
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING

Int. J. Numer. Meth. Engng 2008; 00:1–38 Prepared using nmeauth.cls [Version: 2000/01/19 v2.0]

Meshfree co-rotational formulation for two-dimensional continua
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SUMMARY

In this paper, a meshfree co-rotational formulation for two-dimensional continua is proposed. In a

co-rotational formulation, the motion of a body is separated into rigid motion and strain producing

deformation. Traditionally, this has been done in the setting of finite elements for beams and shell

type elements. In the present work every node in a meshfree discretized domain has its own co-

rotating coordinate system. Three key ingredients are established in order to apply the co-rotational

formulation: (i) the relationship between global and local variables, (ii) the angle of rotation of a

typical co-rotating coordinate system, and (iii) a variationally consistent tangent stiffness matrix.

An algorithm for the co-rotational formulation based on load control is provided. Maximum-entropy

basis functions are used to discretize the domain and stabilized nodal integration is implemented

to construct the global system of equations. Numerical examples are presented to demonstrate the

validity of the meshfree co-rotational formulation. Copyright c© 2008 John Wiley & Sons, Ltd.
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2 L. L. YAW ET AL.

1. INTRODUCTION

Co-rotational formulations are commonly used in finite element formulations for the analysis

of structures. Wempner [1] and Belytschko and Hsieh [2] pioneered the introduction of co-

rotational formulations in finite element analysis. Such a formulation has many commonalities

with the ‘natural approach’ of Argyris et al. [3]. The co-rotational formulation is very popular

for beams and shell elements and it has been extended to include finite strains with continuum

elements in a consistent formulation by Crisfield and Moita [4, 5]. One of the primary

motivations of a co-rotational formulation is the ability to use linear elements in a non-linear

context; see, for example, the work of Felippa and Haugen [6]. Thus far, the co-rotational

formulation has only been implemented using finite elements. In this paper, meshfree basis

functions are introduced within the framework of a co-rotational formulation for continua. To

the authors’ knowledge this has not been previously introduced in the literature.

This work is part of a larger effort to develop a new computational framework for collapse

analysis of structures. This framework attempts to take advantage of the finite element (FE)

method where meshfree is not an efficient option and to utilize meshfree methods where

FE is not viable. Collapse simulation is by its nature a problem that is highly nonlinear,

involving large displacements, rotations and inelastic material behavior. While finite-element

based simulations of structural collapse and failure have met with some success for limited

applications [7–9], much of the effort using finite elements to simulate large displacements have

encountered numerous difficulties due to mesh distortions which cause a need for remeshing,

loss of accuracy, and at times unsuccessful completion of the simulation altogether. These
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MESHFREE CO-ROTATIONAL FORMULATION FOR TWO-DIMENSIONAL CONTINUA 3

difficulties are observed for both continuum elements as well as beam elements. Significant

work has gone into the development of beam elements for limit state analysis of large-scale

engineering structures. However, as noted by Torkamani [10], these methods tend to have

two principal deficiencies: inaccurate descriptions of material nonlinearity, and an inability to

properly capture large distortions across the length of the element. Fiber-based beam elements

have been used to improve modeling of material nonlinearity [10–12] and Lagrangian or co-

rotational formulations are employed to include large deflections. Despite these advances, the

ability to simulate collapse is still inadequate.

The objective of this work, therefore, is to explore a new paradigm for nonlinear structural

analysis computation by examining the ability of meshfree methods to alleviate some of these

difficulties. Since collapse of a structural component is typically a result of large member

rotations at beam-column joint interfaces, it is perceived that the advantages of meshfree

methods can be combined with those of a co-rotational formulation without the need to resort

to finite strains, thereby enabling the simulation of large displacements associated with collapse

conditions. Furthermore, by using a continuum approach, material behavior is modeled more

accurately through the cross-section of beam-type structural elements. As an essential first

step toward the eventual goal of developing a FE-meshfree framework for large-deformation

analysis of structural systems to aid in collapse simulations, the present paper focuses on two-

dimensional continua in the presence of small strains with elastic and elasto-plastic material

behavior.

The remainder of this paper is organized as follows. In Section 2, the co-rotational

formulation is derived to give (i) the relationship between global and local variables, (ii)

the angle of rotation of a typical co-rotating coordinate system, and (iii) a variationally

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1–38

Prepared using nmeauth.cls



4 L. L. YAW ET AL.

consistent tangent stiffness matrix. Including inelastic material behavior is also discussed

followed by an algorithm for a co-rotational formulation in a meshfree setting. In Section 3,

the derivation of maximum-entropy (max-ent) basis functions is presented along with details

on the implementation of nodal integration and stabilization. Section 4 presents numerical

examples for validation of the proposed formulation, which is followed by some concluding

remarks in Section 5.

2. CO-ROTATIONAL FORMULATION

In general, the motion of a body is composed of rigid body translation, rigid body rotation

and strain producing deformations. Consider a sufficiently small region Ω ⊂ R2 of a body. To

this small region, attach a local coordinate frame that rotates and translates with the material

points of the region. With respect to this local coordinate frame, the rigid body rotations

and translations, of the small region’s overall motion, are negligible and only local strain-

producing deformations remain. This is the key idea behind a co-rotational formulation. It

is the objective of a co-rotational formulation to perform a nonlinear analysis of a structure

and determine the global displacement behavior as well as the stress and strain causing local

deformations. Some of the advantages of a co-rotational formulation are as follows. First,

for small strain/large rotation problems, Mattiasson [13] indicates that the co-rotational

formulation is more accurate and has better convergence properties than finite strain total

Lagrangian or updated Lagrangian formulations. Second, co-rotational formulations satisfy

the principle of material frame indifference [14]. As a result of material frame invariance,

damage constitutive equations are not limited to isotropic elastic response [15]. Third, inelastic

type constitutive equations take the same form as in the case of a small deformation theory
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MESHFREE CO-ROTATIONAL FORMULATION FOR TWO-DIMENSIONAL CONTINUA 5

since stresses and strain tensors are objective [16]. This greatly simplifies integration of

inelastic constitutive equations. Lastly, geometric nonlinearities due to large displacements

and rotations are taken into account without the requirement of a finite strain formulation

and alternative stress definitions.

For a co-rotational formulation several key ingredients are necessary, namely (i) the

relationship between global and local variables, (ii) a method for determining the angle of

rotation of a typical co-rotating coordinate system, and (iii) the expression for a variationally

consistent tangent stiffness matrix. These ingredients are described within the following

sections, where for the sake of clarity and completeness, intermediate steps in the derivation

are also indicated. The ensuing presentation closely follows Crisfield and Moita [4].

2.1. Relationship between global and local variables

Referring to Figure 1, the relationship between overall global deformations and the local strain

producing deformations is illustrated. In Figure 1, node L and its neighboring nodes are shown.

In general, there are n nodes (node L is included in the set of n nodes) to which a local co-

rotating coordinate frame is associated (for finite elements the coordinate frame is usually

attached to each element). For simplicity only four nodes are shown and the local co-rotating

frame origin is placed at node L. In the reference configuration, the local co-rotating frame

axes are parallel to the global axes. Due to displacement of the overall structure the n nodes

translate, rotate and deform to some current configuration as shown.

From Figure 1, the local nodal coefficients (nodal displacements for the case of finite

elements) for node i in the local coordinate frame are expressed as

di` = QTxiL −Xi
`, (1)
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Figure 1. Reference and current configurations in co-rotational formulation.

where a subscript ` is attached to vectors with components in local coordinates (with some

exceptions such as stress, σ, and strain-displacement matrices, B, which are understood to be

in the local coordinates of a co-rotational formulation) and xiL = xi − xL = XiL + di − dL

indicates the difference between the spatial coordinates of nodes i and L in the current

configuration with components in the global coordinate system. The orthogonal matrix

Q = [e′1 e
′
2] is a rotation matrix, so that QT transforms global vector components to local

vector components. The unit basis vectors e′1 and e′2 which define the local co-rotating

coordinate frame are defined in terms of θ with global components as follows:

e′1 =









cos θ

sin θ









e′2 =









− sin θ

cos θ









. (2)

Lastly, Xi
` represents the material coordinates of node i in the local coordinate frame. It is
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MESHFREE CO-ROTATIONAL FORMULATION FOR TWO-DIMENSIONAL CONTINUA 7

noted that Xi
` = QTXiL = QT

(

Xi −XL
)

.

Based on the reference and current configurations, (1) expresses the local nodal coefficient

components for node i in terms of known quantities xiL, Xi
` and as yet unknown quantity

θ, the angle of rotation of the local co-rotating coordinate frame. This unknown quantity is

determined in the next section.

2.2. Co-rotating frame angle of rotation

The angle of rotation of the co-rotated coordinate frame is found by assuming that the local

spin, due to local nodal displacements in the current configuration, is equal to zero (see Jetteur

and Cescotto [17]). The local spin is evaluated at the centroid of the Voronoi cell for node L

in the reference configuration by making use of the following equation, which is a special case

of the polar decomposition theorem in two-dimensions:

Ω` =
∂u1`
∂Y`

−
∂u2`
∂X`

= 0. (3)

The meshfree approximation for the displacement field in terms of the local nodal coefficients,

d`, is written as

uj` = φTdj`, (j = 1, 2) (4)

where φ is the vector of nodal basis functions and dj` denotes the vector of local nodal

coefficients associated with degree of freedom j.

Substituting (4) into (3) gives

Ω` =

(

∂φ

∂Y`

)T

d1` −

(

∂φ

∂X`

)T

d2` = aT` d`, (5a)
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where

a` =









































∂φ1

∂Y`

− ∂φ1

∂X`

...

∂φn

∂Y`

−∂φn

∂X`









































and d` =

















































d11`

d12`

d21`

d22`

...

dn1`

dn2`

















































. (5b)

Note that a` is evaluated at the centroid of the Voronoi cell for node L in local material

coordinates X` (which is equivalent to evaluation in global material coordinates X) and hence

is a fixed vector. Next substitute (1) into (5) to get

Ω` =
∑

(ai`)
T (QTxiL)−

∑

(ai`)
T (Xi

`) = 0. (6)

Noting that the last term of (6) is zero and expanding the first term yields

Ω` =
∑

(ai`)
T









cos θ









xiL

yiL









+ sin θ









yiL

−xiL

















= 0,

or

Ω` = a sin θ + b cos θ = 0, a =
∑

(ai`)
T









yiL

−xiL









, b =
∑

(ai`)
T









xiL

yiL









. (7)

The relationships in (7) are more conveniently expressed as:

a = cT x̄, (8)
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MESHFREE CO-ROTATIONAL FORMULATION FOR TWO-DIMENSIONAL CONTINUA 9

where

c =

















































0 −1 0 0 . . . 0 0

1 0 0 0 0 0

0 0 0 −1
...

0 0 1 0

...
. . .

0 0 0 −1

0 0 . . . 1 0

















































a`, x̄ =

















































x1L

y1L

x2L

y2L

...

xnL

ynL

















































(9)

and b = aT` x̄. Note that c in (9) is a 2n by 2n matrix depending on the number of neighbors

n and similarly x̄ is a 2n by 1 vector. With these expressions in hand it is possible to solve for

the angle of rotation θ, which from (7) is

θ = tan−1
(

−b

a

)

. (10)

2.3. Derivation of the tangent stiffness matrix

To derive the tangent stiffness matrix first consider the local internal force vector, qL`, for

node L and its neighboring nodes, which is written as

qL` =

∫

Ω

BTσ dV = K`d`, (11)

where B is the local strain-displacement matrix, σ are the local Cauchy stresses and K`

represents the local stiffness matrix.

Next, note that the local nodal coefficients, d`, are related to the global nodal coefficients,

d, via some function, f , i.e.,

d` = f(d, e′1, e
′
2), (12)
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10 L. L. YAW ET AL.

and the variation of (12) leads to the relationship

δd` = Tδd, (13)

where T is some as yet to be determined transformation matrix. Virtual work at the local and

global level are equivalent so that

(δd`)
TqL` = (δd)TqL. (14)

The global internal forces in terms of the local internal forces are found by making use of (11),

(13) and (14), which yields

qL = TTK`d`. (15)

To obtain the global stiffness matrix the variation of (15) is taken, which gives

δqL = TT δqL` + δTTqL` = TTKt`δd` +Ktσδd = TTKt`Tδd+Ktσδd, (16)

where δTTqL` is represented as shown byKtσδd. The matrixKtσ is the initial stiffness matrix,

Kt` is the local tangent stiffness matrix (possibly constructed by considering inelastic material

behavior) equal to K` for small strains and linear elasticity and the last equality in (16) is

found by making use of (13). Equation (16) yields

δqL =
[

TTKt`T+Ktσ

]

δd = KT δd, (17)

where KT represents the tangent stiffness matrix at the global level.

To find the transformation matrix in (17), the variation of (1) is taken to give

δdi` = QT δxiL + δQTxiL. (18)

From Figure 1, note that

xiL = XiL + di − dL = XiL + diL. (19)
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MESHFREE CO-ROTATIONAL FORMULATION FOR TWO-DIMENSIONAL CONTINUA 11

Taking the variation of (19) gives

δxiL = δXiL + δdiL = δdiL, (20)

where the last step results since δXiL is zero. Substituting (20) into (18) yields

δdi` = QT δdiL + δQTxiL. (21)

Taking the variation of QT gives

δQT = δ

[

e′1 e′2

]T

=









− sin θ − cos θ

cos θ − sin θ









T

δθ.

Consequently,

δQTxiL =









−s c

−c −s

















xiL

yiL









δθ =









−sxiL + cyiL

−cxiL − syiL









δθ = QT









yiL

−xiL









δθ. (22)

Now substituting (22) into (21) yields

δdi` = QT δdiL +QT









yiL

−xiL









δθ. (23)

If QT δdL is added to (23) it should have no effect if the local coordinate system computations

correctly satisfy the infinitesimal strain-free rigid body requirements (when extended to finite

strains the reader is referred to the work of Rankin [18], where this assumption is avoided).

This addition to (23) gives

δdi` = QT δdi +QT









yiL

−xiL









δθ. (24)

To obtain δθ, differentiate (10) by recalling that d(tan−1 u)
dx

= 1
1+u2

du
dx

. This gives

δθ =
1

1 + b2

a2

δ(−ba−1) =
a2

a2 + b2
(−δba−1 + a−2bδa) =

a2

a2 + b2

(

bδa

a2
−
aδb

a2

)

. (25)
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Rearranging and simplifying (25) yields

δθ =
bδa− aδb

a2 + b2
=

1

a2 + b2
(bcT − aaT` )δd = vT δd. (26)

Substituting δθ = vT δd into (24) gives

δdi` = QT δdi +QT









yiL

−xiL









vT δd. (27)

Next, realizing that QT









yiL

−xiL









=









yi`

−xi`









, (27) becomes

δdi` = QT δdi +









yi`

−xi`









vT δd. (28)

Using (28), an alternative form is written for all neighbors and the current point L as

δd` = (Q̄+ x̄`v
T )δd, (29)

where

Q̄ =

























[QT ] 0 . . . 0

0 [QT ]
...

...
. . .

...

0 . . . . . . [QT ]

























, 0 =









0 0

0 0









and

x̄T` = [ y1` −x1` y2` −x2` . . . yn` −xn`
].

Note that Q̄ is a 2n by 2n matrix. Then, comparing (29) with (13) it is evident that

T = Q̄+ x̄`v
T . (30)
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All that remains to construct the tangent stiffness matrix (see (17)) is the initial stiffness

matrix Ktσ. The initial stiffness matrix arises from (see (16))

δTTqL` = Ktσδd. (31)

The variation of TT is found by representing the first part of (31) as

δTTqL` = δT1q1L` + δT2q2L` + . . . =

2n
∑

j=1

δTjq
j
L`, (32)

where Tj is the jth column of TT and q
j
L` is the jth component of qL` (which is a scalar).

Working now only with the first term in the summation (32) and using the transpose of (30)

gives

δT1q1L` = q1L`δ





























































































e′1

0

...

0















































+ y1`v















































= q1L`G
1δd, (33)

where 0T =

[

0 0

]

. From (33), G1δd must be determined. This is given by

G1δd = δ





























































































e′1

0

...

0















































+ y1`v















































=















































e′2

0

...

0















































δθ + δy1`v + y1` δv. (34)

Now note that δy1` comes from (29), i.e.,

δy1` =

{[

e′T2 0 0 . . . 0

]

− x1`v
T

}

δd. (35)

To see this, consider for a moment the generic variable w. The variation of this variable in

local coordinates is related to the variation of itself in global coordinates as (see (29))

δw` = (Q̄+ x̄`v
T )δw, (36)
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14 L. L. YAW ET AL.

where w = X + d and w` = X` + d` = x`. Specifically, w
T
` =

{

x1` y1` . . . xn` yn`

}

.

Then observe that δw = δd since δX = 0. By taking only the row of (36) associated with δy1` ,

(35) is obtained.

If the last term of (34) is not included for now, using (26), (34) and (35) yields

G1,a =















































e′2

0

...

0















































vT + v















































e′2

0

...

0















































T

− x1`vv
T ,

which is symmetric. In order to obtain the complete form of G it is necessary to determine

δv. To this end, from (26) and defining g := a`,

v =
1

a2 + b2
(bc− ag). (37)

Then, taking the variation of (37) gives, by use of the product rule,

δv = δ

(

1

a2 + b2

)

(bc− ag) +
1

a2 + b2
δ(bc− ag). (38)

Now observe that

δ

(

1

a2 + b2

)

= δ
(

(a2 + b2)−1
)

= −(a2 + b2)−2(2acT + 2bgT )δd =
−2(acT + bgT )

(a2 + b2)2
δd, (39)

and

δ(bc− ag) = δbc− δag = (cgT − gcT )δd. (40)

Substituting (39) and (40) into (38) yields

δv =
−2(acT + bgT )

(a2 + b2)2
(bc− ag)δd+

(cgT − gcT )

a2 + b2
δd,

which after some algebraic simplifications reduces to

δv =

[

2ab(ggT − ccT ) + (a2 − b2)(cgT + gcT )

(a2 + b2)2

]

δd ≡ VT δd, (41)
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MESHFREE CO-ROTATIONAL FORMULATION FOR TWO-DIMENSIONAL CONTINUA 15

where the matrix V is symmetric. The expression for VT in the above equation is identical

to that found by Crisfield and Moita [4] with the exception that their denominator is not

squared (a likely typographical error). Note also, that the last term of G1, which includes the

variation of v, has insignificant effect on convergence and may be neglected (see Crisfield [19]

for a discussion on neglecting v and also the more recent work by Rankin [18]). However, for

completeness it is kept here. Hence, having

G1,b = y1`V
T ,

the final expression for G1 is found as

G1 = G1,a +G1,b.

However, the matrix G1 is only sufficient to construct the first term in the summation (32).

The other Gj matrices are found similarly. Hence, the initial stiffness matrix is calculated as

Ktσ =
∑2n

j=1 q
j
L`G

jand subsequently the entire tangent stiffness matrix as given in (17).

As additional information the calculation of G2 is demonstrated next. Starting with the

second term in the summation of (32) yields

δT2q2L` = q2L`δ





























































































e′2

0

...

0















































− x1`v















































= q2L`G
2δd. (42)

From (42), G2δd is determined, which is given by

G2δd = δ





























































































e′2

0

...

0















































− x1`v















































=















































−e′1

0

...

0















































δθ + δ(−x1`)v + (−x1`)δv. (43)
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16 L. L. YAW ET AL.

Now note that δx1` arises in a similar fashion as that described after (35), i.e.,

δx1` =

{[

e′T1 0 0 . . . 0

]

+ y1`v
T

}

δd. (44)

Then taking (43) and using (26), (44) and (41) gives

G2 =















































−e′1

0

...

0















































vT + v















































−e′1

0

...

0















































T

− y1`vv
T − x1`V

T .

Lastly, expressions for the generic cases of G2i−1 and G2i are given below. In general,

for i = 1 to n

G2i−1 =

1

...

i

...

n































































0

...

e′2

...

0































































vT + v































































0

...

e′2

...

0































































T

− xi`vv
T + yi`V

T ,

G2i =































































0

...

−e′1

...

0































































vT + v































































0

...

−e′1

...

0































































T

− yi`vv
T − xi`V

T .

2.4. Nonlinear material stiffness

If plasticity is included in the co-rotational formulation then it is necessary to update the

material properties during each load step of the analysis. Hence, the local tangent stiffness
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MESHFREE CO-ROTATIONAL FORMULATION FOR TWO-DIMENSIONAL CONTINUA 17

matrix Kt` takes the following form:

Kt` =

∫

Ω

BTCepB dV, (45)

where Cep is the elasto-plastic modulus matrix that evolves during each load step if the local

trial stresses fall outside the yield surface such as in a plane stress J2 plasticity formulation

with radial return (see Simo and Taylor [20] and Simo and Hughes [21]). All other formulas

remain the same.

2.5. Load control algorithm for a meshfree co-rotational formulation

An algorithm for the co-rotational formulation in a meshfree setting is given below. The given

algorithm is for a linear elastic or elasto-plastic material. In the following, the vectors d

represent meshfree nodal coefficients whereas the vectors u represent displacements.

1. Set up storage variables

2. Loop over load increments

(a) Create ∆fn+1

(b) Construct fnint for each node L and its neighbors based on current stresses, σn

(c) Construct Kn based on current fnint with current ∆dI` values and un

(d) Modify ∆fn+1 and Kn to account for supports

(e) Solve for ∆dI = (Kn)−1∆fn+1

(f) Calculate displacements ∆un+1 based on ∆dI

(g) Calculate ∆dI` based on un +∆un+1

(h) Calculate the incremental nodal strains based on the latest ∆dI`

(i) Calculate current stresses σn+1 (based on elastic or elasto-plastic constitutive

relations)

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1–38
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18 L. L. YAW ET AL.

(j) Construct fn+1int for each node L and its neighbors based on current stresses,

σn+1

(k) Update global stiffness to get Kn+1 based on current fn+1int with current ∆dI`

values and un +∆un+1

(l) Modify Kn+1 to account for supports

(m) Initialize variables for Newton-Raphson iterations, k = 0, tol = 10−2 and

maxiter = 100

(n) Calculate the residual gn+1(k) = fn+1
int(k) − f

n+1

(o) Begin Newton-Raphson Iterations, while
∣

∣

∣g
n+1
(k)

∣

∣

∣ > tol and k <= maxiter

i. δd
(k)
I = −(Kn+1

(k) )−1gn+1(k)

ii. ∆d
(k+1)
I = ∆d

(k)
I + δd

(k)
I

iii. Calculate displacements ∆un+1(k+1) based on ∆d
(k+1)
I

iv. Calculate ∆d
(k+1)
I` based on un +∆un+1(k+1)

v. Calculate incremental nodal strains based on the latest ∆d
(k+1)
I`

vi. Calculate current stresses σn+1(k+1)

vii. Construct fn+1
int(k+1) for each node L and its neighbors based on current

stresses, σn+1(k+1)

viii. Update global stiffness to get Kn+1
(k+1) based on current fn+1

int(k+1) with

current ∆d
(k+1)
I` values and un +∆un+1(k+1)

ix. Modify Kn+1
(k+1) to account for supports

x. Calculate the residual gn+1(k+1)

xi. Update iteration variable k = k + 1

xii. If k = maxiter and gn+1(k) > tol, provide warning that equilibrium tolerance
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MESHFREE CO-ROTATIONAL FORMULATION FOR TWO-DIMENSIONAL CONTINUA 19

not met

(p) End while loop of Newton-Raphson iterations

(q) Update strain εn+1 = εn +∆εn+1

(r) Update displacements un+1 = un +∆un+1

(s) Update stresses

3. End loop over prescribed load increments

3. MAXIMUM-ENTROPY BASIS FUNCTIONS

In meshfree Galerkin methods, moving least squares (MLS) approximants [22] and natural

neighbor interpolation schemes [23, 24] have been widely used, whereas maximum-entropy

basis functions are of more recent origin [25, 26]. For general overviews of meshfree methods

and meshfree approximants, the interested reader is referred to Belytschko et al. [27], Li and

Liu [28], and Sukumar and Wright [29]. In this paper, maximum-entropy basis functions are

used to construct the trial and test approximations that appear in the weak form. Maximum-

entropy basis functions satisfy a weak Kronecker-delta property on the boundary, which greatly

simplifies the imposition of essential boundary conditions [26].

In two dimensions, the constant and linear reproducing conditions, namely
∑n

a=1 φa(x) = 1,

∑n
a=1 φa(x)xa = x, do not prescribe unique basis functions if n > 3. The Shannon entropy

in Reference [25] and a modified entropy functional in Reference [26] are used to regularize

the problem to obtain unique basis functions for any n. The entropy functional of Arroyo and

Ortiz [26] is generalized in Sukumar and Wright [29] on using the notion of a prior within the
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20 L. L. YAW ET AL.

Shannon-Jaynes entropy functional.

The variational formulation for maximum-entropy basis functions using the Shannon-Jaynes

entropy functional is: find φa(x) ≥ 0 as the solution of the following constrained optimization

problem:

max
φ∈R

n

+

−
n
∑

a=1

φa(x) ln

(

φa(x)

wa(x)

)

, (46a)

subject to the linear reproducing conditions:

n
∑

a=1

φa(x) = 1, (46b)

n
∑

a=1

φa(x)(xa − x) = 0, (46c)

where wa(x) is a prior estimate (weight function), and Rn
+ is the non-negative orthant. The

prior weight, wa(x), is the initial estimate of the basis function φa(x). If wa(x) = 1 for all

a, then the Shannon entropy functional, −
∑

a φa lnφa, is obtained. On using the method of

Lagrange multipliers, the solution of the variational problem is [29]:

φa(x) =
Za(x;λ)

Z(x;λ)
, Za(x;λ) = wa(x) exp(−λ · x̃a), (47)

where x̃a = xa−x (x,xa ∈ Rd) are shifted nodal coordinates, λ are the d Lagrange multipliers

associated with the constraints in (46c), and Z(x) =
∑

b Zb(x;λ). A Newton method is used

to solve the dual optimization problem (min lnZ) to obtain λ; details on the computation of

φa and ∇φa are provided in References [26] and [29] for a uniform prior and a Gaussian prior,

respectively.

The expressions for the derivatives of the maximum-entropy basis functions for any prior

weight function are derived. The notations and approach presented in Arroyo and Ortiz [26]

are adopted. In what follows, it is assumed that λ is the converged solution for the Lagrange
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multipliers and ∇φa is the gradient of the basis function. Equation (47) is written as

φa(x;λ) =
exp [fa(x;λ)]

∑n
b=1 exp [fb(x;λ)]

, fa(x;λ) = lnwa(x)− λ · x̃a, (48)

where λ is implicitly dependent on x. Using (48) yields

∇φa = φa

(

∇fa −

n
∑

b=1

φb∇fb

)

. (49)

Taking the gradient of fa in (48) and simplifying results in

∇fa =
∇wa
wa

+ λ− x̃a · ∇λ, (50)

where ∇λ remains to be determined. To this end, on taking the total derivative of both sides

of the equality r(x;λ) = −
∑n

a=1 φa(x;λ)x̃a = 0, the following equation is obtained:

Dr = ∇r+∇λr · ∇λ = 0,

where ∇r is the gradient of r (keeping λ fixed) and ∇λ is used to denote the gradient operator

with respect to λ. On using (48) and noting that the Hessian of lnZ is H = ∇λr, the above

equation yields

∇λ = −H−1∇r = H−1(A− I), H =

n
∑

b=1

φbx̃b ⊗ x̃b, A =

n
∑

b=1

φbx̃b ⊗
∇wb
wb

,

and therefore ∇fa in (50) becomes

∇fa =
∇wa
wa

+ λ+ x̃a ·
[

(H)
−1
− (H)

−1
·A
]

. (51)

Using the above expression for ∇fa in (49), the gradient of φa is

∇φa = φa

{

x̃a ·
[

(H)
−1
− (H)

−1
·A
]

+
∇wa
wa

−

n
∑

b=1

φb
∇wb
wb

}

. (52)

Note that if the prior weight function wa(x) = exp(−β|xa − x|2) (Gaussian radial basis

function), then ∇φa = φaH
−1 · x̃a, which appears in the Appendix of Reference [26]. For
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the numerical results in this paper, the following quartic prior weight function is used:

w(q) =















1− 6q2 + 8q3 − 3q4 q ≤ 1

0 q > 1

, (53)

where q = ‖x− xa‖/ρa and ρa is the radius of support for the nodal weight function which is

taken as 0.9 times the distance to the fifth nearest neighbor. A software library in Fortran 90

to compute maximum-entropy basis functions is available in the public-domain [30].

The advantages of using maximum-entropy basis functions are revealed in Figure 2. Quartic

weight functions, max-ent basis functions and commonly employed moving least squares (MLS)

basis functions are depicted on a unit square covered by a 3× 3 nodal grid. For this example,

to make the differences between the shape functions visually evident, the support size of the

nodal weight function is taken as 1.25 times the distance to the fifth nearest neighbor. It

is evident from Fig. 2f that the interior MLS basis function is not zero on the boundary in

contrast to the max-ent basis function (Fig. 2d), which is zero on the boundary of the domain.

Furthermore, boundary basis functions using maximum entropy are interpolatory (Fig. 2c),

whereas MLS basis functions are not (Fig. 2e). Due to these properties of maximum-entropy

basis functions, the imposition of essential boundary conditions in maximum-entropy meshfree

methods is performed as in finite element methods.

3.1. Principle of virtual work and nodal integration

The weak form (principle of virtual work) for problems in structural mechanics leads to the

equilibrium expression

fext − f int = 0, (54a)

fext =

∫

S

φT t̄ dS, f int =

∫

Ω

BTσ dV, (54b)
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Figure 2. Max-ent versus MLS basis functions on unit square (3 x 3 grid). Quartic weight function,

max-ent and MLS basis functions for corner node in (a),(c),(e) and for center node in (b),(d),(f).
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where φ is the basis function vector, B is the local strain-displacement matrix, σ is the local

Cauchy stress, and t̄ is the prescribed traction vector.

In an effort to depart from using elements for the purpose of numerical integration, a node-

based integration technique is used to compute f int in (54). For node-based integration, a

background geometric structure, such as a Voronoi diagram, is still required. This geometric

structure is preferable since it is node-based rather than element-based and hence the Jacobian

is not needed. A further advantage of nodal integration is that state variables, such as material

properties, are associated with nodes rather than elements. The nodal integration procedure

adopted here closely follows the integration scheme introduced by Chen et al. [31]. For other

forms of nodal integration using stress points, see Duan and Belytschko [32].

Consider the Voronoi cell domain Va and boundary of segments Sa enclosing node a as

shown in Fig. 3a. Over the domain Va, the components of the smoothed strain tensor are

εij(xa) =
1

2Aa

∫

Va

(ui,j + uj,i) dV =
1

2Aa

∫

Sa

(uinj + ujni) dS, (55)

where Aa is the Voronoi cell area associated with node a, and ni is the ith component of a

unit vector normal to the Voronoi cell boundary Sa.

Now, similar to FEM, the strain-displacement relation is written as

ε(xa) =
6
∑

b=1

Bb(xa)db = [B1 B2 · · ·B6]

























d1

d2

...

d6

























≡ B(xa)d, (56)

where the index b ranges over the nodes whose associated basis function supports cover any

vertex of the Voronoi cell a (i.e., nodes 1 to 6 in Figure 3a). The strain-displacement matrix
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Figure 3. Nodal integration: (a) Voronoi cell of node a = 1; and (b) normal and edge definitions.

is:

Bb(xa) =

















bb1(xa) 0

0 bb2(xa)

bb2(xa) bb1(xa)

















, bbi(xa) =
1

Aa

∫

Sa

φb(x)ni(x) dS. (57)

To carry out the integration, by numerically evaluating the components of the B matrix, a

two-point trapezoidal rule is employed. As indicated in Figure 3b, xMa and xM+1
a are the end

points of segment SMa . The length of the segment is `Ma and surface normal of the segment is

nMa . Using these definitions, (57) is rewritten as a summation over the Voronoi cell segments:

bbi(xa) =
1

Aa

Ns
∑

M=1

[

φb(x
M
a )nMai

`Ma
2

+ φb(x
M+1
a )nMai

`Ma
2

]

. (58)

When the last segment in the summation is reached define M + 1 = Ns + 1 ≡ 1. Next, noting

that (58) only involves evaluation of φbnai at the vertices of the Voronoi cell for node a, the

following result is obtained:

bbi(xa) =
1

Aa

Ns
∑

M=1

[

1

2
(nMai `

M
a + nM+1

ai `M+1
a )φb(x

M+1
a )

]

. (59)
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This last equation involves no derivatives of maximum-entropy basis functions. The technique

of nodal integration has been used in linear problems [31] and in nonlinear problems with large

displacements [33].

On using the strain-displacement relation (56) in (54) gives the local tangent stiffness

associated with node a as

K(xa) = BT (xa)CB(xa)Aat. (60)

The thickness of the two-dimensional domain, t, is generally taken as unity. Furthermore, C is

the elastic or elasto-plastic modulus matrix depending on the material model in current use.

The external force vector f ext of (54) is found similarly (see Chen et al. [31]).

3.2. Stabilization of Stiffness Matrix

Nodal integration instabilities are often manifested by hourglass modes in the calculated

deflected shape, by spurious low-energy modes in an eigenanalysis and by locking in near or

totally incompressible materials. Hence, some form of stabilization is needed for the stiffness

matrix given in (60). Puso et al. [34] proposed the following stabilization scheme:

Ks(xa) = K(xa) + αs
∑

c∈Ta

(B(xa)−Bc(xa))
TCs(B(xa)−Bc(xa))Act, (61)

where Ks(xa) is the stabilized matrix, αs = 1.0 is the stabilization factor and Cs is the

stabilization modulus matrix. The first term in the summation of (61) is equivalent to (60)

and for each node a the second term is a summation over the set of triangular subcells, Ta,

for Voronoi cell a (see Figure 4). Over each triangular subcell c the Bc matrix is constructed

in the same way that B matrices are constructed over a Voronoi cell.

Consistent with the stabilization scheme explained above, the local internal forces take the
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Vc

a

x1

x2

Figure 4. Voronoi cell triangular subcells.

following form:

qL` = f int` =

∫

Ω

BTσdV + αs
∑

c∈Ta

[∫

Ω

(B−Bc)
T
Cs (B−Bc)d` dVc

]

. (62)

These local internal forces are transformed to the global level and assembled into a global

internal force vector as part of the residual calculation process. The residual is then used

in the Newton-Raphson scheme to enforce global equilibrium as indicated in the algorithm

of Section 2.5. By use of the consistent internal forces an optimum rate of convergence is

maintained in the iterations for global equilibrium.

For elastic materials Cs = Celast. When constructing Cs for plastic materials with Lamé

parameters µ and λ, the recommendation of Puso et al. [34] is adopted such that the effective

moduli are

µ̃ = H/2 and λ̃ = max(λ, 12.5H), (63)

where H is the linear hardening modulus. The effective elastic modulus Ẽ and Poisson’s ratio

ν̃ in terms of µ̃ and λ̃ are given by

Ẽ =
µ̃(3λ̃+ 2µ̃)

λ̃+ µ̃
and ν̃ =

λ̃

2(λ̃+ µ̃)
. (64)
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4. NUMERICAL EXAMPLES

Numerical results for plane stress are presented using an implicit Newton-Raphson iteration

scheme at the global level. At the constitutive level, for inelastic materials, J2 plasticity with

an implicit Newton-Raphson iteration scheme using radial return is employed [20].

4.1. Linear elastic cantilever beam

A linear elastic cantilever beam with ν = 0.0, E = 100.0 ksi and uniform thickness

t = 2.0 inches is loaded with a uniform load along the vertical free end. Deflected shapes

are shown for a regular and irregular grid of nodes in Figures 5a and 5b, respectively. A load

displacement plot of a meshfree co-rotational cantilever beam is compared to a 1D co-rotational

beam finite element in Figure 5c. The software OpenSees [35] is used to obtain the results for

the 1D beam element. The 1D beam element model uses ten beam elements. An analytical

solution based on Euler-Bernoulli beam theory with consideration of axial deformations is

also shown in the load displacement plot. For both regular and irregular grids, the agreement

of the current method with the other solutions is excellent. The final deflected shape of the

cantilever corresponds to a load of 10 kips, and the plot of stress (Figure 5d) with increasing

displacement is shown for model node A indicated. The loading takes the strains of the small

strain formulation higher than is recommended (25 percent bending strain at node A); however,

the results illustrate robust and smooth results and the effectiveness of the stabilization

in suppressing hourglass modes. Figure 5e illustrates the hourglass modes that result when

no stabilization is used. In fact, without stabilization, the analysis crashes and fails to even
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Figure 5. 2D meshfree cantilever beam solution compared to 1D co-rotational beam element: (a) final

deflected shape (regular grid); (b) final deflected shape (irregular grid); (c) load displacement plot;

(d) bending stress; (e) spurious deflected shape without stabilization; and (f) iterations per load step

with and without the initial stiffness matrix included.
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converge at loads of about 0.4 kips.

For the above stabilized solution a series of 100 load increments are applied with at most

two Newton-Raphson iterations per load step required to reach equilibrium for a residual

tolerance of 10−2. It is noteworthy to point out that in the past some researchers have applied

co-rotational formulations without including the variation of the transformation matrix that

leads to the initial stiffness matrix. Although for this cantilever beam problem comparable

results are obtained for lower load levels by excluding the initial stiffness matrix the number of

iterations required for equilibrium increases dramatically. Figure 5f illustrates the number of

iterations required without the initial stiffness matrix for the first 38 load steps in an analysis

identical to the one described above. The analysis was terminated after the 38th load step when

the number of iterations exceeded 100. This demonstrates the value of a consistent formulation

and the loss of the quadratic rate of convergence when the initial stiffness matrix is excluded.

4.2. Linear elastic circular shallow arch

A pin supported linear elastic circular shallow arch is loaded with a concentrated force at

its central point as shown in Figure 6a. For the arch, ν = 0.0, E = 68.948 kN/mm2, radius

is 10581.6 mm, cross-section radial depth is 79.2 mm, and the width of the cross-section

is 25.4 mm. The span of the arch from pin to pin is 2540 mm. The arch is modeled with

2761 meshfree nodes, which is similar to 2500 quadrilateral elements. In Figure 6b, the load

displacement response, exhibiting snap-through behavior, is compared to results found by using

2500 quadrilateral membrane elements in LS-DYNA [36]. The load displacement results are

obtained by using a single node displacement control scheme using 115 displacement increments

(see Clarke et al. [37]). The agreement with LS-DYNA is very good. Numerical results are also
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Figure 6. Results for pin-supported linear elastic circular shallow arch. (a) initial arch configuration;

(b) load displacement plot; (c) max-ent model convergence.
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Figure 7. Results for cantilever with inelastic material behavior included. (a) deflected shape (450 kN

load); and (b) load displacement plot.

shown in Figure 6c illustrating the convergence of the meshfree method with grid refinement.

The analysis does not correctly capture the snap through behavior when the initial stiffness

matrix is excluded, which further illustrates the importance of a variationally consistent co-

rotational formulation.

4.3. Elasto-plastic cantilever

As mentioned previously, once a co-rotational formulation is constructed, it is relatively easy to

include traditional small strain inelastic material behavior. To demonstrate this, in Figure 7a, a

cantilever beam is loaded at its free end with a load of 450 kN, which is well beyond first yield. A

plastic hinge develops and large rotations of the cantilever beam result. The maximum bending

strain is 25 percent. The maximum-entropy model has 1449 nodes. The cantilever is 2 mm thick,

8 mm in depth, and is 160 mm long. A plane stress elasto-plastic material (J2 plasticity with
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radial return [20]) is used with E = 104930 kN/mm2, ν = 0.3, a linear hardening modulus of

284 kN/mm2, and a yield stress of 1550 kN/mm2. Finite element results, obtained by using the

finite element large strain hyperelasto-plastic program (FLagShyP) by Bonet and Wood [38],

are included for comparison. For the FLagShyP model the same material properties are used,

along with 1280 hexahedral elements. Although the FLagShyP model is for a hyperelasto-

plastic material, for relatively small strains this is comparable to the elasto-plastic material

used in the maximum-entropy model. It is evident from the load displacement plot of Figure 7b

that the finite element and maximum-entropy results are in very good agreement. The analysis

is completed by using a displacement control scheme of 42 increments at the free end of the

cantilever.

4.4. Elastic and elasto-plastic T -frame

A T -frame is loaded with a point load as shown in Figure 8a. Figure 8b shows the vertical

displacement of node A versus load for elastic and elasto-plastic (J2 plasticity) materials. The

deflected shapes, for the load levels labeled in Figure 8b, are illustrated in Figures 8c–8e.

The maximum bending strain is 10 percent and 21 percent for the elastic and elasto-plastic

cases, respectively. The results are intended to demonstrate the ability of the co-rotational

formulation to capture large displacements and rotations for elastic and elasto-plastic cases.

The material properties are as follows: E = 29000 ksi, ν = 0.3, linear hardening modulus

H = 100 ksi and yield stress fy = 550 ksi. The beams and columns of the frame are 4 inch

in depth and 1 inch thick. For the elastic case an artificially high yield stress is used so that

yielding is avoided during the entire simulation. The analysis is completed using 70 equal

(0.3 inch) steps of displacement control at node A.
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Figure 8. Results for T -frame. (a) initial configuration; (b) load versus displacement for elastic and

elasto-plastic cases; and (c),(d),(e) deflected shapes at load levels indicated in (b).
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5. CONCLUDING REMARKS

Maximum-entropy basis functions were successfully employed in a meshfree co-rotational

formulation for two-dimensional continua. A variationally consistent formulation was required

to attain the optimum (quadratic) rate of convergence, and nodal integration and stabilization

was applied to representative problems for validation. Benchmark problems such as the

cantilever beam, shallow arch, and a T -frame were considered with elastic and elasto-plastic

material behavior, and the numerical results with the present co-rotational formulation

were found to be in good agreement with finite element computations. Notably, the use of

stabilization when performing nodal integration prevented the presence of spurious modes

in the deflected shape. The numerical results reveal that maximum-entropy basis functions

combined with a co-rotational formulation is an effective technique for including large

displacements and rotations. This work provides impetus for future research-work on the

extensions to finite strains and three-dimensional computations to further the effort to improve

large-scale collapse simulations.
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