−λ0−λ · ṽi = 0.

Therefore,

bi(v) =
mi(v)exp(−λ · ṽi)

Z
,

where the substitution lnZ = 1+ λ0 has been made (Z is
known as thepartition function in statistical mechanics).
Now, on using condition (8b), we obtain [SW07b]

bi(v) =
Zi(λ)
Z(λ)

,

Zi(λ) = mi(v)exp(−λ · ṽi),

Z(λ) =
n

∑
j=1

Z j (λ).

(11)

Note thatλ, Zi(λ), andZ(λ) implicitly depend onv and that
once the Lagrange multipliersλ = (λ1, . . . ,λd) are deter-
mined, thenbi(v) can be obtained from (11). To computeλ
we note that thebi(v) in (11) must satisfy (8c), which leads
to thed non-linear equations

1
Z(λ)

n

∑
i=1

Zi(λ)ṽi = 0 (12)

in thed unknownsλ1, . . . ,λd. The solution of (12) is equiv-
alent to solving the dual unconstrained optimization prob-
lem [BV04]

λ∗ = argminF(λ), F(λ) = lnZ(λ),

c© 2008 The Author(s)
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Figure 5: Mesh deformation using different barycentric coordinates and a control polyhedron with triangular faces. The results
for MVC, PMVC, and HC are taken from [LKCOL07].

whereλ∗ is the optimal solution. SinceF is strictly convex
in Ω, Newton’s method is the natural choice. The steps in
the Newton algorithm to compute the maximum entropy co-
ordinatesbi(v) of anyv∈Ω are as follows:

1. For givenv, compute and store ˜vi = vi−v; also functions
to compute the prior functionsmi(v) are available;

2. Start with iteration counterk= 0, the initial guessλ0 = 0,
and letε be the convergence tolerance. The convergence
tolerance dictates to what accuracy the linear precision
conditions are satisfied. A value ofε in the range 10−3 to
10−10 is suitable;

3. Computegk = ∇λF(λk) andHk = ∇λ∇λF(λk), which
are the gradient and Hessian ofF , respectively;

4. Determine Newton search direction∆λk =−
(
Hk)−1

gk;

5. Update:λk+1 = λk + α∆λk, whereα is the step size. For
Newton’s method (dampedor guarded), a line search al-
gorithm [BF04] is used to determineα if the error is
greater than 10−4, otherwiseα is set to unity;

6. Check convergence: if‖gk+1‖ > ε, then increment the
iteration counterk and goto 3, else continue;

7. Setλ∗ = λk+1 and computebi(v) from Equation (11).

Due to the quadratic convergence of Newton’s method, only
3 to 7 iterations are needed to obtain an accuracy of 10−10.

6. Results and Discussion

The advantages of MEC over previous barycentric coordi-
nates are threefold and we present several examples to illus-
trate them.

Firstly, MEC are non-negative for arbitrary polytopes,
which is important as it guarantees the convex hull property
of the barycentric interpolation (4). PMVC and HC share
this property with MEC, but MVC can be negative inside
a non-convex domain (see Figure1). In some applications,
this can lead to undesired results: for example, the inter-
polation of colour values can yield values outside the valid
range [HF06] and it can lead to severe artefacts in mesh de-
formation in some extreme cases [LKCOL07]. However, in
many situations, the influence of negative weights is not no-
ticeable (see Figure4).

Secondly, like MVC and HC, MEC are smooth inside
the domain, which in turn leads to well-behaved results in

MEC
m MVC PMVC HC

ε = 10−5 ε = 10−10

50 K 0.07 0.33 2.44 4.52 5.09
100 K 0.15 0.67 6.75 8.99 10.5
200 K 0.32 1.42 17.3 18.7 24.3
400 K 0.59 2.61 195 34.6 39.7

Table 1: Timings (in sec.) for evaluating the barycentric in-
terpolant at m points inside the L-shaped polygon with n= 6
vertices from Figure1.

applications that build on barycentric interpolation. PMVC,
however, are only piecewise smooth and have discontinuous
derivatives along certain lines inside a non-convex polygon
(see Figure1), and similarly inside non-convex polyhedra. In
particular, this happens along the lines defined by a concave
vertex and its two neighbours and can lead to visible “kinks”
if used for image warping (for example, see Figure4).

Thirdly, MEC can be evaluatedlocally at any pointv∈Ω,
though not as efficiently as MVC or PMVC, and the cost
scales reasonably with the desired accuracy. In contrast, the
evaluation of HC requires the solution of aglobal approx-
imation problem, and the computational cost substantially
increases if high accuracy is desired.

For planar polygons, we implemented all methods consid-
ered in this paper in the following way. For MVC, we use the
pseudo code suggested in [HF06], and for PMVC we first de-
termine the segments ofΩ that are “visible” from some point
v ∈ Ω and then use the MVC formulas, restricted to these
segments. In order to evaluate HC, we usetriangle [She02]
to triangulateΩ with mvertices andTAUCS [Tol03] to solve
the linear system arising from the piecewise linear finite ele-
ment discretization of the Laplacian. The details of our MEC
implementation are described in Section5.

The timings in Table1 were measured on a 2 GHz Intel
Pentium M with 1 GB of RAM and confirm that the cost for
computing MVC, PMVC, and MEC atm points grows lin-
early with m and slightly worse for HC, because the latter
requires to solve a linear system with a sparse system matrix
of sizem×m. The significantly larger constant of propor-
tionality for HC in the last row is due to the fact that the
linear system solver required more memory than available
as RAM and thus started swapping data to the hard disk.

c© 2008 The Author(s)
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source mesh MEC

Figure 6: Mesh deformation using a control polyhedron with
quadrilateral faces.

However, we point out that HC can be computed more
efficiently by using boundary element methods [Rus08],
which requires solving a linear system with a densek× k
system matrix (withn< k�m, wheren andmare the num-
bers of polygon vertices and interior points, respectively).
The timings also show that it is not very costly to increase
the accuracy of MEC due to the quadratic convergence rate
of Newton’s method.

We also implemented MEC for polyhedra inR3 and Fig-
ures5 and6 show the results of using them for mesh defor-
mation. It took about 100 sec. to compute then = 51 MEC
of the m = 48485 vertices of the horse, and about 140 sec.
for the n = 218 MEC of them = 15002 vertices of the ar-
madillo, confirming again that the evaluation cost depends
linearly both onn andm. Note that MEC can also be used
if the control polyhedron consists of quadrilateral faces, as
shown in Figure6. Moreover, the mesh to be deformed is
not required to be inside the control polyhedron but only in-
side its convex hull (see Section3), which is the case in this
example.

7. Conclusions

Maximum entropy coordinates offer a new way of general-
izing barycentric coordinates to arbitrary polytopes. By con-
struction, MEC are non-negative and have affine precision,
and we have shown that they also satisfy the Lagrange prop-
erty as long as the corresponding prior functions have the
correct zero set. Due to this flexibility, there is a lot of room
for improvement in designing “good” prior functions. For
example, it might be possible to manipulate the derivative
of the barycentric coordinates in a prescribed way by mod-
ifying the priors so as to allow for Hermite interpolation as
in [LS08].

A good prior will probably need to account for the local
geometry of the polytope, and it should also have local sup-
port. The construction in (10) seems to be a good recipe for
constructing priors and in essence, any function that mea-
sures the distance to an edge (or a face inR3) in some way

can be used as a weight functionρi . Due to the close con-
nection between distance fields and level set functions, we
believe that it is worth investigating the possible use of level
sets for the design of prior functions in future work.

Although confirmed by the many numerical results that
we ran, it also remains to prove the smoothness of MEC. For
the MEC, based on Gaussian prior functions, Arroyo and
Ortiz [AO06] could prove smoothness, and it is generally
assumed that the MEC are as smooth as the prior functions.
A first step towards a proof has been taken by Sukumar and
Wets [SW07a] who establishedC0-continuity of MEC for
any set ofCk prior functions,k≥ 0.

We would finally like to mention again that MEC are only
defined inside the convex hull of the polytopeΩ and not
everywhere inRd like MVC and HC (see [Rus08]), because
the optimization problem (8) does not have a feasible non-
negative solution at points outside the convex hull.
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