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Construction of polygonal interpolants: a maximum
entropy approach
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Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, U.S.A.

SUMMARY

In this paper, we establish a link between maximizing (information-theoretic) entropy and the con-
struction of polygonal interpolants. The determination of shape functions on n-gons (n > 3) leads
to a non-unique under-determined system of linear equations. The barycentric co-ordinates �i , which
form a partition of unity, are associated with discrete probability measures, and the linear reproducing
conditions are the counterpart of the expectations of a linear function. The �i are computed by
maximizing the uncertainty H(�1, �2, . . . , �n) = −∑n

i=1 �i log �i , subject to the above constraints.
The description is expository in nature, and the numerical results via the maximum entropy (MAXENT)
formulation are compared to those obtained from a few distinct polygonal interpolants. The maxi-
mum entropy formulation leads to a feasible solution for �i in any convex or non-convex polygon.
This study is an instance of the application of the maximum entropy principle, wherein least-biased
inference is made on the basis of incomplete information. Copyright � 2004 John Wiley & Sons, Ltd.

KEY WORDS: Shannon entropy; information theory; barycentric co-ordinates; natural neighbours;
Laplace interpolant; meshfree interpolant; data interpolation

1. INTRODUCTION

In information theory, the notion of entropy as a measure of uncertainty or incomplete knowl-
edge was introduced by Shannon [1]. The quantity H(p1, p2, . . . , pn) = −∑n

i=1 pi log pi was
referred to as the informational entropy of an ensemble, where pi is the probability asso-
ciated with the occurrence of the event xi , subject to the condition

∑n
i=1 pi = 1. Building

on Shannon’s work, Jaynes [2, 3] proposed the principle of maximum entropy (MAXENT), in
which through its bearing on well-known ensemble distributions in statistical mechanics, it was
shown that maximizing H was the least-biased means to obtain rational (statistical) inference
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2160 N. SUKUMAR

in the face of insufficient data. Jaynes [4] presents a concise and transparent explanation of
the MAXENT formalism (Jaynes’s principle). We point out that the meaning of entropy within the
context of MAXENT is to be viewed in the information-theoretic sense, as opposed to the concept
of entropy which arises in thermodynamics and statistical physics, where it is a measure of the
equilibria and evolution of thermodynamic systems. The application of the principle of maximum
entropy has touched many disciplines, ranging from economics to statistical mechanics, image
enhancement to nuclear physics, and as diverse as urban planning and biology. The collection of
Jaynes’s papers in Reference [5] provide a chronological sequence of progress in the evolution
of maximum entropy methods, whereas Khinchin [6] presents the mathematical roots and basis
of information theory. For a description of the various applications of MAXENT in science and
engineering, the interested reader can refer to Kapur [7].

In this paper, we view the data interpolation problem in a new light, and apply the maxi-
mum entropy principle to obtain least-biased interpolants on polygonal domains. To the author’s
knowledge, such an approach has not been pursued previously. The only study that does adopt
the principle of maximum entropy with finite elements is the work of Beltzer [8]. In Ref-
erence [8], the MAXENT principle was used to characterize finite elements in terms of its
complexity. Even though the use of the maximum entropy principle has primarily been ap-
plied to problems associated with randomness, such a notion is not necessarily required [4].
The MAXENT principle is equally applicable to any inferential problem with incomplete data,
in which the minimally prejudiced (maximally non-committal) solution is sought. This is the
viewpoint adopted in this study. The author’s recent research on the development of a natural
neighbour-based polygonal finite element method [9] and its use to construct a conforming h-
adaptive finite element method on tree-based meshes [10] provided impetus to pursue the present
investigation.

The outline of this paper is as follows. In Section 2, the maximum entropy principle for
the polygonal interpolant problem is presented, and in Section 3 its solution is obtained
by using the method of Lagrange multipliers combined with a numerical scheme in which
the minimizer of a convex function is sought. In Section 4, numerical results using the
MAXENT principle are presented for both, convex and non-convex polygons, and compar-
isons are made to results obtained from a few recently developed polygonal interpolants (see
Reference [9] for details). The main results and conclusions from this study are indicated in
Section 5.

2. PROBLEM STATEMENT AND FORMULATION

Consider a microscopic ensemble in which the sample space � consists of mutually inde-
pendent discrete events x1, x2, . . . , xn that occur with probabilities p1, p2, . . . , pn, respectively.
Since in a random experiment, P(�) = 1, it follows that the non-negative probabilities pi must
satisfy the condition

∑
i pi = 1. Now, consider m (m < n − 1) macroscopic observations, in

which the expected value of a function gr(x) (denoted by 〈gr(x)〉) is known. Then, the most
likely probability distribution pi is obtained by maximizing the informational entropy H(·)
[1, 2]

Maximize

(
H(p1, p2, . . . , pn) = −

n∑
i=1

pi log pi

)
(1a)

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:2159–2181



CONSTRUCTION OF POLYGONAL INTERPOLANTS 2161

Ωe

p

1

34

2

Ω ep 3
6

5

4

1
2

(a) (b)

Figure 1. Approximation at point p in an n-gon: (a) square (n = 4); and (b) hexagon (n = 6).

subject to the constraints
n∑

i=1
pi = 1 (1b)

n∑
i=1

pigr(xi) = 〈gr(x)〉 (1c)

where � log �
.= 0 if � = 0 and the specific form of the uncertainty measure H(·) given

in Equation (1a) is based on the satisfaction of three conditions, namely, H is a continuous
function of the pi , it attains its maximum when pi = 1/n ∀i with the maximum entropy
Hmax = H(1/n, . . . , 1/n) a monotonic function, and the composition law must hold [1, 2]. The
above form of H guarantees that pi � 0. The solution for pi is obtained using the method of
Lagrange multipliers, which we leave for a later stage when the specific polygonal interpolation
problem is considered. The rationale for using MAXENT rests on the fact that the entropy of most
of the admissible distributions that satisfy the constraints are concentrated in the neighbourhood
of the maximum entropy [11], and hence the maximum entropy distribution is the least-biased
and the one that has the maximum likelihood to occur.

We now draw an analogy between the above problem and the polygonal interpolation one,
which forms the basis of the approach pursued in this study. For details on the properties
associated with barycentric co-ordinates on polygons we refer the reader to Sukumar and
Tabarraei [9]; here we only mention relations that are directly pertinent to our investigation.
Consider the n-gons shown in Figure 1, where the nodes are located at the vertices of the
polygons. To each node, we associate a shape function (barycentric co-ordinate) �i � 0 in �̄e.
Consider a point p in �̄e with co-ordinate x ≡ (x, y). The interpolant uh(x) for a scalar-valued
function u(x) : �̄e → R can be written as

uh(x) =
n∑

i=1
�i (x)ui (2)

where ui = u(xi ) are the prescribed nodal values of u(x). The property �i � 0 (convex combina-
tion) ensures that the interpolant satisfies a discrete maximum principle: mini ui � uh � maxi ui .
We now impose the restriction that the �i are such that uh(x) can exactly reproduce constant
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and linear functions (linear precision). In general, kth-order finite elements in one dimension
satisfy kth-order completeness; however, in this study we only place linear completeness as a
constraint on the interpolant. This requirement on trial and test approximations is sufficient to
ensure optimal convergence of a Galerkin method for second-order partial differential equations.
The linear reproducing conditions can be written in matrix form as

A� = b (3a)

or




1 1 . . . 1

x1 x2 . . . xn

y1 y2 . . . yn




︸ ︷︷ ︸
A

(3×n)




�1

�2

...

�n


︸ ︷︷ ︸

�
(n×1)

=




1

x

y


︸ ︷︷ ︸

b
(3×1)

(3b)

where (xi, yi) are the nodal co-ordinates. For n = 3, a unique interpolant (barycentric co-
ordinates on a triangle) is obtained. However, if n > 3, the system is under-determined since
there are more unknown shape functions �i (i = 1, 2, . . . , n) than available constraints. We
note in passing that if we consider a hexagon with all its vertices on a unit circle and require
uh(x) to have quadratic precision, then there exists no solution for the shape functions �i

(i = 1, 2, . . . , 6). This follows since the set {1, x, y, xy, x2, y2} consists of linearly dependent
basis functions (x2

i + y2
i = 1), and therefore the matrix A (6 × 6) is singular. Returning to

the problem on-hand, the solution of the linear system A� = b can be obtained using the
method of generalized (Morse–Penrose) inverse [12].The generalized inverse A+ satisfies the
following properties: A+A = AA+, A+AA+ = A+, and AA+A = A. The general solution
is: � = A+b + (I − A+A)c, where c is an arbitrary constant vector. If c = 0, we obtain the
minimum norm solution � = A+b (Pinv m-file in Matlab™). The minimum norm solution
is equivalent to that obtained via the constrained optimization problem: Minimize ‖�‖ subject
to the linear system in Equation (3). The caveat here is that solutions �i < 0 are also admissible
(see Section 3), and hence ‖�‖ is not suitable as an uncertainty measure [2].

From Equations (1) and (3), we immediately note the correspondence: the weights �i can be
associated with probability measures pi , nodal co-ordinate xi is the event xi , and the averages
〈g1〉 ≡ 〈x〉 = x and 〈g2〉 ≡ 〈y〉 = y. In light of the MAXENT formulation, the shape functions �i

can be viewed as least-biased barycentric co-ordinates. If � = {�1, �2, . . . , �n} is a point in n-
dimensional space, which is constrained by �i � 0,

∑
i �i = 1,

∑
i �ixi = x and

∑
i �iyi = y,

then we obtain a surface (domain D) in an (n−3)-dimensional hyperplane. In D, 0 �H � log n,
with the maximum occurring at the centroid of the polygon (maximum uncertainty). There
are multiple local minima for the entropy which occur at the nodal locations: at x = xj ,
�i (xj ) = �ij (Kronecker-delta) holds with minimum entropy H = 0 (maximum certainty or
deterministic). In general, increase in H implies less information is available, whereas decrease
in H indicates more information (closer to being deterministic) is known. If a feasible solution
exists, then the maximum entropy solution is unique and maximal. Along the boundary of the
polygon (Figure 1), the interpolant is linear (only two �i are non-zero at a point along the
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interior of the edges of the polygon). The above inferences that we have drawn on the MAXENT
interpolant were also true for the polygonal interpolants considered in Reference [9], which in
part provided motivation to pursue the present investigation.

2.1. Method of Lagrange multipliers

We can now state the polygonal interpolation problem using the MAXENT formulation. We seek
to find �i (i = 1, 2, . . . , n) that are the solution of the following problem:

Maximize

(
H(�1, �2, . . . , �n) = −

n∑
i=1

�i log �i

)
(4a)

subject to the linear constraints

n∑
i=1

�i = 1 (4b)

n∑
i=1

�ixi = x (4c)

n∑
i=1

�iyi = y (4d)

where (x, y) ∈ �e (interior of the polygon). On the boundary of the convex hull, the MAXENT
solution for �i is known. We use the method of Lagrange multipliers to solve the constrained
optimization problem. Let �r (r = 0, 1, 2) be the Lagrange multipliers associated with the three
constraints, and we set the variation of the augmented Lagrangian to zero (�L = 0) [2]

�

[
n∑

i=1
− �i log �i + �0

(
1 −

n∑
i=1

�i

)
+ �1

(
x −

n∑
i=1

�ixi

)
+ �2

(
y −

n∑
i=1

�iyi

)]
= 0 (5)

or

[−1 − log �i − �0 − �1xi − �2yi]��i = 0 ∀��i (6)

and since the variations ��i are arbitrary, we obtain

−1 − log �i − �0 − �1xi − �2yi = 0 (i = 1, 2, . . . , n) (7)

In keeping with convention, we let �0 = log Z−1 [2]. The function Z is known as the partition
function, and is used to represent the canonical distribution in statistical mechanics. Then, the
above equation can be written as

log �i + log Z = −�1xi − �2yi (8)

or

�i = e−�1xi−�2yi

Z
(9)
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and since
∑

i �i = 1, we have

Z(�1, �2) =
n∑

i=1
e−�1xi−�2yi (10)

and therefore the shape functions �i can be written as

�i = e−�1xi−�2yi∑n
j=1 e−�1xj −�2yj

≡ Zi∑n
j=1 Zj

(11)

where Zi can be viewed as a weight function, and the last expression is a common form in
which most polygonal interpolation schemes appear [9]. Now, to complete the formulation, the
�i must satisfy the constraints given in Equations (4c) and (4d). The constraints can also be
written as [2]

−��0

��r

= −�(log Z)

��r

= 〈gr(x)〉, (r = 1, 2) (12)

where 〈g1(x)〉 = x and 〈g2(x)〉 = y. On substituting Equation (11) in Equations (4c) and (4d),
we obtain the following non-linear equations for �1 and �2:

f1(�1, �2) = 0, f2(�1, �2) = 0 (13a)

where

f1(�1, �2) =
∑n

i=1 e−�1xi−�2yi xi

Z
− x (13b)

f2(�1, �2) =
∑n

i=1 e−�1xi−�2yi yi

Z
− y (13c)

and on solving for �1 and �2, the shape functions �i are obtained from Equation (11). On
using Equations (11) and (4a), the maximum entropy is: Hmax = log Z(�1, �2) + �1x + �2y.

Note that Equation (13) defines a non-linear mapping: x = x(�1, �2), y = y(�1, �2), which is
used in Section 4.3 to derive the derivatives of the shape functions.

2.1.1. Nearest-neighbour interpolation. If the only constraint is
∑

i �i = 1 (constant precision),
then from Equation (11) with �r (r = 1, 2) set to zero, we obtain

�i = 1

n
∀i (14)

which is the nearest-neighbour interpolant. The shape functions are a constant over the polygon.

2.1.2. Bilinear interpolation. Consider the unit square shown in Figure 1(a). Let the domain
�e = (0, 1)2 with the origin at node 1. For a point p in �e with co-ordinate (x, y), we use
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Equation (13) to obtain the following equations for �1 and �2:

e−�1 + e−�1−�2

1 + e−�1 + e−�2 + e−�1−�2
= x (15a)

e−�2 + e−�1−�2

1 + e−�1 + e−�2 + e−�1−�2
= y (15b)

which simplifies to

e−�1

1 + e−�1
= x (16a)

e−�2

1 + e−�2
= y (16b)

and therefore

e−�1 = x

1 − x
, e−�2 = y

1 − y
(17)

From Equations (10) and (17), we have Z−1 = (1 − x)(1 − y) and on using Equation (11), we
obtain the MAXENT shape functions

�1(x, y) = (1 − x)(1 − y), �2(x, y) = x(1 − y), �3(x, y) = xy, �4(x, y) = y(1 − x)

(18)

which are identical to bilinear finite element shape functions.

3. NUMERICAL ALGORITHM

The non-linear equations in Equation (13) immediately suggest the use of an iterative solution
scheme such as Newton’s method. However, to solve Equation (13) without cognizance of its
special structure is fraught with numerical difficulties. As is well-known, Newton’s method for
root finding is sensitive (especially so in multi-dimensions) to the initial guess. Numerical tests
have revealed that convergence is realized if and only if the initial guess is proximal to the
exact solution, and as the point p(x, y) approaches the boundary of the domain, the situation
is exacerbated and non-convergence or even convergence to the wrong solution results.

The fact that Equation (13) arises from a maximum entropy formalism suggests that there is
more information in fr that one can use. This fact was used by Agmon and co-workers [13, 14]
towards the development of a suitable algorithm to find the distribution of maximum entropy.
In Reference [15], the maximum entropy (primal) problem is recast into one (dual problem)
in which the Lagrange multipliers are determined as the set that minimizes a convex potential
function F(�1, �2). A brief description of the algorithm follows. On noting that

∑
i �i = 1

and letting x̃i = xi − x and ỹi = yi − y, we can re-write the linear reproducing conditions in
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Equations (4c) and (4d) as

n∑
i=1

�i x̃i = 0 (19a)

n∑
i=1

�i ỹi = 0 (19b)

which can be viewed as using a shifted co-ordinate system with the origin placed at (x, y).
This choice is preferred in numerical computations since it is more stable than the form that
appears in Equation (4). Now, the expressions for Z and �i take the form

Z̃(�1, �2) =
n∑

i=1
e−�1x̃i−�2ỹi , �i = e−�1x̃i−�2ỹi

Z̃
(20)

where the Lagrange multipliers �1 and �2 remain unchanged, and there is a change only in �0

with the new value �̃0 = �0 + �1x + �2y. We note that e−�1x̃i−�2ỹi = e−�1xi−�2yi · e�1x+�2y , and
therefore the equality between the expressions for �i in Equations (11) and (20) is apparent.
In addition, the maximum entropy is now given by Hmax = log Z̃(�1, �2). Instead of Equation
(13), we now have [14]

fr(�1, �2) = �(log Z̃)

��r

= 0, (r = 1, 2) (21a)

f1(�1, �2) = −
∑n

i=1 e−�1x̃i−�2ỹi x̃i

Z̃
(21b)

f2(�1, �2) = −
∑n

i=1 e−�1x̃i−�2ỹi ỹi

Z̃
(21c)

Since f1(�1, �2) ≡ �F/��1 = 0 and f2(�1, �2) ≡ �F/��2 = 0, we note that f is a conservative
vector field with scalar potential f = ∇ log Z̃(�1, �2) ≡ ∇F(�1, �2) [14]. In addition, as Z̃ > 0,
the above equations can also be written as

fr(�1, �2) = �Z̃

��r

= 0, (r = 1, 2) (22a)

f1(�1, �2) = −
n∑

i=1
e−�1x̃i−�2ỹi x̃i (22b)

f2(�1, �2) = −
n∑

i=1
e−�1x̃i−�2ỹi ỹi (22c)

where now f = ∇Z̃(�1, �2) ≡ ∇F̃ (�1, �2). Let �t ≡ (�t
1, �

t
2) denote any trial set of Lagrange

multipliers and the set � ≡ (�1, �2) be the one that maximizes the entropy (since F(�) = Hmax).
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In the dual problem, the point x is fixed, and the Lagrange multipliers are varied, as opposed to
the primal formulation in which the constraint equations define a mapping from the point x to
the solution set � and vice versa. The positive-definiteness of F was established in Reference
[15] (see Section 4.3 for the derivation of the Hessian of log Z), and consequently F attains
a global minimum at �t = �. Since � is the minimizer of both F and F̃ , we now show that
F̃ = Z̃(�t) attains a global minimum at �t = � for the polygonal interpolation problem.

Claim 1
The function F̃ = Z̃(�t) attains a global minimum at �t = �.

Proof
For the polygonal interpolation problem, the Hessian matrix of F̃ (�t

1, �
t
2) = Z(�t

1, �
t
2), which

is denoted by G̃rs = �fr/��t
s = �2

F̃ /��t
r��t

s , is

G̃ =

∑n

i=1 e−�1x̃i−�2ỹi x̃2
i

∑n
i=1 e−�1x̃i−�2ỹi x̃i ỹi∑n

i=1 e−�1x̃i−�2ỹi x̃i ỹi

∑n
i=1 e−�1x̃i−�2ỹi ỹ2

i


 (23)

Letting ai = e−�1x̃i−�2ỹi , u = (
√

a1x̃1, . . . ,
√

anx̃n), and v = (
√

a1ỹ1, . . . ,
√

anỹn), we can write
det(G̃) = ‖u‖2‖v‖2 − |u · v|2. On using the Cauchy–Schwartz inequality, ‖u‖‖v‖− |u · v| � 0,
we obtain det(G̃) � 0, with equality iff u and v are collinear. Collinearity occurs only on the
boundary of the convex hull (�r → ∞, r = 1 or 2), and hence in the interior of the domain,
det(G̃) > 0. The matrix G̃ is also symmetric and diagonally dominant with positive diagonal
entries, which implies that G̃ is a positive-definite matrix. Since ∇F̃ = 0 at �t = � and the
Hessian matrix is positive-definite in the interior of the polygon, it follows that F̃ (�t) attains
a global minimum at �t = �. �

We can now recast the maximum entropy (primal) problem as the following dual problem
[14]: find (�t

1, �
t
2) such that

F = log Z̃(�t
1, �

t
2) is minimized (24)

or equivalently, F̃ = Z̃(�t
1, �

t
2) is minimized. The problem as posed in Equations (13) or (21)

involve a system of m non-linear equations which is, in general, difficult to solve numerically.
On the other hand, by reformulating the MAXENT problem as a convex minimization problem,
a robust numerical solution procedure can be readily implemented. The solution of Equation
(24) can be obtained using a one-dimensional line search algorithm, where it is always possible
to explicitly bracket the solution and to proceed in a downhill direction towards the minimizing
solution set [16]. If we had used the constraints in Equation (4), then F = log Z(�t

1, �
t
2) +

�t
1x +�t

2y, and hence the use of Equation (19) leads to fewer arithmetic operations to compute
F and its derivatives. At �, log Z̃ (minimum) and the entropy (maximum) assume the same
value. In general, F = log Z̃ is an upper bound for the entropy [15].

The algorithm to solve Equation (24) consists of an initial guess, a suitable search direction,
and a scalar � that provides a measure of the distance to be traversed along the search direction
at each iteration step. We denote �k ≡ (�k

1, �
k
2)

T to be the solution at the kth iteration; the
initial guess is �0. A second-order Taylor series expansion of F is:

F(�k + ��k) = F(�k) + [∇F ]
(�k

1,�
k
2)

· ��k + 1
2 (��k)TG

(�k
1,�

k
2)

(��k) (25)
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where G is the Hessian matrix of F , and from the above equation we can infer that ��k =
−G−1∇F (Newton’s method) is the direction that minimizes F(�k + ��k). Given the solution
at iteration k, the update for the Lagrange multipliers is [13]

�k+1
r = �k

r + ���k
r (26)

where � is determined through the condition that F(�k+1
1 , �k+1

2 ) attains a minimum along the
search direction [13]. A line search (bisection or using the golden section search [16]) is suitable
to find the � that leads to the minimum F along the indicated direction. The choice of selecting
�, which is not present in a standard Newton method, provides the improved performance and
the fast convergence in the present algorithm. In the vicinity of the boundary (at least one
�r → ∞), F is asymptotically linear [15] and therefore the Hessian matrix becomes nearly
singular, and hence should not be used to determine the search direction [14]. For convenience,
we have used ��k = −∇F (direction of steepest descent) with starting guess �0 = 0 for all
points in the domain. Either log Z̃ or Z̃ can be used (difference of a few iterations in general)
if just the gradient is used in the update; however, since the former has a smaller range, it is
preferred. Prior to the update for � through Equation (26), the stopping (convergence) criterion
is invoked: ‖∇F‖{k} < �, where � is a suitably small real number.

For given data 〈gr〉, the feasibility of a solution was explored in Reference [14]. The functions
〈gr〉 must be linearly independent, which is trivially met in the present case since 〈g1〉 = x

and 〈g2〉 = y are independent. The above condition alone is not sufficient, since even if matrix
A in Equation (3) has full rank of 3 (A+ exists), a solution that meets �i � 0 might not exist.
This fact was mentioned earlier when discussing the minimum norm solution which need not
adhere to the �i � 0 restriction. To demonstrate this, we use

∑n
i=1 �2

i as the objective function
to be minimized, subject to the constraints in Equation (3). On using the method of Lagrange
multipliers, we obtain

�mn
i = 1

2 (�0 + �1xi + �2yi) , �0 = �0(�1, �2) (27)

where �0 is related to �1 and �2 through Equation (4a). Now consider a unit square (four-node
element), and proceeding as in Section 2.1.2, we can write the minimum norm shape functions
as

�mn
1 (x) = 3 − 2x − 2y

4
, �mn

2 (x) = 1 + 2x − 2y

4
(28a)

�mn
3 (x) = 2x + 2y − 1

4
, �mn

4 (x) = −2x + 2y + 1

4
(28b)

and it is now apparent that for certain x, �mn
i are negative. For instance, if x = 0, then

�mn = {0.75, 0.25, −0.25, 0.25}.
In addition to

∑
i �i = 1, if we have only one additional constraint (m = 1), for e.g. 〈g1(x)〉 =

x, then for a feasible solution [14]
min

i=1,2,...,n
xi < x < max

i=1,2,...,n
xi (29)

which indicates that x must be between its lower and upper bounds. The above
inequality was generalized to more than one constraint [14], and for the problem on-hand it takes

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:2159–2181



CONSTRUCTION OF POLYGONAL INTERPOLANTS 2169

the form

min
i=1,2,...,n

{c1xi + c2yi} < c1x + c2y < max
i=1,2,...,n

{c1xi + c2yi} (30)

which should hold for any non-zero vector c ≡ (c1, c2). Letting x̃i = xi − x, ỹi = yi − y, and
x̃i ≡ (x̃i , ỹi), we can re-write the above inequalities as

min
i=1,2,...,n

c · x̃i < 0, max
i=1,2,...,n

c · x̃i > 0 (31a)

or in matrix form (Bc = d) as


x̃1 ỹ1

x̃2 ỹ2

. . . . . .

x̃n ỹn



{

c1

c2

}
=




d1

d2

...

dn




(31b)

where didj < 0 for at least one (i, j) pair. In Equation (31), equality on one side occurs when
�r → ∞ (r = 1 or 2), i.e. the point p lies on a polygonal edge, whereas equality on both
sides implies that the constraints are linearly dependent (di = 0 ∀i) [15]. Clearly, the columns
in B are always linearly independent for a polygon.

Claim 2
A feasible solution for the MAXENT problem posed in Equation (4) exists for any point p(x, y)

within the convex hull of a set of nodes.

Proof
We establish the satisfaction of the feasibility condition for arbitrary n-gons (convex and
non-convex) through a simple geometric inference. Consider the non-convex n-gon (n = 15)
shown in Figure 2. The boundary of the convex hull, ��ch, is defined by connecting the
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Figure 2. Feasibility of the MAXENT solution in a non-convex polygon.
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nodes 1–5–6–7–9–13–14–1. Any polygon can be partitioned into a collection of triangles (triv-
ially seen for a convex polygon) using its vertices alone; such a partition is shown in Figure 2.
For a point p within an arbitrary triangle t , the feasibility conditions are automatically satisfied
since the barycentric co-ordinates in the interior of a triangle are strictly positive. So, there
always exist a r and s such that c · x̃r > 0, c · x̃s < 0. The vectors x̃i for two particular
triangles (obtained after a simplex-partition of the polygon) are shown in Figure 7. Since any
point p(x, y) within the convex hull also lies within one of the partitioned triangles, it follows
that Equation (31) is satisfied, as required. �

A detailed discussion of entropy optimization algorithms is presented in Reference [17]. The
use of these algorithms and considerations of alternative entropy measures are topics for future
research.

4. NUMERICAL EXAMPLES

We first present numerical results for the MAXENT shape functions on convex and non-convex
polygons. The shape function and entropy of the polygonal interpolants (Laplace and mean-
value) used in Reference [9] are compared to those obtained by the MAXENT interpolant. Then
we derive the derivatives of the MAXENT shape functions and use the patch test to verify
its accuracy. Lastly, the L2 error norm estimates of the different polygonal interpolants are
presented for a surface approximation problem. The MAXENT shape function for node i will be
denoted by �mxt

i , whereas �lap
i and �mvc

i will be used for the Laplace and mean value shape
functions, respectively. In the numerical computations, a tolerance � = 10−7 is used, and unless
indicated otherwise, F = log Z̃ is adopted to compute the MAXENT shape functions.

4.1. Convex polygons

In Figure 3, the MAXENT shape function and entropy are shown on a unit square. It is observed
that the shape function is identical to bilinear finite element shape function, thereby providing
a numerical verification of the proof outlined in Section 2.1.2. The stringent tolerance for
convergence does lead to some increase in the number of iterations for convergence—away
from the boundary of the square, convergence is attained in less than five iterations, close to
the boundary, 5–15 iterations are required, and if the sampling point is within � = 0.01 of the
boundary, 50–100 iterations are required. In Figure 4, the contour plots and convergence path
using F = log Z̃ is shown, whereas in Figure 5, the results for Z̃ are illustrated. In Figure 4(a),
the function log Z̃ is plotted for x = (0.56, 0.42), and a 2D contour plot is illustrated in Figure
4(b). In this case, three iterations are required for convergence, and the converged solution
(4-digit precision) for the Lagrange multipliers is: � = (−0.2411, 0.3227). In Figures 4(c) and
4(d) the contour plot of log Z̃ is shown for the points (0.9, 0.12) and (0.99, 0.12), respectively.
In Figure 4(c), six iterations are required for convergence and � = (−2.1972, 1.9924) is the con-
verged solution, whereas in Figure 4(d), 60 iterations are required and � = (−4.5951, 1.9924) is
the final solution. The number of iterations and the converged solution � using Z̃

(Figures 5(a)–5(d)) are identical to those obtained using log Z̃, with the only difference arising
in the last case (Figure 5(d)) where convergence is attained in 62 iterations.
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Figure 3. Numerical computations using the MAXENT formulation on a unit square.
(a) shape function; and (b) entropy.

In Figures 6(a)–6(c), the MAXENT, Laplace, and mean-value shape functions for node 1 in
a regular hexagon are shown. The plots for the Laplace and MAXENT shape functions are
similar, whereas �mvc

1 is distinct. To further reveal the relationship between these interpolants,
we plotted the ratio of the entropy of the Laplace and mean value shape functions to that
obtained (maximum entropy) using the MAXENT shape functions. These results are presented in
Figures 6(d) and 6(e). It is clearly observed that using the entropy as a measure, the Laplace
interpolant is proximal to the MAXENT interpolant.

4.2. Non-convex polygons

We had earlier proved that the MAXENT formulation leads to a feasible solution for the shape
functions on non-convex polygons. Referring once again to the n-gon shown in Figure 2, we
now conduct numerical computations in support of the proof. In Figures 7(a) and 7(b), we
show the shape function variation of node 6 (�mxt

6 ) and the maximum entropy distribution
for the case when the shape functions are assumed to be known along the boundary of the
convex hull, ��ch. In this case, nodal interpolation is not realized at nodes that are located
in the interior of the convex hull. In Figures 7(c) and 7(d), the plots are depicted for the
case when the shape functions are known along ��e. We note that the variation of �mxt

6 using
either approach is very similar, with some difference arising along the edges that do not include
node 6. The latter case is presented since even though it involves a modification to the maximum
entropy distribution, it would lead to inter-element continuity; however continuity inside the
element and close to the edge would not be rigorously met. The maximum value of the entropy
(log 15) is attained at the centroid.

We present shape functions on two meshes that contain non-convex elements. In both
examples, we assume linear interpolation along the boundary ��e. In Figure 8(a), the
domain is a bi-unit square and node 7 is located at (0.4, 0). The MAXENT shape function for
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Figure 4. Contour plots of log Z̃ and convergence of the algorithm: (a),(b) x = (0.56, 0.42);
(c) x = (0.9, 0.12); and (d) x = (0.99, 0.12).

node 7 is plotted in Figure 8(b), with �mxt
7 = 1 at x = x7 and it decreases monotonically with

increasing distance from x7. As indicated earlier, conformity along the edge is ensured since
the shape function is linear along the edges that include node 7 as a vertex. In Figure 8(c),
a four-node non-convex element is shown and in Figure 8(d) the shape function plot for node
4 is illustrated. The above numerical results substantiate the existence of the MAXENT solution
for non-convex polygons. However, an open topic for future research-work is the construction
of conforming (barycentric) approximations on meshes with non-convex polygons.

4.3. Computation of shape function derivatives

On using Equation (11), we can write (�i ≡ �mxt
i )

log �i = log
(
e−�1xi−�2yi

) − log Z(�1, �2) (32)
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Figure 5. Contour plots of Z̃ and convergence of the algorithm: (a),(b) x = (0.56, 0.42);
(c) x = (0.9, 0.12); and (d) x = (0.99, 0.12).

and therefore

��i

�i

= −��1xi − ��2yi − �(log Z) (33)

But since −�(log Z) = ��r〈gr(x)〉 (sum implied on r) from Equation (12), the above
reduces to

��i

�i

= (x − xi)��1 + (y − yi)��2 (34)

and the derivatives of the MAXENT shape functions are

�mxt
i,� = �mxt

i {(x − xi)�1,� + (y − yi)�2,�} (� = x, y) (35)
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Figure 6. Shape function and entropy plots on a regular hexagon: (a) �mxt
1 ; (b) �lap

1 ; (c) �mvc
1 ;

(d) H(�lap
i )/Hmax; and (e) H(�mvc

i )/Hmax.

where (·),x = �(·)/�x and (·),y = �(·)/�y. Now, we need to determine �r,x ≡ ��r/�〈g1(x)〉
and �r,y ≡ ��r/�〈g2(x)〉. To this end, we once again consider Equation (12)

−�(log Z)

��r

= 〈gr(x)〉 (r = 1, 2) (36)
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Figure 7. MAXENT solution in a non-convex polygon. Shape function �mxt
6 and distribution of entropy

assuming: (a) and (b) interpolation along ��ch; and (c) and (d) interpolation along ��e.

and on taking the derivative of the above equation with respect to �s , we obtain

�〈gr(x)〉
��s

= �〈gs(x)〉
��r

= −�2
(log Z)

��r�s

≡ − �2
F

��r�s

= −Grs (37)

where for notational convenience we have used F = log Z (earlier F was set to log Z̃) and G
is the Hessian of log Z(�1, �2). On using the chain rule of differentiation, we can write

��r

�〈gs(x)〉 = −[G−1]rs (38)
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Figure 8. Modified MAXENT shape function in a non-convex polygonal mesh: (a) seven-node mesh;
(b) �mxt

7 ; (c) four-node mesh; and (d) �mxt
4 .

and since 〈g1(x)〉 = x and 〈g2(x)〉 = y, we obtain




��1

�x

��1

�y

��2

�x

��2

�y


 = −

[
G11 G12

G21 G22

]−1

(39)

Since F(�1, �2) = log Z(�1, �2) = log
(∑n

i e−�1xi−�2yi

)
, we can write its derivative with respect

to �1 as:

�F

��1
=

∑n
i=1 e−�1xi−�2yi (−xi)

Z
(40)
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or

G11 = �2
F

��2
1

=
Z
∑n

i=1 e−�1xi−�2yi x2
i +

[∑n
i=1 e−�1xi−�2yi (xi)

] [∑n
i=1 e−�1xi−�2yi (−xi)

]
Z2 (41)

which simplifies to

G11 =
∑n

i=1 e−�1xi−�2yi x2
i

Z
− x2 (42)

and therefore

G11 =
n∑

i=1
�mxt

i x2
i − x2 ≡ 〈x2〉 − x2 (variance of x) (43)

Proceeding likewise for the other components of G, we have

G12 = G21 = 〈xy〉 − xy, G22 = 〈y2〉 − xy (44)

Now we can write Equation (39) as


��1

�x

��1

�y

��2

�x

��2

�y


 = −

[ 〈x2〉 − x2 〈xy〉 − xy

〈xy〉 − xy 〈y2〉 − y2

]−1

(45)

and on using the above relations in Equation (35), the derivatives of the MAXENT shape
functions are computed.

To test the shape function derivatives, we use the MAXENT shape functions as trial and
test approximations within a Galerkin method. The model problem (patch test) is: ∇2u = 0
in � = (0, 1)2 with essential boundary conditions u(x, y) = x + y imposed on ��. The two
meshes shown in Figure 9 are considered, and 2 × 2 quadrature rule is used for the numerical
integration. From Section 2.1.2, the MAXENT solution should be identical to bilinear finite
elements for the mesh depicted in Figure 9(a). The relative error in the L2(�) and energy
norms for the mesh shown in Figure 9(a) were 1.9 × 10−8 and 6.7 × 10−8, respectively,
whereas those for the mesh in Figure 9(b) were 1.3 × 10−8 and 4.5 × 10−8, respectively. Since
the linear reproducing conditions are met with O(10−7)–O(10−8) accuracy, the patch test is
passed to within an expected precision, and hence we have numerically verified the earlier
derivation of the shape function derivatives. Note that along a–b and b–c in Figure 9(b), both
the MAXENT as well as the Laplace interpolant are linear, whereas quadratic interpolation is
realized along a–b–c with finite elements. The linearity property of the Laplace shape functions
has enabled the construction of conforming approximations along edges with hanging nodes
on quadtree meshes [10].
4.4. Surface approximation

Consider a domain � ∈ R2 that is described by N nodes with location xi (i = 1, 2, . . . , N).
Given a function u(x), with its value u(xi ) specified at the N nodes, we seek to find an
interpolant uh for u that fits the data. To this end, it suffices if we can construct an interpolant
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Figure 9. Meshes for the patch test: (a) regular; and (b) edge with three nodes.

within each polygon Vi , where � = ∪Vi , and the global interpolant is then the additive sum
of the local interpolant on each polygon. From approximation theory, we know that given
independent elements {xi}ni=1 with aixi ∈ X (X is a normed linear space), then the best
approximation to an element y ∈ X is determined by minai

‖y − ∑n
i=1 aixi‖, i.e. the weights

ai are obtained by minimizing the L2 norm of the error [18].
If one considers the interpolation of random fields, then the above notion of best-approxi-

mation also applies to the MAXENT interpolant. Let û be the approximation for u that minimizes
the square of the expected error. Then, on using the MAXENT shape function in Equation (2),
we have

〈(u − û)2〉 =
n∑

i=1
�mxt

i (ui − û)2 (46)

or

〈(u − û)2〉 = 〈u2〉 − 2û〈u〉 + û2 (47)

and on adding and subtracting 〈u〉2 to the right-hand side, we obtain

〈(u − û)2〉 = 〈u2〉 − 〈u〉2︸ ︷︷ ︸
variance of u

+(û − 〈u〉)2 (48)

and since the variance of u is a fixed quantity, the expected error is minimized if û = 〈u〉,
and therefore

û(x) = uh(x) =
n∑

i=1
�mxt

i ui (49)

is the least-biased interpolant with respect to the location of the nodal co-ordinates xi and it
also minimizes the mean-square expected error [2].
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Figure 10. Point-wise absolute error for the interpolation of u(x, y) = x2+y2: (a) MAXENT; (b) Laplace;
and (c) mean-value interpolants.

We consider the problem of data interpolation to examine the accuracy of the MAXENT
interpolant vis-à-vis some of the other polygonal interpolants. In the examples that follow, the
quadratic function u(x) = x2 + y2 is interpolated within the domain � = (0, 1)2. To construct
a mesh, the seed points that define the Voronoi diagram were inserted using a random number
generator that was based on a uniform probability distribution in (0, 1) [16]. If m points are
inserted, a Voronoi mesh with m elements is obtained; the vertices of the Voronoi cells are the
nodes. For comparison purposes, we measure the absolute accuracy using the discrete L2(�)

norm, where ‖u − uh‖2
L2 = ∑M

i=1(u(xi )−uh(xi ))
2 and M is the total number of points chosen

in the domain. The maximum error norm maxi |u(xi ) − uh(xi )|∞ is also computed. Points that
are located on ��e are not used in the computations since the interpolants under consideration
are identical along ��e. In Figure 10, the point-wise absolute error is presented for the MAXENT,
Laplace, and mean-value interpolants; the mesh consists of 100 elements (202 nodes). Each
n-gon is partitioned into 16n triangles, and the interpolant is evaluated at the vertices of these
triangles. The discrete L2 (L∞) error norms that were obtained are: 0.4486 (1.556 × 10−2),
0.4457 (1.559 × 10−2), and 0.4124 (1.562 × 10−2), respectively. The above trends were also
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Figure 11. Point-wise absolute error for the modified MAXENT interpolant on a mesh
containing non-convex elements.

consistent on other meshes that we considered. From the contour plots shown in Figure 10,
the close correspondence between the results for the Laplace and MAXENT interpolants is once
again noted.

Lastly, we study data interpolation using the MAXENT interpolant on a domain that contains
non-convex polygons. In Figure 11, the contour plot of the absolute error is superimposed on
the mesh. Of the five elements in the mesh, three are non-convex. Each n-gon is partitioned
into 64n triangles and the error computed at the vertices of these triangles. The maximum error
norm (sup-norm) is 0.17 for the mesh shown in Figure 11.

5. CONCLUDING REMARKS

In this paper, we have presented the construction of polygonal interpolants using the principle
of maximum entropy (MAXENT). On an n-gon (n > 3), the shape functions �i (i = 1, 2, . . . , n)
were the unknowns, and the satisfaction of the linear reproducing conditions was imposed
on the interpolant. The non-negative shape functions �i were determined by maximizing the
information-theoretic entropy H(�1, �2, . . . , �n) = −∑n

i=1 �i log �i subject to the above con-
straints. The maximum entropy (primal) formulation using the method of Lagrange multipliers
was recast (dual problem) into one in which the minimum of a convex function was sought [14].
A line search algorithm was used in the numerical computations. On a rectangle, MAXENT inter-
polation and bilinear finite element interpolation were identical; however for arbitrarily shaped
n-gons, the MAXENT formulation lead to different shape functions. The MAXENT formulation
was proven to lead to a feasible solution for �i in any convex or non-convex polygon. Among
the interpolants that we considered, the entropy of the Laplace shape functions was found to
be closest to Hmax, and this proximity was also observed in a data interpolation problem. This
study has revealed a novel approach to construct polygonal interpolants via the application of
the principle of maximum entropy. Its implications in the interpolation of random fields and
the solution of partial differential equations, the use of MAXENT in inverse problems, topology
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optimization and material design, and the natural link towards the development of multiscale
numerical methods are deemed to be noteworthy.
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