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SUMMARY

In this paper, an overview of the construction of meshfree basis functions is presented, with particular
emphasis on moving least-squares approximants, natural neighbour-based polygonal interpolants, and
entropy approximants. The use of information-theoretic variational principles to derive approximation
schemes is a recent development. In this setting, data approximation is viewed as an inductive inference
problem, with the basis functions being synonymous with a discrete probability distribution and the
polynomial reproducing conditions acting as the linear constraints. The maximization (minimization) of
the Shannon–Jaynes entropy functional (relative entropy functional) is used to unify the construction of
globally and locally supported convex approximation schemes. A JAVA applet is used to visualize the
meshfree basis functions, and comparisons and links between different meshfree approximation schemes
are presented. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Data approximation from a scattered set of points (nodes) in Rd is required in many applications:
computer graphics and visualization, image processing, regression models, supervised learning,
and finite element and meshfree methods to name a few. In this paper, we focus on the construction
of approximation schemes within the convex hull of a set of nodes—convex polygons (n-gons)
and scattered set of nodes are considered. Barycentric co-ordinates on irregular polygons are of
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182 N. SUKUMAR AND R. W. WRIGHT

interest in computer graphics and geometric modelling [1–3], and they are also used in polygonal
finite element methods [4]. The scattered data approximation problem that we consider has been
studied using moving least-squares (MLS) approximants [5], natural neighbour-based interpolants
[6, 7], and radial basis functions (RBFs) [8–10]. A recent advance in this direction has been the
use of information-theoretic variational principles to construct meshfree basis functions [11–13].
We elaborate on the rationale of this approach, and provide a unifying framework to view entropy
approximants. A JAVA applet is developed to visualize meshfree basis functions, with an aim to
readily discern the similarities and distinctions between different meshfree approximants.

The outline of this paper follows. We first present some of the essential properties of data
approximations schemes, and then finite element and meshfree Galerkin methods are touched
upon. In Section 3, the main functionalities and capabilities of the JAVA applet are presented, and
basis function plots that are created using the applet appear in Sections 4 and 5. The construction
of MLS approximants and barycentric co-ordinates on irregular polygons are described in Sec-
tion 4. To motivate the adoption of entropy-based approximants, the key ingredients of Bayesian
theory of probability are outlined in Section 5. In Section 5.1, we present the derivation of basis
functions using Jaynes’s principle of maximum-entropy (MAXENT) [14, 15] as well as through its
generalization, the principle of minimum relative entropy (Shannon–Jaynes entropy functional)
[16–18]. Entropy-based higher-order approximation schemes are proposed in Section 5.2, and we
close with a few concluding remarks in Section 6.

2. PRELIMINARIES

Consider a set of distinct nodes {xi }ni=1 in Rd . The convex hull, C⊂ Rd , is the smallest convex set
that contains all the nodes. Let us introduce a point p with co-ordinate x within C⊂ R2 (Figure 1).
An approximation scheme for a scalar-valued function u(x) : C→ R can be written as

uh(x) =
n∑

i=1
�i (x)ui (1)

where ui are coefficients (nodal values if uh is an interpolant) and �i (x) is the basis function
of node i . If xi are the vertices of a polyhedron, then {�i }ni=1 are the barycentric co-ordinates
of p. On convex polygons, the MAXENT basis functions are a barycentric co-ordinate, but they are
non-interpolatory on a set of scattered nodes (Figure 1(d)). Maximum-entropy basis functions were
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Figure 1. (a) Triangle; (b) square; (c) hexagon; and (d) scattered nodes.
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OVERVIEW AND CONSTRUCTION OF MESHFREE BASIS FUNCTIONS 183

introduced by Sukumar [11] and Arroyo and Ortiz [12]. In Reference [12], its link to convex analysis
[19] were noted, and these approximants were referred to as convex approximation schemes. For
Equation (1) to be a linearly precise barycentric co-ordinate or convex approximation scheme [12],
the basis functions must satisfy the following properties:

1. Ability to reproduce constant and linear functions exactly:

∀x,
n∑

i=1
�i (x)= 1 and

n∑
i=1

�i (x)xi = x (2)

For second-order partial differential equations (PDEs), approximants that possess constant
and linear precision are sufficient for convergence in a Galerkin method [20].

2. The {�i (x)}ni=1 are sufficiently smooth (typically C∞) in the interior of C.
3. Convex combination:

�i (x)�0 ∀i, x (3)

which in conjunction with Equation (2) indicates that the �i (x) are bounded between zero and
unity and satisfy the convex hull property. The non-negative condition leads to the variation
diminishing property and to positive-definite mass matrices [12]. Convex approximation
schemes are not prone to the Runge phenomena [21], which occurs when using higher-order
one-dimensional Lagrange interpolation on uniform grids. In addition, optimal conditioning
can be established for non-negative basis functions [22–24]. The adoption of NURBS-based
convex basis functions to ensure geometric exactness in finite element analysis has been
recently introduced by Hughes and co-workers [25]. MLS approximants [5], which are
widely used in meshfree Galerkin methods, are not convex approximants since MLS basis
functions can be negative.

Consider the Poisson equation with homogeneous Dirichlet (essential) boundary conditions:

−∇2u = f in �, u = 0 on �� (4)

where �⊂ R2 is the problem domain and �� is its boundary. In the finite element method, the
domain is partitioned into M non-overlapping subdomains (elements), �= ⋃M

k=1Tk , where Tk
is either a triangle or a quadrilateral (isoparametric transformation of the elements shown in
Figures 1(a) and (b)). In finite elements, basis functions are associated with each vertex (node)
of Tk , and within an element, the local restriction of a basis function is known as a shape
function.

In a Galerkin method, a weak or variational statement of the strong form, Equation (4), is used:
find u ∈ H1

0 (�) such that∫
�

∇(�u) · ∇u d�=
∫

�
f �u d� ∀�u ∈ H1

0 (�) (5)

where H1
0 (�) is the Sobolev space of functions in L2(�) whose derivatives are also square-

integrable, and with vanishing function values on ��, and �u denotes the first variation of u.
In finite element and meshfree Galerkin methods, u(x) is approximated by uh(x) (belongs to a
finite-dimensional subspace of H1

0 (�)) of the form given in Equation (1). A similar approximation
is used for the test function �u. Since the nodal coefficients that appear in �uh are arbitrary,
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184 N. SUKUMAR AND R. W. WRIGHT

a linear system of equations is obtained:

Ku= f, Ki j =
∫

�
∇�i · ∇� j d�, fi =

∫
�

�i f d� (6)

In the finite element method, the shape functions �i (x) are defined on reference elements
(Figures 1(a) and (b)), and through an isoparametric transformation, they are obtained on any
triangle or convex quadrilateral. Finite element basis functions satisfy three key properties, which
facilitates the exact imposition of linear Dirichlet boundary conditions:

1. Basis functions satisfy linear reproducing conditions (linearly complete) on meshes with
either triangular or quadrilateral elements.

2. Interior nodal basis functions do not contribute at a point p that lies on the boundary of the
domain.

3. The basis functions possess the Kronecker-delta property (cardinal basis): �i (x j ) = �i j .

On meshes with convex n-gons, MAXENT basis functions are a barycentric co-ordinate and they
satisfy all the above properties [11]. Maximum-entropy basis functions meet the first and second
property on convex domains, but for three or more nodes that are collinear on the boundary of the
domain, a weaker Kronecker-delta property is satisfied. Extensive research in meshfree methods
has focused on modifications to MLS (e.g. use of singular weight functions or transformations)
and to other meshfree approximants with the objective of constructing basis functions with the
Kronecker-delta property. The lack of the Kronecker-delta property on the boundary by itself
does not pose any limitation; the first two properties that are indicated above are the critical ones
and they suffice to enable the imposition of essential boundary conditions in MAXENT meshfree
methods as in finite elements [12].

3. JAVA APPLET FOR VISUALIZATION OF MESHFREE BASIS FUNCTIONS

There have been significant advances in the use of meshfree approximants for the solution of partial
differential equations [26–34]. However, in spite of the maturity of meshfree methods, there are
currently no tools in the public-domain to visualize meshfree basis functions. We have developed
JAVA applets to visualize basis functions in one, two, and three dimensions; the two-dimensional
JAVA applet menu is shown in Figure 2. The applets serve as a suitable aid to readily discern the
similarities and distinctions between the different meshfree approximation schemes.

The creation of a web-accessible JAVA programme allows users to create an arbitrary nodal
set (convex or non-convex) in one, two or three dimensions by inputting the co-ordinates of its
nodes, with the aid of a direct data entry form or a point-and-click interface. Options such as P
(polygon), Q (quadtree grid), and R (random nodes in a unit square) are indicated in Figure 2.
This programme displays a visualization of the basis function associated with a node and specific
formulation, both picked by the user. Available formulations in two dimensions include Delaunay
and polygonal interpolation schemes, MLS, and maximum-entropy approximations using a uniform
prior distribution (lead to global basis functions) and a compactly supported prior distribution (lead
to compactly supported basis functions). In one dimension, individual basis functions or all the
basis functions on a grid can be displayed. Two-dimensional basis functions may be dislayed as
contour plots or surface plots. The plots are generated by dividing the polygonal element into
triangles and then dividing the triangles recursively. The user can calculate the value of the basis
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Figure 2. JAVA applet menu.
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186 N. SUKUMAR AND R. W. WRIGHT

functions at an arbitrary point within the convex hull. In 3D, basis function values on planes that
cut the convex hull are computed.

The visualization package is coded as a Java 1.4 applet and embedded in an HTML page that
detects screen resolution and adjusts the applet’s behaviour accordingly. The code is object-oriented
and hence modular, making it fairly easily extended. Visualizations resemble as closely as possible
the desirable styles of texts and journals, and software such as MathematicaTM and MatlabTM.
The generated visualizations are suitable for publication (EPS option in Figure 2). The capabilities
of the applet are demonstrated through basis function plots that appear in the ensuing sections.

4. MESHFREE APPROXIMANTS AND POLYGONAL INTERPOLANTS

Currently, most meshfree Galerkin methods are based on approximants that can be classified
into three distinct types: RBFs [8, 9], MLS approximants [5], and natural neighbour interpolation
schemes [6, 7]. In meshfree methods, the approximation scheme is of the form Equation (1), but
the construction of the nodal basis functions {�i }ni=1 is not tied to a background element structure.
A brief description of MLS, RBFs, and polygonal interpolants follows.

4.1. Moving least squares approximants

In the MLS approximation, each node is associated with a compactly supported weight function,
w : [0,∞) → R:

wi (x)≡w(qi ), qi = ‖x − xi‖
rmax
i

(7)

where ‖ · ‖ is the L2 norm of its argument, rmax
i is the radius of support for the nodal weight

function, and w(q) is a smooth, non-increasing weight function that is maximal at q = 0 and
vanishes for q�1. The global MLS approximation is [5]:

uh(x)=
m∑
j=1

p j (x)a j (x) ≡
n∑

i=1
�i (x)ui (8)

where p is a basis vector (for example, p={1 x y}T is a linear basis in 2D) and a j (x) are unknown
parameters that are found by solving a quadratic weighted least squares minimization problem [5]:

min
a

1

2

n∑
i=1

wi (x)[pT(xi )a(x) − ui ]2 or min
a

1

2
(Pa − u)TW(Pa − u) (9)

On carrying out the minimization, the solution for the MLS basis functions is given by [28]
�i (x)= pT(x)A(x)−1Bi (x) (10a)

where the matrices A(x) and B(x) are

A(x) =
n∑

i=1
wi (x)p(xi )pT(xi ) (10b)

B(x) = [w1(x)p(x1), w2(x)p(x2), . . . , wn(x)p(xn)] (10c)
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In the numerical implementation, a cubic spline weight function, w(q)∈C2(R+), is used [35]:

w(q)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2

3
− 4q2 + 4q3 if 0�q�1

2

4

3
− 4q + 4q2 − 4q3

3
if

1

2
�q�1

0 otherwise

(11)

The nodal weight function support radius rmax
i = �hi , where hi is chosen for each node by a

procedure very similar to Algorithm 2 in Reference [36]:
For the set of nodes {xi }ni=1 and their convex hull C,

1. Choose positive integersm1 andm2 and a constant ���0>1 and set hi = 0 for i = 1, 2, . . . , n.
2. Assemble a set of points P in three steps:

(a) Create a [m1]d uniform grid of points over C and discard those falling outside.
(b) Add m2 random, uniformly distributed points in C.
(c) Add the nodes {xi }ni=1.

3. For each p∈P,

(a) Find the d+1 nodes {xi∗}d+1
i∗=1 in {xi }ni=1 that are closest to p, and compute their Euclidean

distance di∗ = ‖p − xi∗‖.
(b) If hi∗<di∗ , set hi∗ = di∗ .

4. Set rmax
i = �hi for i = 1, 2, . . . , n.

For the 2D applet, m1 = 100, m2 = 10 000, �0 = 1.01, and the constant � is chosen by the user via
a slider. This procedure is necessary to ensure that every point in C is covered by at least d + 1
nodal weight function supports, so that the matrix A(x), defined in Equation (10b), has full rank.

4.2. Radial basis functions

Consider the approximation of a function u(x) : Rd → R using the set of scattered nodes {xi }ni=1.
In the RBF approximation, a fixed radial function � : Rd → R is chosen, i.e. �(x)≡ �(‖x‖) with
� : [0,∞) → R. On using translates of this radial function with centres at xi , the following ansatz
is made [10]:

uh(x) =
n∑

i=1
�(‖x − xi‖)ai (12)

where ai are unknown coefficients. Often, a polynomial term is also included in the above approx-
imation if global polynomial reproducibility is desired. For certain choices of �(·), for example,
Gaussian, multiquadrics, or thin-plate splines, the matrix Ki j = �(‖x j − xi‖) is positive-definite
and invertible, and hence the data interpolation problem, uh(x j ) = u(x j ) ( j = 1, 2, . . . , n), results
in a unique solution for a. The use of RBFs in collocation-based meshfree methods was initiated
by Kansa [37, 38], and new developments and advances continue to emerge in this topical research
area. In this paper, RBFs are adopted as prior distributions (weights) within the Shannon–Jaynes
maximum-entropy formalism.
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4.3. Polygonal interpolants

Using elements of projective geometry, Wachspress [39] proposed rational polynomial interpolants
for convex polygons. Recently, there have been additional contributions on the construction of
barycentric co-ordinates on irregular polygons [1, 2, 4, 11]. A review on the construction of polyg-
onal interpolants is presented by Sukumar and Malsch [40].

In Reference [1], a simple expression is obtained for Wachspress’s basis functions:

�i (x)= wi (x)∑n
j=1 w j (x)

, wi (x)= A(pi−1, pi , pi+1)

A(pi−1, pi , p)A(pi , pi+1, p)
= cot �i + cot �i

‖x − xi‖2
(13)

where the last expression is used in our numerical implementation. In the above equation, A(a, b, c)
is the signed area of triangle [a, b, c], and �i and �i are shown in Figure 3(a).

Floater [2] used the mean value theorem for harmonic functions to develop barycentric
co-ordinates on polygons. The linearly precise mean value co-ordinate is [2]:

�i (x) = wi (x)∑n
j=1 w j (x)

, wi (x)= tan(�i−1/2) + tan(�i/2)

‖x − xi‖ (14)

where the angle �i is shown in Figure 3(b). In the JAVA applet, the algorithm for mean value
co-ordinates proposed by Hormann (Figure 6 in Reference [41]) is used. The implementation is
valid for convex and non-convex polygons.

Natural neighbour interpolation methods are Voronoi-based convex approximation schemes that
interpolate nodal data and share many common properties with the finite element interpolant.
Cueto and co-workers [42] provide an overview of the construction of natural neighbour-based
interpolants. In Reference [4], Laplace basis functions [7] are constructed on regular polygons,
and through an isoparametric mapping, the basis functions are defined on irregular polygons.
The Wachspress basis functions and mean value co-ordinates are directly computed on irregular
polygons, which is also the case in a recently proposed non-conforming finite element method
on polyhedral meshes [43]. The interested reader can refer to Reference [40] and the references
therein for further details on the construction and implementation of polygonal interpolants.

In Figure 4, Wachspress, mean value and Laplace basis functions for the hexagon in Figure 1(c)
are plotted. These basis functions share the properties of polygonal barycentric co-ordinates.
In Figure 5, the capabilities of the applet are further illustrated by presenting Laplace basis
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Figure 3. Barycentric co-ordinates: (a) Wachspress [1]; and (b) mean value co-ordinates [2].

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 70:181–205
DOI: 10.1002/nme



OVERVIEW AND CONSTRUCTION OF MESHFREE BASIS FUNCTIONS 189

Figure 4. Hexagonal basis functions (node 1): (a) Wachspress; (b) mean
value co-ordinates; and (c) Laplace.

Figure 5. Laplace basis functions (node 1) for a regular pentagon at varying
resolutions (a)–(d) and (e) 3D plot.

Figure 6. Mean value co-ordinates on concave polygons (node 1): (a) hexagon; and (b) octagon.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 70:181–205
DOI: 10.1002/nme



190 N. SUKUMAR AND R. W. WRIGHT

function contour plots on a regular pentagon for varying resolutions; a 3D perspective is shown in
Figure 5(e). Mean value co-ordinates are also linearly precise on concave (non-convex) polygons. In
Figure 6, contour plots of mean value co-ordinates are shown for a concave hexagon and a concave
octagon.

5. BAYESIAN THEORY OF PROBABILITY AND ENTROPIC MEASURES

A recent development in the construction of meshfree approximants has been the use of information-
theoretic variational principles [11–13]. To provide greater details and insights on the rationale
for this approach, we present some of the essential ingredients of Bayesian theory of probabil-
ity and its ties to inductive inference. In References [11, 12], data approximation is viewed as
a problem in inductive inference. Pure mathematics follows the principle of deductive logic—
given a cause, many logical consequences can be readily inferred (Figure 7(a)). However, in
scientific problems, the reverse is more common: given certain effects or observations, the most
likely underlying causes are desired. This requires inductive logic (Figure 7(b)), as in ill-posed
inverse problems (e.g. heat conduction, scattering, image reconstruction) that arise in science and
engineering [45].

Probability theory as a rational inductive inference procedure was initiated by Bayes and Laplace,
and subsequently formalized by Jeffreys [46] and Cox [47]. In information theory [48], the notion
of entropy as a measure of uncertainty or incomplete knowledge was introduced by Shannon [14].
Building on these previous contributions, Jaynes [15, 49] proposed the principle of maximum-
entropy (MAXENT), in which it was shown that maximizing entropy provides the least-biased
statistical inference when insufficient information is available. In References [11, 12], the basis
functions {�i }ni=1 are viewed as a discrete probability distribution {pi }ni=1, and the polynomial
reproducing conditions are the under-determined constraints. To regularize the ill-posed problem,
the maximum-entropy principle was used. In this paper, as a generalization, the Shannon–Jaynes
entropy functional and the MAXENT or minimum relative entropy principle [16–18] is invoked to
obtain the basis functions. Sivia [44] presents an excellent introduction to Bayesian inference and
maximum-entropy methods, whereas Jaynes [50] provides a more rigorous and in-depth look at
probability theory from the Bayesian perspective.

In Bayesian theory, probability is a subjective measure that represents a degree-of-belief and is
always ‘conditional,’ which is contrary to the (objective) frequentist definition. The Bayesian view
consists of three stages that are essential to the process of inductive inference [50–52]:

1. Bayes’s theorem: If h stands for a hypothesis, d for a set of data, and I for background
(testable) information, then Bayes’s theorem states that:

p(h | d, I )︸ ︷︷ ︸
posterior pdf

= p(h | I )︸ ︷︷ ︸
prior

× p(d | h, I )︸ ︷︷ ︸
likelihood

/ p(d | I )︸ ︷︷ ︸
evidence

(15)

where p(·) is used to denote either the probability (discrete) or the probability density function,
pdf (continuous), and in a parameter-estimation problem, the denominator is just a normalizing
factor since the posterior pdf must integrate to unity. In essence, Bayes’s theorem is a rule for
manipulating probabilities and not for their assignment—the prior probability of h gets updated
to the posterior probability as a result of acquiring the data.
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Cause Effects or
Outcomes

(a)

Possible Effects or
ObservationsCauses

(b)

Figure 7. (a) Deductive logic; and (b) inductive logic [44].

2. Maximum-entropy principle: In information theory, Shannon introduced the notion of entropy
as a measure of uncertainty [14]. The Shannon entropy of a discrete probability distribution is:

H(p) =E[− log p] = −
n∑

i=1
pi ln pi (16)

where pi ≡ p(xi ) is the probability of the occurrence of the event xi , p ln p
.= 0 if p= 0, E[·]

is the expectation operator, and the above form of the entropy H(·) satisfies the axiomatic
requirements of an uncertainty measure, with (1) H(p)�0; (2) H(p) attains its maximum value
when p1 = p2 = · · · = pn = 1/n and it’s a monotonic function; and (3) H(p1, p2, . . . , pn) =
H(p1, p2, . . . , pn, 0) being the most important properties [53].
Entropy maximization was proposed by Jaynes [15] as a means for least-biased statistical

inference when insufficient information is available, and was shown to reproduce equilibrium
(Gibbs–Boltzmann) and non-equilibrium distributions in statistical mechanics [16, 50, 54]. It is the
only consistent variational principle for the assignment of probabilities under a set of constraints
(testable information) [16, 18]. Let the available data pertaining to a random variable X consist
of the expected value of functions gr (x) (r = 0, 1, . . . ,m), with g0(x)= 1 being the normalizing
condition. Then, the discrete probabilities are found by solving [15]

max
p∈Rn+

(
H(p) =−

n∑
i=1

pi ln pi

)
(17a)

n∑
i=1

pi = 1,
n∑

i=1
pi gr (xi ) =E[gr (x)] (r = 1, 2, . . . ,m) (17b)

where Rn+ is the non-negative orthant. Often, the first m + 1 moments of the random variable
are available, which leads to the classical maximum-entropy problem of moments [55]. For in-
stance, if the mean � of a random variable X is known, then the discrete problem is posed
as [44, p. 121]

max
p∈Rn+

(
H(p) = −

n∑
i=1

pi ln pi

)
(18a)

n∑
i=1

pi = 1,
n∑

i=1
pi xi = � (18b)
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192 N. SUKUMAR AND R. W. WRIGHT

which is solved using the method of Lagrange multipliers, and in the continuous case with limits
0 to ∞, we obtain the exponential distribution [44, p. 121]

p(x | �) = 1

�
exp

(
− x

�

)
, x�0 (19)

If the first moment � and variance �2 of X are known, then in the continuous case with limits ±∞,
we obtain the solution [44, p. 122]

p(x | �, �) = 1

�
√
2�

exp

(
− (x − �)2

2�2

)
(20)

which is the Gaussian distribution—a consequence that follows if only the mean (first moment) and
variance of data are known. It was recognized that for H(·) to be invariant under the transformation
y = f (x) in the continuous case, the general form of the entropy should be [16–18]

H(p,m) =−
n∑

i=1
pi ln

(
pi
mi

)
or H(p,m) = −

∫
p(x) ln

(
p(x)

m(x)

)
dx (21)

where m(x)(mi ) is a prior distribution that estimates p(x)(pi ). In the literature, the quantity
D(p‖m) =−H(p,m) is also referred to as the Kullback–Leibler distance (directed divergence) [56],
and the variational principle is known as the principle of minimum relative (cross) entropy [18].
The relative entropy, D(p‖m)�0, which is proven below.

Proof
If f is a concave function and X a random variable, then by Jensen’s inequality (see Reference
[48, p. 25])

E[ f (X)]� f (E[X ]) (22)

The Shannon–Jaynes entropy (negative of the relative entropy) functional is

−D(p‖m) =−
n∑

i=1
pi ln

(
pi
mi

)
=

n∑
i=1

pi ln

(
mi

pi

)
(23)

On considering the concave function f (x)= ln x and invoking Jensen’s inequality, we can write

−D(p‖m) =
n∑

i=1
pi ln

(
mi

pi

)
� ln

(
n∑

i=1
pi
mi

pi

)
= ln

n∑
i=1

mi = ln 1= 0 (24)

which completes the proof. �

Since ln is a strictly concave function, D(p‖m) attains its minimum value of zero if and only if
p=m. If a uniform prior, mi = 1/n, is used, the principle of minimum relative entropy is identical
to the MAXENT principle using Shannon entropy.

3. Hypothesis space: The choice of the hypothesis space is the key in any inductive inference
problem—this refers to the measure space to define m(x) or mi when using the maximum-entropy
principle or the prior probability p(h | I ) in Bayes’s theorem. The selection of the prior distribution,
m(x), is a key element in the construction of MAXENT approximation schemes, which is discussed
in the next section.
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5.1. Maximum-entropy approximation schemes

In References [11, 12], the maximum-entropy principle using Shannon entropy and a modified
entropy functional, respectively, were used. In this paper, as a unifying framework and general-
ization, we adopt the Shannon–Jaynes entropy measure, Equation (21), and for consistency, the
variational problem is posed as the maximization of the entropy functional, and therefore the
dual (unconstrained) problem becomes a convex minimization problem. The parallels between
the conditions on �i in Equations (2) and (3) and those on pi in a MAXENT formulation are
evident. Referring to the nodal sets shown in Figure 1, the basis function value �i (x) is viewed
as the ‘probability of influence of a node i at x’. The maximum-entropy formulation is: find
/(x)∈ Rn+ as the solution of the constrained optimization problem:

max
/∈Rn+

(
H(/,m) =−

n∑
i=1

�i (x) ln
(

�i (x)
mi (x)

))
(25a)

subject to the linear reproducing conditions given in Equation (2):

n∑
i=1

�i (x)= 1,
n∑

i=1
�i (x)xi = x (25b)

where mi (x) is a prior estimate, and the constraints form an under-determined linear system. Let
	s (s = 0, 1, . . . , d) be the Lagrange multipliers associated with the d +1 constraints. The solution
of the variational problem can be written as

�i (x)= Zi (x)
Z(x)

, Zi (x) =mi (x) exp(−xTi k(x)) (26)

where the maximum-entropy basis functions naturally assume an exponential form, and Z(x) =∑
j Z j (x) is known as the partition function in statistical mechanics. In addition, xTi =[xi yi zi ]

and k(x)=[	1(x) 	2(x) 	3(x)]T in three dimensions. We mention in passing that such exponential
(Darmois–Koopman–Pitman) family of distributions are well known and widely studied in statis-
tical theory [57] and information geometry [58].

The �i (x) in Equation (26) must satisfy the d linear constraints given in Equation (25b), which
yields d nonlinear equations. On considering the dual formulation, a simple unconstrained convex
minimization problem is obtained. To this end, we let x̃i = xi − x , ỹi = yi − y, and z̃i = zi − z
(shifted nodal co-ordinates in R3), and then redefine Z appropriately. Now, the dual problem is:
find k such that [59, 60]

k= argmin ln Z(kt ) (27)

On using convex duality [19, 60], a detailed mathematical treatment of the primal and dual
optimization problems is presented in Reference [12]. Numerical algorithms such as steepest
descent, Newton’s method, quasi-Newton (variable metric) methods, and interior-point methods
are used to solve such unconstrained optimizations problems [60]. Interior-point methods are at-
tractive for large systems with equality and inequality constraints [61]; for entropy maximization, a
MatlabTM code, which is based on primal-dual interior method is available in the public-domain
[62]. For the JAVA applet, the convex minimization problem is solved using a variable step size
gradient descent algorithm [63], with a convergence tolerance 
= 10−3.
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In Reference [11], a uniform prior was used, whereas in Reference [12], a variational principle
using a modified entropy functional (pareto optima of two objectives) was proposed:

min
/∈Rn+

M(/, x) or max
/∈Rn+

−M(/, x), M(/, x) = �U (/, x) − H(/) (28a)

where �≡ �(x) is non-negative, H(/) is the Shannon entropy, andU (/, x) is the objective function
introduced by Rajan [64]:

U (/, x) =
n∑

i=1
�i (x)‖xi − x‖2 (28b)

The above functional form draws the connection to statistical mechanics, with the free energy
G=U − T H , where U is the internal energy, H is the entropy, and T is the temperature [12, 61].
Rajan’s linear programming problem is [64]:

min
/

U (/, x), �i (x)�0,
n∑

i=1
�i (x)= 1,

n∑
i=1

�i (x)xi = x (29)

whose solution is the finite element (Delaunay) interpolant. At x= x j , nodal interpolation is realized
since the minimum value U = 0 is attained if �i (x j ) = �i j . When � → ∞ in Equation (28a),
Rajan’s problem is obtained, and �= 0 recovers Equation (25a) with a uniform prior. In Sukumar
[13], the minimum relative entropy principle was used to unify the above developments. The
entropy functional considered by Arroyo and Ortiz [12] is obtained if a Gaussian (RBF) prior,
mi (x) = exp(−�‖xi − x‖2), is used in Equation (25a):

H(/,m) = −
n∑

i=1
�i (x) ln

(
�i (x)

exp(−�‖xi − x‖2)
)

= −
n∑

i=1
�i (x) ln�i (x) − �

n∑
i=1

�i (x)‖xi − x‖2

= −�U (/, x) + H(/) (30)

which is identical to Equation (28a). The parameter � in the Gaussian distribution is inversely
proportional to the variance; it determines the support-width of the basis function [12].

The choice of the prior, mi (x), gives us greater flexibility in the construction of new approxi-
mants, and provides a simple and appealing means to construct globally or compactly supported
convex approximation schemes. In the spirit of previous research on meshfree methods [26, 27, 65]
and partition of unity methods [66], given a prior mi (x) and a set of linear constraints (reproduc-
ing conditions), entropy maximization can be viewed as a ‘correction’ to obtain an approxima-
tion with polynomial and/or non-polynomial reproducibility. The use of the Shannon or relative
entropy functional provides a means to obtain the least-biased statistical inference solution. With
Shannon entropy, the flattest possible distribution that is consistent with the constraints is realized.
The maximum-entropy formulation leads to a convex optimization problem, with the approximant
possessing many desirable properties for the Galerkin solution of PDEs [12]. The continuity of
maximum-entropy basis functions with a Gaussian prior is established in Arroyo and Ortiz [12],
and in Sukumar and Wets [67], variational analysis and the theory of epi-convergence [68] is used
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to prove the same for any prior distribution. The above properties are lost if other functionals
are adopted—for example, in Sukumar [11] it is shown that if the minimum-norm objective func-
tional (leads to the generalized- or pseudo-inverse [69]) is used, then �i (x)<0 is also admissible
and interpolation on the boundary is not realized. If the minimum-norm objective is adopted
with the non-negative condition, �i (x)�0, as additional constraints, then a convex approximant is
obtained; however, numerical tests reveal that the basis functions are continuous but not
continuously differentiable in the interior of C.

1. Uniform prior: For a uniform prior, mi (x) = 1/n, and as indicated earlier, the Shannon–
Jaynes entropy functional is the same as the Shannon entropy (modulo a constant). For this case,
the maximum-entropy basis functions are identical to bilinear finite element basis functions on a
square, and are smooth and bounded in C [11]. To illustrate a simple closed-form computation,
consider one-dimensional approximation in C= [0, 1] with three nodes located at x1 = 0, x2 = 1

2 ,
and x3 = 1. On using Equation (25), the solution for �i (x) is readily derived [40]:

�1(x)= 1

Z
, �2(x)= �

Z
, �3(x)= �2

Z
, � ≡ �(x)= 2x − 1 + √

12x(1 − x) + 1

4(1 − x)
(31)

where Z = 1 + � + �2.
2. Non-uniform prior: Instead of a uniform prior, a non-uniform prior for node i gives more

weight to xi than to other nodal locations. Now, different choices of the prior mi (x) can be used
in the Shannon–Jaynes entropy functional:

• The prior can be selected to be global radial basis functions such as the Gaussian, mi (x) =
exp(−‖xi − x‖2/c2), inverse multiquadrics, mi (x)= (‖xi − x‖2 + c2)−1/2, etc.

• On choosing a weight function, w(x), with compact support, we set mi (x)= wi (x) as the
prior for node i , where wi (x) is a translation and scaling of w(x). If the only constraint
is:

∑
i �i (x)= 1, then the maximum-entropy basis functions are: �i (x) = wi (x)/

∑
j w j (x),

which is the well-known Shepard function [70]. If wi (x) is constructed using the C2 cubic
spline weight function given in Equation (11), then unlike the MLS approximant, a convex
approximant with desirable properties on the boundary is obtained. Other choices for mi (x)
include compactly supported RBFs, for example the C2 function m(r) = (1 − r)4+(4r + 1)
[10], where (·)+ = (·) if the argument is non-negative and zero otherwise.

• As alternative compactly supported priors, R-functions [71, 72] or implicit (level set) functions
that are defined on a graph are also suitable.

Maximum-entropy basis functions with a uniform prior in C= [0, 1] are depicted in Figure 8.
For the plots in Figure 8(a), the closed-form expressions for �i (x) are given in Equation (31). Nodal
interpolation is met on bdry C but not at the interior nodes. In Figure 9, the maximum-entropy
basis functions for nodes 1 and 6 in Figure 1(d) are illustrated. We note that �1(x) is unity at x1
and is piece-wise linear on the boundary, whereas �6(x6) �= 1 and �6(x) vanishes on the boundary
of the square. Laplace and MAXENT basis functions on a weakly convex polygon are shown in
Figure 10. Along the edge 1–2, Laplace basis functions satisfy the Kronecker-delta property but
the maximum-entropy basis functions do not; however, �i (x)= 0 (i = 3–5) along edge 1–2 for
both Laplace and MAXENT basis functions.

To demonstrate the properties of convex approximants with a non-uniform prior, we first consider
a one-dimensional grid. In Figure 11, basis function plots using MLS, and MAXENT with a
compactly supported prior are presented. The cubic spline weight function given in Equation (11)
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(a) (b) (c)

Figure 8. One-dimensional maximum-entropy basis functions with a uniform prior: (a) regular grid (n = 3);
(b) regular grid (n = 5); and (c) random grid (n = 5).

Figure 9. Two-dimensional maximum-entropy basis functions with a
uniform prior: (a) �1(x); and (b) �6(x).

Figure 10. Basis functions on a weakly convex pentagon: (a) Laplace (node 6); (b) maximum-entropy
(node 6); (c) Laplace (node 4); and (d) maximum-entropy (node 4).
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(a) (b)

(c) (d)

Figure 11. One-dimensional basis functions: (a,b) uniform grid with MLS (�= 2.5)
and maximum-entropy with a cubic spline prior (�= 2.5); and (c,d) random grid with MLS (�= 2.5)

and maximum-entropy with a cubic spline prior (�= 2.5).

is used as the compactly supported prior. We observe that interior MLS basis functions have a
non-zero contribution on the boundary (Figures 11(a) and (c)), whereas boundary MAXENT basis
functions with a cubic spline prior (Figures 11(b) and (d)) satisfy the Kronecker-delta property.
Next, we consider the two-dimensional grid shown in Figure 1(d), and study the MAXENT plots
using a Gaussian prior, when � is varied; see Reference [12] for its applications in nonlinear solid
mechanics. For �= 0, 1, 10, 100, the MAXENT basis function plots for node 8 are presented in
Figure 12. The value �= 0 corresponds to a uniform prior. It’s observed that as � is increased
the nodal basis function support shrinks, and when � = 100 (theoretically when � → ∞) the basis
function support is proximal to the triangular (Delaunay) basis function (Figure 12(d)). In Figure 13,
comparisons between the MLS basis function and the MAXENT basis function using the compactly
supported cubic spline prior are presented. The interior MLS basis function is non-zero on bdry C
(Figure 13(c)), whereas the interior MAXENT basis function vanishes on the boundary of the square
(Figure 13(d)).

As of this writing, the three-dimensional applet is somewhat less developed than the other two
and is restricted to maximum-entropy basis function plots with a uniform prior. For Figure 14,
a regular tetrahedron is created, along with one or two interior nodes. Basis functions are plotted
along planes that cut the convex hull.
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Figure 12. Maximum-entropy basis function, �8(x), with a Gaussian prior:
(a) � = 0; (b) � = 1; (c) � = 10; and (d) �= 100.

5.2. Higher-order approximation schemes

In References [11, 12], linearly complete approximations were constructed using the maximum-
entropy principle. Furthermore, in Reference [12], it was shown that the additional constraint∑

i �i (x)x
2
i = x2 + c in one-dimension with c= 0 does not yield a feasible solution if �i�0.

On choosing c �= 0, non-negative �i (x) can be obtained, which bear resemblance to univariate
B-splines [12]. Alternatively, the non-negative condition, �i (x)�0, can be relaxed to obtain an
appropriate ‘entropy functional’ that can be maximized. To this end, we start with the generalization
of the Shannon–Jaynes entropy that was proposed by Skilling [73]:

H(/,m) =
n∑

i=1

[
�i − mi − �i ln

(
�i

mi

)]
(32)

where �i ≡�i (x) and the prior estimate mi ≡mi (x) need not be normalized so that applicability
is extended to physical distributions other than probabilities. In the absence of any constraints,
H(· , ·) is maximized when �i =mi (i = 1, 2, . . . , n). On using the above expression, distributions
with positive and negative values (signed basis functions) are obtained.

Let �i = vi −wi , where vi ∈ R+ and wi ∈ R+, so that �i ∈ R. Also, let mv
i and mw

i be the prior
estimate for vi and wi , respectively. The total entropy is

H(v,w,mv,mw) =
n∑

i=1

[
vi − mv

i − vi ln

(
vi

mv
i

)]
+

n∑
i=1

[
wi − mw

i − wi ln

(
wi

mw
i

)]
(33)
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Figure 13. Basis functions: �3(x) with: (a) MLS; (b) maximum-entropy with the cubic spline prior;
and �8(x) with (c) MLS; and (d) maximum-entropy with the cubic spline prior.

(a) (b) (c)

Figure 14. Three-dimensional maximum-entropy basis functions plots: (a) �1(x) along a plane near nodes 1
and 5; (b) �5(x) along a plane containing node 5; and (c) �3(x) along a plane near nodes 1, 3, 5, and 6.

An expression for H in which only / and m appears is desired. Since �i = vi − wi , we have

�H
�vi

= �H
��i

��i

�vi
= �H

��i
,

�H
�wi

= �H
��i

��i

�wi
= − �H

��i
(34)

and therefore
�H
�vi

+ �H
�wi

= 0 (35)
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On using Equation (33) and the above relation, we obtain

viwi =mv
i m

w
i (36)

If vi = (
i +�i )/2 and wi = (
i −�i )/2, then 
i =
√

�2
i + 4mv

i m
w
i . Finally, the entropy expression

for the positive/negative distribution / is [74, 75]:

H(/,mv,mw) =
n∑

i=1

[

i − mv

i − mw
i − �i ln

(

i + �i

2mv
i

)]
(37)

Now, when no constraints are imposed, H is maximized when �i =mv
i − mw

i . For the data
approximation problem, we choose mv

i = 2mi and mw
i =mi , where mi ≡mi (x) is a non-negative

weight function. The expression for the entropy becomes

H(/,m) =
n∑

i=1

[

i − 3mi − �i ln

(

i + �i

4mi

)]
(38)

where 
i =
√

�2
i + 8m2

i . On using the above form of H within the maximum-entropy variational
principle, signed basis functions with higher-order completeness are constructed.

The implementation of the signed maximum-entropy approximant has been carried in MatlabTM

[62]. In Figure 15, the MAXENT basis functions using a Gaussian prior weight function are shown.
The domain is C= [0, 1], which is discretized by five equi-spaced nodes. In Figure 15(a)–(c),
quadratically complete basis functions are depicted for varying values of �, whereas in
Figure 15(d)–(f), basis functions with cubic complete basis functions are plotted for different �.
The plots in Figure 15(g)–(i) are for basis functions that can reproduce {1, x, f (x)}, where
f (x)= exp(−(x − 0.5)2). In all cases, as � is increased, the basis functions are less negative
and are also closer to being an interpolant on the boundary.

6. CONCLUDING REMARKS

In this paper, we presented an overview and recent advances in the construction of meshfree
approximation schemes. Meshfree basis functions such as MLS approximants, natural neighbour-
based polygonal interpolants, and maximum-entropy (MAXENT) approximants were considered.
The construction and applications of MAXENT approximants have recently come to the forefront
[11–13], and hence greater emphasis was placed on the theoretical underpinnings of Bayesian
theory of probability, maximum-entropy principle [14, 15], and its numerical solution. We used the
Shannon–Jaynes entropy functional or relative entropy [17, 18] within the variational formulation
to generalize the construction of MAXENT approximants. The merits of constructing basis functions
using the maximum-entropy variational principle were examined, and the extension of Shannon–
Jaynes entropy to physical distributions other than probabilities [73] was used to construct higher-
order maximum-entropy basis functions. The use of maximum-entropy approximation schemes in
higher-dimensional parameter spaces is also promising [61]. A JAVA applet was developed,‡ and

‡Access to the applet will be made available through the first author’s web page.
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Figure 15. Higher-order basis functions: (a)–(c) quadratic completeness using a Gaussian prior with
� = 0, 2, 5; (d)–(f ) cubic completeness using a Gaussian prior with �= 0, 2, 5; and (g)–(i) reproducing

the functions {1, x, exp(−(x − 0.5)2)} using a Gaussian prior with � = 0, 2, 5.

basis function plots were presented to reveal the similarities and distinctions between different
meshfree approximants. The maximum-entropy formulation with a non-uniform prior provides
a simple and elegant means to directly impose linear essential boundary conditions in meshfree
methods. With the development of stable nodal integration schemes for meshfree Galerkin methods,
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Figure 15. Continued.

background cells would no longer be needed for numerical integration. This advance would pave the
way towards the conception of stable meshfree particle methods, which are particularly attractive
for the solution of problems that arise in nonlinear solid mechanics.
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