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Abstract

A displacement-based Galerkin meshfree method for large deformation analysis of

nearly-incompressible elastic solids is presented. Nodal discretization of the domain

is defined by a Delaunay tessellation (three-node triangles and four-node tetrahedra),

which is used to form the meshfree basis functions and to numerically integrate the

weak form integrals. In the proposed approach for nearly-incompressible solids, a

volume-averaged nodal projection operator is constructed to average the dilatational

constraint at a node from the displacement field of surrounding nodes. The nodal

dilatational constraint is then projected onto the linear approximation space. The

displacement field is constructed on the linear space and enriched with bubble-like

meshfree basis functions for stability. The new procedure leads to a displacement-

based formulation that is similar to F -bar methodologies in finite elements and iso-

geometric analysis. We adopt maximum-entropy meshfree basis functions, and the

performance of the meshfree method is demonstrated on benchmark problems us-

ing structured and unstructured background meshes in two and three dimensions.
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The nonlinear simulations reveal that the proposed methodology provides improved

robustness for nearly-incompressible large deformation analysis on Delaunay meshes.

Keywords: hyperelasticity, large deformations, meshfree methods,

maximum-entropy approximation, F -bar method, Delaunay meshes

1. Introduction

In nearly-incompressible analysis of solids that undergo large deformations, mesh

distortion introduces a limitation for practical use of simplicial (Delaunay) tessella-

tions within the framework of standard finite elements. Three-node triangular and

four-node tetrahedral finite elements are not used for nearly-incompressible analy-

sis of solids because they lead to volumetric locking. However, they can be suitably

modified for nearly-incompressible settings through the displacement/pressure mixed

formulation (u-p form). The realization of these finite elements is the well-known

MINI element [1], where the nodes located at the vertices of the simplicial element

are used to interpolate continuous linear displacement and continuous linear pres-

sure fields. In addition, the displacement field is enriched with an interior node

located at the barycenter of the simplicial element. This extra node is related to

a cubic (bubble) basis function that vanishes on the element boundary and renders

an inf-sup stable element [2, 3, 4]. Although the MINI element demonstrated better

stability properties than several finite element formulations in certain finite deforma-

tion regimes [5], the shape functions dependence on the Delaunay tessellation makes

it very sensitive to mesh distortion. In this paper, a new methodology on Delaunay

meshes is proposed for the meshfree analysis of nearly-incompressible solids at finite

strains that is superior to the MINI element formulation.

In the literature, the poor performance of simplicial tessellations in large defor-

mation analysis of nearly-incompressible solids has been improved through various
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techniques such as mixed-enhanced elements [6, 7, 8], pressure stabilization [9, 10, 11],

composite pressure fields [12, 13, 14], and average nodal pressure/strains [15, 16, 17,

18, 19, 20]. The last two approaches are broadly based on the idea of reducing

pressure (dilatational) constraints to alleviate volumetric locking. In meshfree meth-

ods, nodal integration techniques [21] can be considered to be indirectly related to

methods that use simplicial tessellations since their formulation is based on the dual

of the Delaunay triangulation, that is, the Voronoi diagram. In this approach, the

fewer constraints that are met by performing numerical integration only at the nodes

permits to alleviate volumetric locking. However, the drawback of nodal integration

techniques is their instability, which has motivated studies to stabilize them [22, 23].

In contrast to finite elements, meshfree methods are constructed using basis func-

tions that possess larger supports and do not rely on a mesh for their definition. This

allows meshfree methods some degree of insensitivity to mesh distortions, thus pro-

viding us with the motivation to use meshfree basis functions in this paper. Nonethe-

less, a background mesh is still required in Galerkin meshfree methods to perform

the numerical integration of the weak form integrals. In the meshfree method that is

developed herein, background meshes of three-node triangles in two dimensions and

four-node tetrahedra in three dimensions, are used.

Volumetric locking remains an issue in meshfree methods that use simplicial tes-

sellations for numerical integration in nearly-incompressible media problems. Thus,

a special procedure needs to be developed to alleviate volumetric locking. To this

end the nonlinear version of the volume-averaged nodal projection method (referred

to as VANP in Ref. [24]) proposed for small strain elasticity in Ref. [25] is developed

to average the dilatational constraint at a node from the displacement field of sur-

rounding nodes. The nodal dilatational constraint is then projected onto the linear

approximation space. The displacement field is constructed on the linear space and
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enriched with bubble-like meshfree basis functions for stability. The formulation so

devised leads to a displacement-based method that shares some common features

with the F -bar-Patch method of Ref. [26] and the isogeometric F -bar projection

method of Ref. [27], and as such, it can be regarded as an F -bar methodology for

meshfree methods. In the numerical implementation, maximum-entropy basis func-

tions are used as the meshfree basis functions. Another approach that uses bubble

functions to address volumetric locking for low-order simplicial tessellations is pro-

posed in Ref. [28] for compressible and nearly-incompressible linear elastic solids and

in Refs. [29, 30] for large deformations. Wu and Koishi [30] use the conforming

nodal integration procedure of Chen et al. [31] to suppress locking, whereas in our

approach, the locking-free behavior stems from a u-p mixed formulation in which a

volume-averaged technique is used to eliminate the pressure degrees of freedom from

the analysis. Furthermore, the smoothing in Ref. [30] is done over the covering that

is formed by the bubble nodes that are neighbors to an element face and the nodes

that define that face, whereas in this work the volume-averaging is done over the

region of support of the vertex basis functions.

In a Galerkin-based meshfree method, the integration domain is a cell that typi-

cally does not coincide with the region that is defined by the intersecting supports of

two overlapping meshfree basis functions. In addition, meshfree basis functions are

rational (nonpolynomial) functions. These are two central issues that introduce nu-

merical errors when using standard Gauss quadrature for numerical integration. The

errors can be reduced by using a large number of Gauss points per cell; however, this

substantially increases the computational costs in the numerical integration. There

have been many attempts to correct these integration errors. An early contribution

was due to Dolbow and Belytschko [32], who proposed to use integration cells that

were aligned with the support of the nodal basis functions. Since then, many other
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approaches have been pursued (for instance, see Refs. [33, 34]). Babuška and cowork-

ers have provided the theoretical basis for the numerical integration issue in first-order

meshfree methods [35] as well as higher-order meshfree approximations [36]. Other

approaches that are based on nodal integration ideas [31] construct a strain correction

that significantly reduces integration errors. Ortiz et al. [25] proposed a strain cor-

rection based on a smoothing procedure for linear approximations on triangular and

quadrilateral background meshes and extended these ideas to tetrahedral background

meshes in Ref. [37]. Duan et al. [38] proposed a smoothing procedure for second-order

approximations on triangular background meshes. Chen et al. [39] proposed a varia-

tionally consistent integration method for high-order meshfree approximations that

generalizes the notion of nodal integration and is applicable for Gauss quadrature

on triangles and squares. Recently, Duan et al. [40] used the Hu-Washizu three-field

variational principle to demonstrate the variational consistency of the second-order

accurate integration scheme previously presented in Ref. [38] for meshfree methods

on triangular meshes and an extension of this scheme to third-order accuracy was also

provided. The corresponding second-order accurate integration scheme for four-node

tetrahedral meshes is presented in Duan et al. [41].

The nonlinear weak form integrals in the VANP method are more involved and

therefore more accurate integration schemes are required. One of the findings in the

development of the work herein was that the strain correction procedure proposed

earlier by the authors [25, 37] was not effective for integration of the nonlinear weak

VANP form. Although this correction exactly satisfied linear patch tests and was

second-order accurate, it was found to be insufficiently robust for large strains. The

integration by Duan et al. [38, 41] on the other hand is second-order accurate and

satisfies the quadratic patch test and thus offers more regularity, which provides

better robustness in two- and three-dimensional computations.
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The main contributions in this paper for the analysis of nearly-incompressible

solids at finite strains are as follows:

• A robust displacement-based formulation is developed for Delaunay tessella-

tions via modifications to the standard u-p mixed weak form. To the best of

our knowledge, this approach has not previously appeared in the literature.

• The use of bubble-like meshfree basis functions in our formulation provides the

necessary stability of the pressure field. As a consequence, it delivers smooth

pressure fields on Delaunay tessellations. This feature is not present in other

formulations for low-order tessellations.

• The integration method of Duan et al. [41], which proved better than the

integration method developed in our earlier papers [25, 37], is implemented for

the first time in 3D large deformations.

• In comparing the proposed formulation with its closest finite element counter-

part, the MINI element, it allows larger deformations and delivers more accurate

solutions with smoother pressure fields.

The remainder of the paper is organized as follows. Section 2 presents a sum-

mary of maximum-entropy basis functions. The formulation proposed for nearly-

incompressible elastic solids at finite strains is developed in Section 3. Here, the

volume-averaged nodal projection (VANP) method is developed via modifications to

the standard u-p mixed weak form. The discrete equations are provided in Section 4,

and the numerical integration scheme used in the meshfree method is outlined in

Section 5. Numerical examples are presented in Section 6 to demonstrate the perfor-

mance of the meshfree method in large deformation analysis of nearly-incompressible

elastic solids. Some concluding remarks are given in Section 7.
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2. Maximum-entropy basis functions

Meshfree basis functions typically do not vanish on the domain boundary, which

precludes direct imposition of essential boundary conditions; hence procedures such

as Lagrange multipliers, penalty methods or Nitsche’s method among others must

be used to enforce essential boundary conditions (for details, see Ref. [42]). However,

maximum-entropy (max-ent) basis functions [43, 44, 45] vanish on the boundary of a

convex domain [44], which allows direct imposition of essential boundary conditions

at the nodes. Because of this feature, max-ent basis functions are selected in the

VANP formulation.

Consider a convex domain represented by a set of n scattered nodes and a prior

(weight) function wa(X) associated with node a. On using the Shannon-Jaynes

entropy functional [45], the set of max-ent basis functions {φa(X) ≥ 0}na=1 that

define the approximation function uh(X) =
∑

a φa(X)ua (ua are nodal coefficients),

is obtained via the solution of the following concave optimization problem:

max
φ∈IRn

+

−
n

∑

a=1

φa(X) ln

(

φa(X)

wa(X)

)

(1a)

subject to the linear reproducing conditions:

n
∑

a=1

φa(X) = 1
n

∑

a=1

φa(X)ca = 0, (1b)

where ca = Xa − X are shifted nodal coordinates and IRn
+ is the non-negative

orthant. Typical priors that can be used include kernel or window functions that are

well-known in the meshfree literature. In this paper, we use a C2 quartic polynomial

given by

wa(q) =







1− 6q2 + 8q3 − 3q4 0 ≤ q ≤ 1

0 q > 1
, (2)
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where q = ‖Xa −X‖/ρa and ρa = γha is the support radius of the basis function of

node a; γ is a parameter that controls the support-width of the basis function, and

ha is a characteristic nodal spacing associated with node a.

On using Lagrange multipliers, the solution of the variational problem (1) is [45]:

φa(X) =
Za(X;λ∗)

Z(X;λ∗)
, Za(X;λ∗) = wa(X) exp(−λ

∗ · ca), (3)

where Z(X;λ∗) =
∑

b Zb(X;λ∗) and λ
∗ = [λ∗

1 λ∗

2 λ∗

3]
T in three dimensions. In (3),

the Lagrange multiplier vector λ∗ is the minimizer of the dual optimization problem:

λ
∗ = arg min

λ∈IRd

lnZ(X;λ), (4)

which leads to a system of d nonlinear equations:

F (λ) = ∇λ lnZ(λ) = −
n

∑

a

φa(X)ca = 0, (5)

where d is the spatial dimension and ∇λ refers to the gradient with respect to λ.

Once the converged λ
∗ is found, the basis functions are computed from (3) and the

gradient of the basis functions is [46]:

∇φa = φa

{

ca ·
[

(H)−1 − (H)−1 · A
]

−
n

∑

b=1

∇wb exp(−λ
∗ · cb)

Z

}

+
∇wa exp(−λ

∗ · ca)

Z
,

(6a)

where

A =

n
∑

b=1

cb ⊗
∇wb exp(−λ

∗ · cb)

Z
(6b)

and H is the Hessian matrix defined by

H = ∇λF = ∇λ∇λ lnZ =
n

∑

b=1

φb cb ⊗ cb (6c)

with ⊗ denoting the dyadic product.
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3. Variational formulation

Consider an elastic body with open domain Ω ⊂ IRd (d = 2, 3) in the initial

(reference) configuration. The domain is bounded by the (d−1)-dimensional surface

∂Ω whose unit outward normal is N . A mapping, denoted as χ, defines the dis-

placement u of a particle from its initial position X to its current position x, that

is, u = χ(X)−X = x−X. The boundary is assumed to admit the decompositions

∂Ω = ∂Ωχ ∪ ∂Ωt and ∅ = ∂Ωχ ∩ ∂Ωt, where ∂Ωχ is the portion of the boundary

where the deformation χ = χ̂ is prescribed and ∂Ωt is the portion of the boundary

where the external surface forces t̂0 (assumed to be independent of the motion) are

applied. The deformations are required to be admissible, which means they belong

to the space:

D = {χ : Ω → IRd | detF > 0, χ = χ̂ on ∂Ωχ}, (7)

where

F = ∇0χ = ∇0X = I +∇0u (8)

is the deformation gradient tensor1; I is the identity tensor.

The kinematic relation between the Green-Lagrange strain tensor E(χ) and the

deformation gradient tensor F (χ) is:

E =
1

2

(

F
T
F − I

)

, (9)

which can be expressed in terms of the right Cauchy-Green deformation tensor C =

F
T
F .

The elastic body is assumed to be homogeneous and isotropic. The second Piola-

1Subscript 0 is used to refer to operations in the initial configuration.
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Kirchhoff stress S(χ) is related nonlinearly to the strain E(χ) by

S =
∂Ψ (E(χ))

∂E
, (10)

where Ψ is a strain energy function, which in addition to E, depends on Lamé’s first

(λ) and second (µ) material parameters.

3.1. Displacement-based weak form

The potential energy functional for an elastic body that is subjected to external

surface forces and is free of body forces is given as

Π(χ) =

∫

Ω

Ψ (E(χ)) dV −

∫

∂Ωt

t̂0 · χ dS. (11)

The stationarity of (11) in the arbitrary direction v ∈ V = {v : Ω → IRd | v =

0 on ∂Ωχ} is given by the directional derivative

DΠ(χ)[v] ≡
dΠ(χ+ ǫv)

dǫ

∣

∣

∣

∣

ǫ=0

= 0 (12)

and yields the displacement-based weak form as follows:

DΠ(χ)[v] =

∫

Ω

S : DE(χ)[v] dV −

∫

∂Ωt

t̂0 · v dS = 0, (13)

where DE(χ)[v] can be proved (for instance, see Ref. [47]) to be

DE(χ)[v] = (F T
∇0v)sym. (14)

On substituting (14) into (13) leads to the final displacement-based weak form ex-

pression as

DΠ(χ)[v] =

∫

Ω

S : (F T
∇0v)sym dV −

∫

∂Ωt

t̂0 · v dS = 0. (15)

A nearly-incompressible material must satisfy the limit J = detF → 1, which is

achieved by setting the Lamé parameters such that the Poisson’s ratio approaches
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1/2. However, imposing this severe constraint on the kinematic behavior leads to

volumetric locking when using the displacement-based weak form (15) [48]. This

indicates that the weak form (15) cannot be used to describe movement while si-

multaneously satisfying J ≈ 1. Volumetric locking manifests itself in numerical

formulations and can be suppressed using the u-p mixed formulation.

3.2. u-p mixed weak form

The u-p mixed formulation is a two-field variational problem in which, in addition

to the displacement field, a second independent variable is chosen to represent the

hydrostatic pressure field. In order to identify the hydrostatic pressure variable in

the formulation, the strain energy function is decomposed into its deviatoric and

volumetric parts:

Ψ (J,E) = Ψdev(J,E) + Ψdil(J), (16)

which redefines the potential energy functional as follows:

Π(χ) =

∫

Ω

Ψdev(J,E(χ)) dV +

∫

Ω

Ψdil(J) dV −

∫

∂Ωt

t̂0 · χ dS. (17)

As in (11), the stationarity of (17) is obtained by applying the directional derivative,

which leads to the weak form

DΠ(χ)[v] =

∫

Ω

(Sdev + S
dil) : (F T

∇0v)sym dV −

∫

∂Ωt

t̂0 · v dS = 0, (18)

where

S
dev =

∂Ψdev

∂E
(19)

and

S
dil =

dΨdil

dJ

∂J

∂E
= pJC−1. (20)

In (20), the hydrostatic pressure p = dΨdil

dJ
and the identity ∂J

∂E
= JC−1 have been

used (for instance, see Ref. [47]).
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On defining the pressure space as P :=
{

p : p ∈ L2(Ω),
∫

Ω
p dΩ = 0

}

and intro-

ducing p ∈ P as an independent pressure trial function with q ∈ P an arbitrary

pressure test function, yields the following u-p mixed variational form:

∫

Ω

(Sdev + pJC−1) : (F T
∇0v)sym dV −

∫

∂Ωt

t̂0 · v dS = 0, (21a)

∫

Ω

q

(

p−
dΨdil

dJ

)

dV = 0. (21b)

3.3. Volume-averaged nodal projection method

An alternative locking-free approach, where the only variable is the displacement

field, can be developed starting from the multiplicative decomposition of the defor-

mation gradient tensor into its deviatoric and dilatational parts: F = F
dil
F

dev [49],

and using this to define a modified deformation gradient tensor as follows [50]:

F̄ = F̄
dil
F

dev, (22)

where F̄
dil = J̄1/3

I and F
dev = J−1/3

F , which leads to

det F̄ = J̄ , (23)

since detF dev = 1. In (22), F̄ dil is a modified tensor that suppresses volumetric

locking [27]. For convenience in further derivations, (22) is rewritten as

F̄ = αF , (24)

where α =
(

J̄/J
)1/3

. An identity akin to (24) is the basis for the F -bar methodology

used in finite elements [50, 12] and isogeometric analysis [27].

From (24) it is clear that the key ingredient in the modified displacement-based

weak form for meshfree methods proposed herein is to find an appropriate definition

for J̄ such that volumetric locking is suppressed. In other words, an explicit definition
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for the ‘bar’ operator needs to be developed. In brief, the idea is to find such an

operator from the pressure constraint (21b) of the u-p mixed weak form. Before

proceeding, special tessellations will be defined for constructing J̄ and for numerical

integration in the meshfree method.

Let the domain tessellation with simplices be denoted by T (Ω). The tessellation

consists of three-node triangular or four-node tetrahedral cells denoted by C. The

vertices of the tessellation are used to define the standard node set N s. In addition to

the standard node set, we define a barycenter node set asN b with nodes located at the

barycenter of each cell C in the tessellation T (Ω). So, an enhanced node set is defined

as N+ = N s ∪ N b. Fig. 1 depicts a schematic representation of a two-dimensional

simplicial tessellation with its corresponding cells and node set definitions. In our

approach, the simplicial tessellation T (Ω) that connects the standard node set N s is

generated using a meshing software and the Gauss points locations for the numerical

integration procedure are computed based on this mesh. The enhanced node set N+

is constructed when needed by including the additional nodes that are required in

the standard node set.

C T (Ω)

N s

N b

Fig. 1: Schematic representation of a two-dimensional simplicial tessellation T (Ω) for the enhanced

node set N+ = N s ∪ N b. The shaded area is a representative cell denoted by C.
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The starting step for developing the bar operator is the discretization of the

pressure constraint (21b) using

ph(X) =
n

∑

b=1

φb(X)pb, (25a)

qh(X) =

n
∑

c=1

φc(X)qc, (25b)

where n is the number of nodes in the node set N s, whose associated meshfree basis

functions φi (i = b, c) have a nonzero discrete value at the sampling point X. On

substituting (25) into the pressure constraint (21b) and relying on the arbitrariness

of nodal pressure test functions yields

nb
∑

b=1

∫

Ω

φc(X)φb(X)pb dV −

∫

Ω

φc(X)
dΨdil

dJ
dV = 0, (26)

and performing row-sum on the discrete pressure term leads to

{
∫

Ω

φc(X) dV

}

pc −

∫

Ω

φc(X)
dΨdil

dJ
dV = 0. (27)

Finally, solving for pc in (27) gives the following volume-averaged nodal pressure:

pc =

∫

Ωc
φc(X)dΨ

dil

dJ
dV

∫

Ωc
φc(X) dV

, (28)

where the integration volume Ω has been replaced with Ωc, the union of cells that

are attached to node c (see Fig. 2). Equation (28) is the nonlinear version of the

volume-averaged nodal pressure used in Refs. [25, 24] for linear elasticity.

To realize the bar operator, as an example we consider the following dilatational

strain energy:

Ψdil =
1

2
κ(J − 1)2, (29)
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where κ = λ + 2
3
µ is the bulk modulus of the material. Thus, dΨdil

dJ
= κ(J − 1)

and (28) yields

pc = κ

∫

Ωc
φc(X)J dV

∫

Ωc
φc(X) dV

− κ = κ(Jc − 1) = κ(πc[J ]− 1), (30)

where the volume-averaged nodal projection (VANP) operator πc is:

πc[·] =

∫

Ωc
φc(X)[·] dV

∫

Ωc
φc(X) dV

. (31)

The adoption of the name ‘projection’ reflects the fact that (28) stems from the

pressure constraint (21b), which is like an L2 projection. Note the similarity of the

operator (31) with the assumed gradient operator of Ref. [20] (see (16) therein) and

the assumed strain nodal matrix of Ref. [51] (see (18) therein).

As can be inferred from (30), the nodal operator applied to J gives its nodal

representation as

Jc = πc[J ] =

∫

Ωc
φc(X)[J ] dV

∫

Ωc
φc(X) dV

. (32)

Finally, by the linear combination ph =
∑

c φcpc, the bar operator is given by the

projection operator as

π[·] =
nc
∑

c=1

φc(X)πc[·] =
nc
∑

c=1

φc(X)

{
∫

Ωc
φc(X)[·] dV

∫

Ωc
φc(X) dV

}

. (33)

Thus, J̄ is computed as follows:

J̄ = π[J ] =
nc
∑

c=1

φc(X)πc[J ] =
nc
∑

c=1

φc(X)

{
∫

Ωc
φc(X)J dV

∫

Ωc
φc(X) dV

}

=
nc
∑

c=1

φc(X)Jc. (34)

As shown above, the VANP approach is based on modifications to the standard u-p

mixed formulation. Consequently, some consideration to the inf-sup condition [2, 3, 4]

should follow. In lieu of an analytical treatment, the proposed formulation here
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c
Ωc

Fig. 2: Schematic representation of the standard node set N s. The shaded region illustrates an

integration volume for the computation of the VANP operator associated with node c.

is designed to be very close in form to the inf-sup stable MINI element, i.e., the

displacement field is enhanced with additional nodes located at the barycenter of

the simplices and these nodes carry displacement degrees of freedom. In the VANP

formulation, max-ent basis functions are used to approximate the displacement and

pressure fields. However, no pressure degrees of freedom are associated with the

barycentric nodes, and the constraint ratio for the VANP approach is the same as

the MINI element. We point out that the max-ent basis function that is associated

with the barycentric node does not vanish on the boundary of the corresponding

simplex. However, as the support gets tighter for the max-ent basis function that is

associated with the barycentric node, the basis function tends to a bubble function

on the simplex. Hence, we refer to these barycenter nodes as bubble-like nodes. So,

following the preceding considerations, first-order max-ent basis functions are used

to construct the space Ph(Uh) with the standard node set N s and the space Uh

with the enhanced node set N+. For implementation purposes of the VANP operator,

this means the basis functions that appear in the operator (33) are computed using

16



the standard node set N s, but J = detF in (34) is computed using the enhanced

node set N+ since F is computed from the displacement field.

To achieve a symmetric tangent stiffness matrix, F̄ is introduced in the energy

function, which leads to the following modified potential energy functional:

Π̄(χ) =

∫

Ω

Ψ (Ē(χ)) dV −

∫

∂Ωt

t̂0 · χ dS, (35)

where Ψ (Ē(χ)) is the modified strain energy function, which depends on F̄ through

the modified Green-Lagrange strain tensor:

Ē =
1

2

(

F̄
T
F̄ − I

)

. (36)

The locking-free modified displacement-based weak form is obtained by taking

the directional derivative in (35), which gives

DΠ̄(χ)[v] =

∫

Ω

S̄ : DĒ(χ)[v] dV −

∫

∂Ωt

t̂0 · v dS = 0. (37)

In (37), the modified second Piola-Kirchhoff stress tensor S̄(χ) is defined as

S̄ = S(Ē(χ)) =
∂Ψ (E)

∂E
(Ē(χ)) (38)

and DĒ(χ)[v] needs to be developed. To this end, the following operator is defined:

θ[·] =
π[·]

π[J ]
−

1

J
{·}. (39)

The complete derivation of DĒ(χ)[v] is presented in Appendix A. The final expres-

sion is

DĒ(χ)[v] =
1

3
θ
[

Jtr
(

∇0vF
−1
)]

F̄
T
F̄ + α(F̄ T

∇0v)sym. (40)

On substituting (40) into (37) leads to the final modified displacement-based weak

form expression:

DΠ̄(χ)[v] =
1

3

∫

Ω

θ
[

Jtr(∇0vF
−1)

]

S̄ : (F̄ T
F̄ ) dV +

∫

Ω

αS̄ : (F̄ T
∇0v)sym dV

−

∫

∂Ωt

t̂0 · v dS = 0. (41)
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3.4. Linearization

The implicit numerical solution relies on the linearization of the weak form (41).

The linearized weak form in the direction of the increment ∆u is given by

DΠ̄(χ)[v] + D2Π̄(χ)[v, ∆u] = 0, (42)

where D2Π̄(χ)[v, ∆u] ≡ D
{

DΠ̄(χ)[v]
}

[∆u] is the second variation of Π̄(χ) along

∆u. The complete derivation of the second variation is given in Appendix B. Only

the final result is presented here. The external forces are assumed to be independent

of the motion, and for the sake of clarity, the second variation is split into material

and geometric parts:

D2Π̄(χ)[v, ∆u] =
(

D2Π̄(χ)[v, ∆u]
)

mat
+
(

D2Π̄(χ)[v, ∆u]
)

geo
, (43a)

where

(

D2Π̄(χ)[v, ∆u]
)

mat
=+

1

9

∫

Ω

θ
[

Jtr(∇0vF
−1)

]

θ
[

Jtr(∇0∆uF
−1)

]

(F̄ T
F̄ ) : D̄ : (F̄ T

F̄ ) dV

+
1

3

∫

Ω

α θ
[

Jtr(∇0vF
−1)

]

(F̄ T
F̄ ) : D̄ : (F̄ T

∇0∆u)sym dV

+
1

3

∫

Ω

α(F̄ T
∇0v)sym : D̄ : (F̄ T

F̄ ) θ
[

Jtr(∇0∆uF
−1)

]

dV

+

∫

Ω

α2(F̄ T
∇0v)sym : D̄ : (F̄ T

∇0∆u)sym dV, (43b)
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and

(

D2Π̄(χ)[v, ∆u]
)

geo
=−

1

3

∫

Ω

1

J̄2
π
[

Jtr(∇0vF
−1)

]

π
[

Jtr(∇0∆uF
−1)

]

S̄ : (F̄ T
F̄ ) dV

+
1

3

∫

Ω

1

J̄
π
[

Jtr(∇0vF
−1)tr(∇0∆uF

−1)
]

S̄ : (F̄ T
F̄ ) dV

−
1

3

∫

Ω

1

J̄
π
[

Jtr(∇0vF
−1
∇0∆uF

−1)
]

S̄ : (F̄ T
F̄ ) dV

+
1

3

∫

Ω

tr(∇0vF
−1
∇0∆uF

−1)S̄ : (F̄ T
F̄ ) dV

+
2

9

∫

Ω

θ
[

Jtr(∇0vF
−1)

]

θ
[

Jtr(∇0∆uF
−1)

]

S̄ : (F̄ T
F̄ ) dV

+
2

3

∫

Ω

α θ
[

Jtr(∇0vF
−1)

]

S̄ : (F̄ T
∇0∆u)sym dV

+
2

3

∫

Ω

α(F̄ T
∇0v)sym : S̄ θ

[

Jtr(∇0∆uF
−1)

]

dV

+

∫

Ω

α2
S̄ : [(∇0v)

T
∇0∆u]sym dV. (43c)

In (43b), the modified Lagrangian elasticity tensor D̄ is computed as follows:

D̄ = D(Ē(χ)) =
∂S(E)

∂E
(Ē(χ)). (44)

Finally, upon substituting (41) and (43) into (42) yields the final expression for the

linearized weak form.

4. Discrete equations

The discretization of the linearized weak form (42) leads to the following Newton-

Raphson scheme:

t+∆t (Kmat + Kgeo)
(i−1) ∆u

(i) = t+∆t
F− t+∆t

T
(i−1) = t+∆t

R
(i−1), (45)

where Kmat and Kgeo are the material and geometric global tangent stiffness matrices,

respectively; F and T are the external and internal global nodal force column vectors,
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respectively; R is the residual global nodal force column vector; and ∆u is the column

vector that collects all the displacement degrees of freedom of the mesh. On the

other hand, t+∆t denotes the incremental approach where a solution is known at a

discrete time t and the solution at a discrete time t+∆t is sought; the increment ∆t

corresponds to the load step or load increment. Finally, i stands for the equilibrium

iterations within an increment. The global tangent stiffness matrices as well as the

global nodal force column vectors are obtained by assembling the nodal contributions.

The discrete material and geometric tangent stiffness matrices, as well as the

nodal force column vectors, are derived using the maximum-entropy approximation

for both the test and trial functions in the reference configuration, as follows:

∆uh(X) =

n
∑

p=1

φp(X)∆up, (46a)

vh(X) =
n

∑

q=1

φq(X)vq. (46b)

The basis functions φi (i = p, q) are computed using the nodal information of the

node set N+ of the background mesh. The same mesh is used to locate the Gauss

points for numerical integration of the linearized weak form integrals. Thus, the

integration domain becomes the elements of the background mesh and is denoted

as Ωe. However, we recall that the projection operator (or equivalently, the bar

operator) is computed using the standard node set N s (see Section 3.3 for details).

To simplify the exposition, the explicit expressions for the tangent stiffness ma-

trices and residual nodal force vector are provided only in three-dimensions. To

this end, the following matrix notations, which result from symmetry conditions, are

used:

C̄ = {F̄ T
F̄ } =

[

C̄11 C̄22 C̄33 2C̄12 2C̄13 2C̄23

]T

, (47)

S̄ = {S̄} =
[

S̄11 S̄22 S̄33 S̄12 S̄13 S̄23

]T

, (48)
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D̄ = {D̄} =





























D̄1111 D̄1122 D̄1133 D̄1112 D̄1113 D̄1123

D̄2222 D̄2233 D̄2212 D̄2213 D̄2223

D̄3333 D̄3312 D̄3313 D̄3323

D̄1212 D̄1213 D̄1223

sym. D̄1313 D̄1323

D̄2323





























, (49)

where {·} denotes Voigt notation. The following matrix forms, which result from the

discretization procedure, are also used:

Bq =





























(F11)
−1φq,X 0 0

0 (F22)
−1φq,Y 0

0 0 (F33)
−1φq,Z

(F21)
−1φq,Y (F12)

−1φq,X 0

(F31)
−1φq,Z 0 (F13)

−1φq,X

0 (F32)
−1φq,Z (F23)

−1φq,Y





























, (50)

B̄
0
q =





























F̄11φq,X F̄21φq,X F̄31φq,X

F̄12φq,Y F̄22φq,Y F̄32φq,Y

F̄13φq,Z F̄23φq,Z F̄33φq,Z

F̄12φq,X + F̄11φq,Y F̄22φq,X + F̄21φq,Y F̄32φq,X + F̄31φq,Y

F̄13φq,X + F̄11φq,Z F̄23φq,X + F̄21φq,Z F̄33φq,X + F̄31φq,Z

F̄13φq,Y + F̄12φq,Z F̄23φq,Y + F̄22φq,Z F̄33φq,Y + F̄32φq,Z





























, (51)
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B̄
kk
q =





























θ
[

JmTBq

]

C̄11

θ
[

JmTBq

]

C̄22

θ
[

JmT
Bq

]

C̄33

2θ
[

JmTBq

]

C̄12

2θ
[

JmTBq

]

C̄13

2θ
[

JmTBq

]

C̄23





























, (52)

B̄q =
1

3
B̄
kk
q + αB̄0

q. (53)

Additionally, the following vector, which arises from some trace operations, is defined:

m =
[

1 1 1 1 1 1
]T

. (54)

4.1. Residual nodal force vector

The residual nodal force vector is obtained upon discretization of (41). This gives

Rq =

∫

∂Ωe
t

φq t̂0 dS −
1

3

∫

Ωe

θ
[

JBT
q m

]

D̄
T
S̄ dV −

∫

Ωe

α
(

B̄
0
q

)T
S̄ dV. (55)

4.2. Material tangent stiffness matrix

The material tangent stiffness matrix is obtained upon discretization of (43b).

Before proceeding, the terms in (43b) are rearranged such that the following expres-

sion is obtained:

(

D2Π̄(χ)[v, ∆u]
)

mat
=

∫

Ω

∇0v : D̄ : ∇0∆u dV, (56)

where

∇0(·) =
1

3
θ
[

Jtr(∇0(·)F
−1)

]

C̄ + α
(

F̄
T
∇0(·)

)

sym
. (57)

Due to the symmetry of (56), further simplifications can be done using Voigt notation

to obtain
(

D2Π̄(χ)[v, ∆u]
)

mat
=

∫

Ω

{∇0v}
T{D̄}{∇0∆u} dV. (58)
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Finally, on substituting (46) into (58) leads to the following discrete material tangent

stiffness matrix:

(Kmat)pq =

∫

Ωe

B̄
T
p D̄B̄q dV. (59)

4.3. Geometric tangent stiffness matrix

On substituting (46) into (43c) yields the following discrete geometric tangent

stiffness matrix:

(Kgeo)pq = −
1

3

∫

Ωe

1

J̄2
π
[

JBT
pm

]

π
[

JmT
Bq

]

C̄
T
S̄ dV

+
1

3

∫

Ωe

1

J̄
π
[

JBT
pmm

T
Bq

]

C̄
T
S̄ dV

−
1

3

∫

Ωe

1

J̄
π
[

JF−T(∇0φp)(∇0φq)
T
F

−1
]

C̄
T
S̄ dV

+
1

3

∫

Ωe

F
−T(∇0φp)(∇0φq)

T
F

−1
C̄
T
S̄ dV

+
2

9

∫

Ωe

θ
[

JBT
pm

]

θ
[

JmT
Bq

]

C̄
T
S̄ dV

+
2

3

∫

Ωe

α θ
[

JBT
pm

]

S̄
T
B̄
0
q dV

+
2

3

∫

Ωe

α(B̄0
p)

T
S̄ θ

[

JmT
Bq

]

dV

+ I

∫

Ωe

α2(∇0φp)
T
S̄(∇0φq) dV. (60)

5. Numerical integration

The cell-based integration of discrete quantities that depend on meshfree basis

functions derivatives introduces integration errors when standard Gauss integration

is used. To alleviate these integration errors in the VANP method, the second-order

integration correction presented in Duan et al. [40, 41] is adopted. This approach

satisfies the quadratic patch test and thus provides the regularity and resolution that

is needed, and leads to a robust method in the large deformation regime.
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The numerical integration procedure needs an integration cell that is obtained

from a simplicial tessellation. Fig. 3 depicts a typical tessellation and a representative

integration cell in two dimensions for this scheme; the enhanced node set N+ is also

shown to remark that the nodal basis functions derivatives are to be computed using

the enhanced node set since they stem from the displacement field.
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Fig. 3: Geometric entities for the second-order accurate integration scheme. (a) Simplicial tessella-

tion, where the shaded region represents an integration cell whose domain is denoted by Ωe and its

boundary by ∂Ωe = ∂Ωe
1

⋃

∂Ωe
2

⋃

∂Ωe
3 ; and (b) the integration cell and nodes, where the interior

Gauss points are depicted as + and the boundary Gauss points as ∗. Note that depending on the

support size of the nodal basis functions, nodes that are beyond the cell can contribute at a Gauss

point if their basis functions take a nonzero value at that point.

The standard second-order accurate Gauss integration scheme has three interior

Gauss points on a triangular cell and four interior Gauss points on a tetrahedral cell.

Essentially, the integration method to be used herein provides a correction to the

values of the basis functions derivatives at these interior Gauss points.
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The Cartesian coordinate system is chosen, where for convenience X ≡ X1, Y ≡

X2 and Z ≡ X3. In addition, nj (j = 1, 2, 3) is the j-th component of the unit

outward normal to a cell edge in the Cartesian coordinate system. The second-order

integration accuracy is obtained by requiring the basis functions derivatives to satisfy

the divergence constraint

∫

Ωe

φa,jf(X) dV =

∫

∂Ωe

φaf(X)nj dS −

∫

Ωe

φaf,j(X) dV, (61)

where f(X) consists of zeroth- and first-order monomials in R
d:

f(X) = [1 X1 . . . Xd]
T. (62)

The derivative f,j(X) (δij is the Kronecker delta symbol) is

f,j(X) = [0 δ1j . . . δdj ]
T. (63)

On substituting (62) and (63) into (61) and using Gauss integration to numerically

integrate the volume and surface integrals of the divergence constraint (see Fig. 3 for

a two-dimensional representation of an integration cell) leads to the following system

of linear equations:

Wdj = fj , j = 1, 2, 3 (64)

where W and fj are given in Ref. [38] (see (32) therein) for two-dimensions and in

Ref. [41] (see (43) therein) for three-dimensions; the solution vector of the j-th basis

function derivative evaluated at the interior Gauss points of the integration cell is:

dj =
[

φa,j(X1) φa,j(X2) φa,j(X3)
]T

(65a)

in two dimensions, and

dj =
[

φa,j(X1) φa,j(X2) φa,j(X3) φa,j(X4)
]T

(65b)
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in three-dimensions, where Xi is the i-th interior Gauss point of the integration

cell. In the preceding equations, the index a runs through the combined nodal

contribution2 that results from the union of nodal contributions corresponding to

each of the interior and surface Gauss points in the cell.

The corrected derivatives given in (65) are used as the basis functions derivatives

that appear in the stiffness matrices and residual nodal force vector of the VANP

method.

6. Numerical examples

In this section, the performance of the two- and three-dimensional VANP formu-

lation in the nearly-incompressible finite strain elastic regime is studied. To this

end, the VANP method is compared to its closest finite element counterpart, the MINI

element [1], which is inf-sup stable and is known to be the most stable finite ele-

ment for the analysis of incompressible elastic solids at finite strains [5]. For some

of the tests, the numerical solution of the standard displacement-based three-node

triangular finite elements (FEM-T3) is also reported.

The base triangular or tetrahedral background mesh, which only contains the

node set N s, is generated using GiD [52]. The enhanced node set N+ is constructed

when needed by adding the extra required nodes to the standard node set N s.

The numerical integration is performed using the approach presented in Section 5

that is based on the second-order accurate integration scheme of Duan et al. [40, 41].

Later in this section, a study is presented where the need to use this higher-order

integration scheme is justified.

2The nodal contribution at a given Gauss point with coordinate X is defined as the indices of

the nodes whose basis functions have a nonzero value at X.
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6.1. Nonlinear Cook’s membrane

This benchmark problem is used to study the behavior of nearly-incompressible

formulations under combined bending and shear in distorted meshes [26, 53, 27]. The

geometry and boundary conditions are shown in Figure 4(a). The left edge of the

membrane is clamped and its right end is subjected to a deformation-independent

shear load P = 6.25 N/mm (total shear load of 100 N). A regular background mesh

of 3-node triangles with a mesh pattern of n× n subdivisions is chosen for the node

set N s. A reference mesh for n = 20 is shown in Fig. 4(b). The unstructured

background mesh depicted in Fig. 4(c) is also considered for some tests. The strain

energy function used for the hyperelastic material is:

Ψ =
1

2
µ(J−2/3trC − 3) +

1

2
κ

(

1

2
(J2 − 1)− ln J

)

, (66)

where the first term on the right hand side is the isochoric part and the second term

the volumetric part. The material parameters are chosen as κ = 400942 MPa and

µ = 80.1938 MPa, which represents a nearly-incompressible setting with Poisson’s

ratio of ν = 0.4999.

First, the convergence of the vertical tip displacement at point A with mesh

refinement is studied. The results are summarized in Fig. 5. The numerical results

reveal that the VANP approach is in good agreement with the reference value given

in Ref. [27] and delivers better convergence than the MINI element. The convergence

plot also presents the standard FEM-T3 solution, where its expected locking behavior

is evident.

Lastly, the smoothness of the nodal pressure obtained by the VANP formulation

is assessed. Here, the unstructured mesh depicted in Fig. 4(c) is used. The result

is provided in Fig. 6, where it is observed that the MINI element solution behaves

somewhat oscillatory, whereas the VANP solution is smooth.
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Fig. 4: Nonlinear Cook’s membrane. (a) Geometry and boundary conditions; (b) sample regular

background mesh; and (c) unstructured background mesh.
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Fig. 5: Nonlinear Cook’s membrane. Convergence of the vertical tip displacement at point A.
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(a) (b)

Fig. 6: Nonlinear Cook’s membrane. Nodal pressure variable on the unstructured background mesh

for (a) MINI element and (b) VANP formulation.

6.2. Plane strain compression

The following example is a standard test to demonstrate the ability of formula-

tions for nearly-incompressible hyperelastic materials to withstand very large defor-

mations in two dimensions [54] (plane strain condition is assumed) under the action

of a deformation-independent compressive load P . The geometry and boundary con-

ditions are shown in Fig. 7(a). The essential boundary conditions must be read as

follows: the movement of the top surface is constrained along the horizontal direction

and the movement of the bottom surface is constrained along the vertical direction.

Due to the symmetry of the problem, only one-half of the model is discretized with

a background mesh like the one depicted in Fig. 7(b). The hyperelastic material is
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defined using the following strain energy function:

Ψ =
1

2
µ(J−2/3trC − 3)− µ lnJ +

1

4
κ
(

J2 − 1− 2 ln J
)

. (67)

The material parameters are set as κ = 400889.806 MPa and µ = 80.194 MPa, which

represents a nearly-incompressible setting with Poisson’s ratio of ν = 0.4999.

P

5 mm 10 mm

10 mm

A

(a) (b)

Fig. 7: Plane strain compression. (a) Model geometry and boundary conditions; and (b) reference

background mesh for one half of the model.

First, a convergence study is conducted. For this, the compression level is defined

as |uA|/h× 100 with uA being the vertical displacement at point A and h the height

of the block (see Fig. 7(a)). Fig. 8 presents the convergence of the compression level

upon mesh refinement for different values of P in MPa. The results are available for

the MINI element and VANP formulation. It is observed that the converged values of

the compression level delivered by the VANP formulation are in good agreement with

those provided in Ref. [54], whereas those for the MINI element are higher than the

reference value in all the cases.

Finally, the smoothness of the VANP method is once again evident in Fig. 9, where
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Fig. 8: Plane strain compression. Compression level for different values of the pressure on the top

surface.

it is observed that the distortion of the elements does not affect the smoothness of

the nodal pressure field. The same is not true for the MINI element.

(a) (b)

Fig. 9: Plane strain compression. Nodal pressure variable for (a) MINI element and (b) VANP

formulation.
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6.3. Three-dimensional cantilever beam

This example considers a three-dimensional bending-dominated problem, where

a beam is clamped at one end and subjected to a deformation-independent trans-

verse uniformly distributed load on the other end. Fig. 10 illustrates the problem

setup. The node set N s is obtained from a mesh of pattern n × n/2 × (n/2 − 1)

divisions, where n is the number of divisions along the length of the beam and n/2

the number of divisions along its height. The following strain energy function is

used to represent the nearly-incompressible hyperelastic material with bulk modulus

κ = 166666666.67 Pa and shear modulus µ = 333555.704 Pa (ν = 0.499):

Ψ =
1

2
µ(J−2/3trC − 3) +

1

2
κ(J − 1)2, (68)

where the first term on the right hand side is the isochoric part and the second term

is the volumetric part.

P

A

0.5 m

0.1 m

B
0.1 m

Fig. 10: Three-dimensional cantilever beam. Model geometry and boundary conditions.

We start by studying the convergence of the downward tip displacement on edge

AB upon mesh refinement. In this study, three values for the transverse load are

considered: P = 5000 N/m, P = 10000 N/m and P = 15000 N/m. The convergence

study is presented in Fig. 11 for both the MINI element and the VANP methods.

Reference solutions are obtained from a converged mesh of 27-node u-p brick finite

elements. It is observed that the VANP solutions converge to the reference values,

32



whereas the MINI element behaves quite ‘stiff’ in this bending-dominated problem

and convergence is difficult to attain to reach the total number of Newton load steps

as the mesh is refined—the missing data for the MINI element in the convergence

plot represent this issue.
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Fig. 11: Three-dimensional cantilever beam. Convergence of the downward tip displacement on

edge AB.

Lastly, the vertical displacement and nodal pressure fields that are delivered by

the MINI element and the VANP methods are presented in the pictorial shown in

Fig. 12. The plots are obtained for n = 8 and P = 10000 N/m. In comparing

the nodal pressure fields, these plots reveal that the VANP method delivers smoother

pressure fields than the MINI element method. The ‘stiff’ behavior of the MINI

element is also evident in these plots.
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(a) (b)

(c) (d)

Fig. 12: Nodal field variables for the three-dimensional cantilever beam problem. (a) Vertical

displacement delivered by the MINI element method, (b) nodal pressure delivered by the MINI

element method, (c) vertical displacement delivered by the VANP method, and (d) nodal pressure

delivered by the VANP method.
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6.4. Three-dimensional compression

A three-dimensional analysis of a hyperelastic rubber block under the action of a

deformation-independent compressive load P is considered. The geometry, boundary

conditions and a reference regular background mesh are shown in Fig. 13. The strain

energy function of the hyperelastic material used is:

Ψ =
1

2
µ(J−2/3trC − 3)− µ lnJ +

1

2
κ(ln J)2. (69)

The material parameters are chosen as κ = 400889.806 MPa and µ = 80.194 MPa,

which represents a nearly-incompressible setting with Poisson’s ratio of ν = 0.4999.

(a) (b)

Fig. 13: Three-dimensional compression. (a) Model geometry and boundary conditions and (b)

reference regular background mesh.

The starting study consists in a convergence test. To this end, we define the

compression level as |uA|/h×100, where uA is the vertical displacement at point A and

h the height of the block (see Fig. 13(a)). The convergence of the compression level

upon mesh refinement for different values of P in MPa is presented in Fig. 14 for the
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MINI element and VANP formulation. It is observed that the converged values of the

compression level that are delivered by the VANP formulation are in good agreement

with those provided in Refs. [55, 27]. On the other hand, the MINI element only

performs well for the lowest compressive load, whereas for the higher compressive

loads convergence is difficult to reach the total number of Newton load steps as the

mesh is refined.
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Fig. 14: Three-dimensional compression. Compression level for different values of the pressure on

the top surface.

To demonstrate the need for a modified higher-order integration scheme, we

solve the three-dimensional compression problem using the following integration

schemes: first-order standard Gauss integration, second-order standard Gauss in-

tegration, fifth-order standard Gauss integration, integration scheme of Duan et

al. [40] that is based on Ref. [31], second-order modified integration of Ref. [25], and
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finally the second-order modified integration of Duan et al. [41]. For each scheme,

the effect of the numerical integration on the nodal pressure field is presented in

Fig. 15. Figs. 15(a)-(e) reveal severe pressure oscillations, and Figs. 15(a)-(b) and

15(d) also depict nonsmooth deformations on the top surface. Fig. 15(f) reveals that

the second-order accurate modified integration scheme of Duan et al. [41] provides a

robust solution, with smooth deformation and pressure fields.

In closing this section, the performance of the VANP method using an unstructured

background mesh is demonstrated. Fig. 16 shows the mesh used in the test. The VANP

solution is compared to the solution delivered by the MINI element for P = 240 MPa.

The solution of the vertical displacement is depicted in Fig. 17 for both methods.

The MINI element cannot undergo the total number of Newton load steps, thus only

its last converged solution is presented in Fig. 17(a). On the contrary, the VANP

formulation exhibits no difficulty in running through the total number of Newton

load steps as inferred from Fig. 17(b), where a compression level of around 59% is

achieved. This value is in complete agreement with the one expected from Fig. 14.

The nodal pressure field is shown in Fig. 18, where pressure oscillations are observed

for the MINI element. On the contrary, the nodal pressure solution delivered by the

VANP formulation is smooth.

7. Concluding Remarks

A projection scheme for meshfree methods, which we refer to as the volume-

averaged nodal projection (VANP) method, has been proposed for the analysis of

nearly-incompressible elastic solids at finite strains. In this approach, a volume-

averaged nodal projection operator is constructed to average the dilatational con-

straint at a node from the displacement field of surrounding nodes. The nodal

dilatational constraint is then projected onto the linear approximation space. The
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(a) (b) (c)

(d) (e) (f)

Fig. 15: Effect of numerical integration on the nodal pressure field for the three-dimensional com-

pression test problem. (a) first-order standard Gauss integration, (b) second-order standard Gauss

integration, (c) fifth-order standard Gauss integration, (d) integration scheme of Duan et al. [40]

that is based on Ref. [31], (e) second-order modified integration of Ref. [25] and (f) second-order

modified integration of Duan et al. [41]. The plots show that the inaccuracies are alleviated by the

integration scheme of Duan et al. [41].

displacement field is constructed on the linear space and enriched with bubble-like

meshfree basis functions for stability, which mimics the inf-sup stable MINI [1] finite

element. The projection operator permits to formulate the problem as a function of

only the displacement field, which makes the VANP formulation a displacement-based

approach. The nodal information for the computation of the meshfree basis functions
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(a) (b)

Fig. 16: Three-dimensional compression. Unstructured background mesh: (a) exterior view and

(b) internal view.

(a) (b)

Fig. 17: Three-dimensional compression. Vertical displacement solution for (a) MINI element and

(b) VANP formulation. In contrast to the VANP method, the MINI element cannot go through the

total number of Newton’s load steps.

is obtained from a background mesh of three-node triangles or four-node tetrahedra,

which also serves for the numerical integration of the weak form integrals. Numeri-
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(a) (b)

Fig. 18: Three-dimensional compression. Nodal pressure solution for (a) MINI element and (b) VANP

formulation. The MINI element exhibits pressure oscillations, whereas the VANP solution is smooth.

cal integration inaccuracies to which meshfree methods are prone are tackled using

a modified Gauss integration scheme based on the second-order accurate integration

rule of Duan et al. [40, 41].

Four benchmark problems which included the nonlinear Cook’s membrane, a

plane strain and a three-dimensional compression of a rubber block, and a three-

dimensional cantilever beam were studied to demonstrate the performance of the

VANP method in nearly-incompressible analysis of nonlinear elastic solids using low-

order triangular and tetrahedral background meshes. The numerical solutions deliv-

ered by the VANP method were compared to those of the MINI element, which is its

closest finite element counterpart for low-order tessellations. The numerical exam-

ples in two-dimensions showed that the VANP formulation provides faster convergence

and smoother pressure fields than the MINI element formulation. Furthermore, the

superiority of the VANP formulation over the MINI element formulation is also estab-

lished in three-dimensions, where the former allows tetrahedral background meshes to
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achieve larger deformations with smooth pressure fields. In conclusion, the proposed

methodology provides improved robustness for nearly-incompressible nonlinear large

deformation analysis on simplicial (Delaunay) tessellations.

Appendix A. Directional derivative of the modified Green-Lagrange strain

tensor

The detailed derivation of (40) is developed. The following equations are obtained

from the standard literature (for instance, see Ref. [47]):

DF (χ)[v] = ∇0v, (A.1)

DJ(χ)[v] = Jtr
(

∇0vF
−1
)

. (A.2)

We now consider (A.2) and proceed to take the directional derivative of (32), which

yields

DJc(χ)[v] =

∫

Ωc
φcJtr (∇0vF

−1) dV
∫

Ωc
φc dV

. (A.3)

On taking the directional derivative of (34) and using (A.3) leads to

DJ̄(χ)[v] = π
[

Jtr
(

∇0vF
−1
)]

. (A.4)

The directional derivative of α =
(

J̄/J
)1/3

is developed with the aid of (A.4) and

the operator defined in (39) as follows:

Dα(χ)[v] =
1

3α2

[

1

J
DJ̄(χ)[v]−

J̄

J2
DJ(χ)[v]

]

=
1

3α2J

[

π
[

Jtr
(

∇0vF
−1
)]

− J̄tr
(

∇0vF
−1
)]

=
1

3
α θ

[

Jtr
(

∇0vF
−1
)]

. (A.5)

In addition, the directional derivative of (36) is:

DĒ(χ)[v] =
1

2

[

(

DF̄ (χ)[v]
)T

F̄ + F̄
TDF̄ (χ)[v]

]

. (A.6)
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We now make use of (24) in conjunction with (A.1) and (A.5) to write

DF̄ (χ)[v] = Dα(χ)[v]F + αDF (χ)[v]

=
1

3
α θ

[

Jtr
(

∇0vF
−1
)]

F + α∇0v, (A.7)

whose substitution, together with (24), into (A.6) leads to the final expression for

the modified Green-Lagrange strain tensor:

DĒ(χ)[v] =
1

3
θ
[

Jtr
(

∇0vF
−1
)]

F̄
T
F̄ + α(F̄ T

∇0v)sym. (A.8)

Appendix B. Second variation of the modified energy functional

The detailed derivation of (43) is developed. The directional derivative of the

modified second Piola-Kirchhoff stress tensor is first derived. In this process, we

use (44) in conjunction with (A.8) and proceed as follows:

DS̄(χ)[∆u] =
∂S(E)

∂E

(

Ē(χ)
)

: DĒ(χ)[∆u]

= D̄ : DĒ(χ)[∆u]

=
1

3
θ
[

Jtr
(

∇0∆uF
−1
)]

D̄ :
(

F̄
T
F̄
)

+ αD̄ : (F̄ T
∇0∆u)sym.(B.1)

Next, the definition of the directional derivative of the inverse of a tensor [47] is used

to write

DF
−1(χ)[∆u] = −F

−1
∇0∆uF

−1, (B.2)

which is employed along with (A.2) in the derivation of the following directional

derivative:

D
(

Jtr
(

∇0vF
−1
))

[∆u] = DJ(χ)[∆u]tr
(

∇0vF
−1
)

+ Jtr
(

∇0vDF
−1(χ)[∆u]

)

= J
[

tr
(

∇0vF
−1
)

tr
(

∇0∆uF
−1
)

− tr
(

∇0vF
−1
∇0∆uF

−1
)]

.

(B.3)
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The directional derivatives of the operators that were defined in (31) and (39) follows.

With the aid of (B.3) the following expression is obtained for the operator (31):

Dπ
(

Jtr
(

∇0vF
−1
))

[∆u] = π
[

Jtr
(

∇0vF
−1
)

tr
(

∇0∆uF
−1
)]

− π
[

Jtr
(

∇0vF
−1
∇0∆uF

−1
)]

, (B.4)

whereas (B.4) along with (A.2), (A.4) and (B.3) are used for the operator (39) to

arrive at the following expression:

Dθ
[

Jtr
(

∇0vF
−1
)]

[∆u] = −
1

J̄2
π
[

Jtr(∇0vF
−1)

]

π
[

Jtr(∇0∆uF
−1)

]

+
1

J̄
π
[

Jtr(∇0vF
−1)tr(∇0∆uF

−1)
]

−
1

J̄
π
[

Jtr(∇0vF
−1
∇0∆uF

−1)
]

+ tr(∇0vF
−1
∇0∆uF

−1). (B.5)

Noting that D
(

F̄
T
F̄
)

[v] = 2DĒ[v] and using (B.5), yields the following directional

derivative:

D
(

θ
[

Jtr
(

∇0vF
−1
)]

F̄
T
F̄
)

[∆u] = −
1

J̄2
π
[

Jtr(∇0vF
−1)

]

π
[

Jtr(∇0∆uF
−1)

]

F̄
T
F̄

+
1

J̄
π
[

Jtr(∇0vF
−1)tr(∇0∆uF

−1)
]

F̄
T
F̄

−
1

J̄
π
[

Jtr(∇0vF
−1
∇0∆uF

−1)
]

F̄
T
F̄

+ tr(∇0vF
−1
∇0∆uF

−1)F̄ T
F̄

+
2

3
θ
[

Jtr(∇0vF
−1)

]

θ
[

Jtr(∇0∆uF
−1)

]

F̄
T
F̄

+ 2α θ
[

Jtr(∇0vF
−1)

]

(F̄ T
∇0∆u)sym. (B.6)
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One more directional derivative is needed to complete the derivation. To this end, (A.5)

and (A.7) are considered in the derivation of

D
(

α(F̄ T
∇0v)sym

)

[∆u] = +
1

3α2J
(F̄ T

∇0v)symπ
[

Jtr(∇0∆uF
−1)

]

−
1

3
α(F̄ T

∇0v)symtr(∇0∆uF
−1)

+
1

3
α(F̄ T

∇0v)symθ
[

Jtr(∇0∆uF
−1)

]

+ α2
(

(∇0∆u)T∇0v
)

sym
. (B.7)

The last step is to take the second variation of (35), or equivalently, the directional

derivative of (41). The derivation is split into a material and a geometric part and

motion-independent external forces are assumed. This leads to

(

D2Π̄(χ)[v, ∆u]
)

mat
= +

1

3

∫

Ω

θ
[

Jtr(∇0vF
−1)

]

(F̄ T
F̄ ) : DS̄(χ)[∆u] dV

+

∫

Ω

α(F̄ T
∇0v)sym : DS̄(χ)[∆u] dV, (B.8)

(

D2Π̄(χ)[v, ∆u]
)

geo
= +

1

3

∫

Ω

S̄ : D
(

θ
[

Jtr
(

∇0vF
−1
)]

F̄
T
F̄
)

[∆u] dV

+

∫

Ω

S̄ : D
(

α(F̄ T
∇0v)sym

)

[∆u] dV. (B.9)

Finally, on substituting (B.1) into (B.8) yields the material part of the second vari-

ation that was presented in (43b):

(

D2Π̄(χ)[v, ∆u]
)

mat
= +

1

9

∫

Ω

θ
[

Jtr(∇0vF
−1)

]

θ
[

Jtr(∇0∆uF
−1)

]

(F̄ T
F̄ ) : D̄ : (F̄ T

F̄ ) dV

+
1

3

∫

Ω

α θ
[

Jtr(∇0vF
−1)

]

(F̄ T
F̄ ) : D̄ : (F̄ T

∇0∆u)sym dV

+
1

3

∫

Ω

α(F̄ T
∇0v)sym : D̄ : (F̄ T

F̄ ) θ
[

Jtr(∇0∆uF
−1)

]

dV

+

∫

Ω

α2(F̄ T
∇0v)sym : D̄ : (F̄ T

∇0∆u)sym dV, (B.10)
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and on substituting (B.6) and (B.7) into (B.9) leads to the corresponding geometric

part that was presented in (43c):

(

D2Π̄(χ)[v, ∆u]
)

geo
= −

1

3

∫

Ω

1

J̄2
π
[

Jtr(∇0vF
−1)

]

π
[

Jtr(∇0∆uF
−1)

]

S̄ : (F̄ T
F̄ ) dV

+
1

3

∫

Ω

1

J̄
π
[

Jtr(∇0vF
−1)tr(∇0∆uF

−1)
]

S̄ : (F̄ T
F̄ ) dV

−
1

3

∫

Ω

1

J̄
π
[

Jtr(∇0vF
−1
∇0∆uF

−1)
]

S̄ : (F̄ T
F̄ ) dV

+
1

3

∫

Ω

tr(∇0vF
−1
∇0∆uF

−1)S̄ : (F̄ T
F̄ ) dV

+
2

9

∫

Ω

θ
[

Jtr(∇0vF
−1)

]

θ
[

Jtr(∇0∆uF
−1)

]

S̄ : (F̄ T
F̄ ) dV

+
2

3

∫

Ω

α θ
[

Jtr(∇0vF
−1)

]

S̄ : (F̄ T
∇0∆u)sym dV

+
2

3

∫

Ω

α(F̄ T
∇0v)sym : S̄ θ

[

Jtr(∇0∆uF
−1)

]

dV

+

∫

Ω

α2
S̄ : [(∇0v)

T
∇0∆u]sym dV. (B.11)
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[9] E. Oñate, J. Rojek, R. L. Taylor, O. C. Zienkiewicz, Finite calculus formulation

for incompressible solids using linear triangles and tetrahedra, International

Journal for Numerical Methods in Engineering 59 (11) (2004) 1473–1500.

[10] M. Cervera, M. Chiumenti, Q. Valverde, C. Agelet de Saracibar, Mixed lin-

ear/linear simplicial elements for incompressible elasticity and plasticity, Com-

46



puter Methods in Applied Mechanics and Engineering 192 (49–50) (2003) 5249–

5263.

[11] O. C. Zienkiewicz, J. Rojek, R. L. Taylor, M. Pastor, Triangles and tetrahedra in

explicit dynamic codes for solids, International Journal for Numerical Methods

in Engineering 43 (3) (1998) 565–583.

[12] E. A. de Souza Neto, F. M. A. Pires, D. R. J. Owen, F-bar-based linear triangles

and tetrahedra for finite strain analysis of nearly incompressible solids. Part I:

formulation and benchmarking, International Journal for Numerical Methods in

Engineering 62 (3) (2005) 353–383.

[13] P. Thoutireddy, J. F. Molinari, E. A. Repetto, M. Ortiz, Tetrahedral composite

finite elements, International Journal for Numerical Methods in Engineering

53 (6) (2002) 1337–1351.

[14] Y. Guo, M. Ortiz, T. Belytschko, E. A. Repetto, Triangular composite finite

elements, International Journal for Numerical Methods in Engineering 47 (1–3)

(2000) 287–316.

[15] J. Bonet, A. J. Burton, A simple average nodal pressure tetrahedral element for

incompressible and nearly incompressible dynamic explicit applications, Com-

munications in Numerical Methods in Engineering 14 (5) (1998) 437–449.

[16] C. R. Dohrmann, M. W. Heinstein, J. Jung, S. W. Key, W. R. Witkowski,

Node-based uniform strain elements for three-node triangular and four-node

tetrahedral meshes, International Journal for Numerical Methods in Engineering

47 (9) (2000) 1549–1568.

47



[17] J. Bonet, M. Marriot, O. Hassan, An averaged nodal deformation gradient linear

tetrahedral element for large strain explicit dynamic applications, Communica-

tions in Numerical Methods in Engineering 17 (8) (2001) 551–561.

[18] M. A. Puso, J. Solberg, A stabilized nodally integrated tetrahedral, International

Journal for Numerical Methods in Engineering 67 (6) (2006) 841–867.

[19] P. Krysl, B. Zhu, Locking-free continuum displacement finite elements with

nodal integration, International Journal for Numerical Methods in Engineering

76 (7) (2008) 1020–1043.

[20] M. Broccardo, M. Micheloni, P. Krysl, Assumed-deformation gradient finite el-

ements with nodal integration for nearly incompressible large deformation anal-

ysis, International Journal for Numerical Methods in Engineering 78 (9) (2009)

1113–1134.

[21] J. S. Chen, S. Yoon, C. T. Wu, Non-linear version of stabilized conforming nodal

integration for Galerkin mesh-free methods, International Journal for Numerical

Methods in Engineering 53 (12) (2002) 2587–2615.

[22] M. Puso, E. Zywicz, J. S. Chen, A new stabilized nodal integration approach,

in: Meshfree Methods for Partial Differential Equations III, Vol. 57 of Lecture

Notes in Computational Science and Engineering, Springer Berlin Heidelberg,

2007, pp. 207–217.

[23] M. A. Puso, J. S. Chen, E. Zywicz, W. Elmer, Meshfree and finite element nodal

integration methods, International Journal for Numerical Methods in Engineer-

ing 74 (3) (2008) 416–446.

48



[24] A. Ortiz-Bernardin, J. S. Hale, C. J. Cyron, Volume-averaged nodal projection

method for nearly-incompressible elasticity using meshfree and bubble basis

functions, Computer Methods in Applied Mechanics and Engineering 285 (2015)

427–451.

[25] A. Ortiz, M. A. Puso, N. Sukumar, Maximum-entropy meshfree method for

compressible and near-incompressible elasticity, Computer Methods in Applied

Mechanics and Engineering 199 (25–28) (2010) 1859–1871.

[26] E. A. de Souza Neto, F. M. Andrade Pires, D. R. J. Owen, F-bar-based lin-

ear triangles and tetrahedra for finite strain analysis of nearly incompressible

solids. Part I: formulation and benchmarking, International Journal for Numer-

ical Methods in Engineering 62 (3) (2005) 353–383.

[27] T. Elguedj, Y. Bazilevs, V. Calo, T. J. R. Hughes, B̄-bar and F̄ -bar projection

methods for nearly incompressible linear and non-linear elasticity and plasticity

using higher-order NURBS elements, Computer Methods in Applied Mechanics

and Engineering 1 (33–40) (2008) 2667–3172.

[28] C. T. Wu, W. Hu, Meshfree-enriched simplex elements with strain smoothing

for the finite element analysis of compressible and nearly incompressible solids,

Computer Methods in Applied Mechanics and Engineering 200 (45–46) (2011)

2991–3010.

[29] W. Hu, C. T. Wu, M. Koishi, A displacement-based nonlinear finite element

formulation using meshfree-enriched triangular elements for the two-dimensional

large deformation analysis of elastomers, Finite Elements in Analysis and Design

50 (0) (2012) 161–172.

49



[30] C. T. Wu, M. Koishi, Three-dimensional meshfree-enriched finite element for-

mulation for micromechanical hyperelastic modeling of particulate rubber com-

posites, International Journal for Numerical Methods in Engineering 91 (11)

(2012) 1137–1157.

[31] J. S. Chen, C. T. Wu, S. Yoon, Y. You, A stabilized conforming nodal integration

for Galerkin mesh-free methods, International Journal for Numerical Methods

in Engineering 50 (2) (2001) 435–466.

[32] J. Dolbow, T. Belytschko, Numerical integration of Galerkin weak form in mesh-

free methods, Computational Mechanics 23 (3) (1999) 219–230.

[33] M. Griebel, M. A. Schweitzer, A particle-partition of unity method. Part II:

Efficient cover construction and reliable integration, SIAM Journal on Scientific

Computing 23 (5) (2002) 1655–1682.

[34] S. De, K. J. Bathe, The method of finite spheres with improved numerical

integration, Computers and Structures 79 (22–25) (2001) 2183–2196.
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