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Abstract

In this paper, we devise cell-based maximum-entropy (max-ent) basis functions that are used in a
Galerkin method for the solution of partial differential equations. The motivation behind this work
is the construction of smooth approximants with controllable support on unstructured meshes.
In the variational scheme to obtain max-ent basis functions, the nodal prior weight function is
constructed from an approximate distance function to a polygonal curve in R2. More precisely,
we take powers of the composition of R-functions via Boolean operations. The basis functions so
constructed are nonnegative, smooth, linearly complete, and compactly-supported in a neighbor-
ring of segments that enclose each node. The smoothness is controlled by two positive integer
parameters: the normalization order of the approximation of the distance function and the power
to which it is raised. The properties and mathematical foundations of the new compactly-supported
approximants are described, and its use to solve two-dimensional elliptic boundary-value problems
(Poisson equation and linear elasticity) is demonstrated. The sound accuracy and the optimal rates
of convergence of the method in Sobolev norms are established.

Keywords: Delaunay mesh, Relative entropy, Smooth and nonnegative basis functions,
Compact-support, R-functions, Approximate distance function

1. Introduction

Classical finite element (FE) approximations are built on basis functions that possess C0-
continuity. The advent of meshfree methods [1] provided Ck (k ≥ 0) basis functions that have
been adopted in Galerkin methods for the solution of second- and higher-order partial differential
equations (PDEs). Over the past decade, the importance of smooth basis functions that are also
nonnegative has come to the forefront in applications that utilize B-splines, nonuniform rational
B-splines (NURBS), isogeometric analysis (IGA) [2, 3], subdivision surfaces [4, 5] and maximum-
entropy (max-ent) approximants [6–9]. The emergence of IGA has highlighted that such smooth
basis functions are attractive for the numerical solution of PDEs. The strength of IGA is in high-
fidelity boundary-representation, whereas its weakness is in realizing bulk discretizations; hence,
coupling it with more flexible methods in the bulk has been explored [10, 11]. Such coupling has

∗Corresponding authors
Email addresses: nsukumar@ucdavis.edu (N. Sukumar), marino.arroyo@upc.edu (Marino Arroyo)

In press, Computer Methods in Applied Mechanics and Engineering November 20, 2014



been done with local max-ent (LME) [6] and with reproducing kernel particle method [12] that use
moving least squares (MLS) approximants [13].

A common drawback of meshfree methods, which is particularly acute for large-scale three-
dimensional problems, is the very dense nodal-connectivity structure. This leads to many nonzero
entries in the stiffness matrix, which in turn places greater demands on memory usage and increases
the CPU-times for the numerical simulations. Hence, to realize an efficient and viable Galerkin
method on very large nodal sets, smooth basis functions that possess small (minimal) support are
desirable. To this end, a method that leverages the complementary strengths of finite elements and
spline-based techniques can provide significant advantages vis-à-vis the current state-of-the-art.
In this paper, on adopting R-functions [14–16] within the relative entropy variational formulation,
we build smooth local approximants that are linearly complete on unstructured meshes. As the
first contribution of the new approach presented here, we describe the construction based on two-
dimensional Delaunay meshes, and present numerical results for two-dimensional boundary-value
problems on such meshes.

In the finite element literature, C1 shape functions with different number of degrees of free-
dom (DOFs) for the triangle have been conceived: Argyris triangle (21 DOFs), Bell triangle (18
DOFs) and the composite Hsieh-Clough-Tocher (HCT) triangle (12 DOFs) are well-known [17].
The shape functions in the Argyris triangle span the space of complete fifth-order bivariate polyno-
mials, whereas the Bell triangle is a reduced Argyris triangle. In both constructions, the function
value, and its first- and second-order partial derivatives are the nodal unknowns. The HCT triangle
is partitioned into three subtriangles and the approximation is a cubic polynomial in each subtrian-
gle. Papanicolopulos and Zervos [18] have presented a systematic framework to derive C1 shape
functions on a triangle. It is noted that compared to linear finite elements on triangular meshes,
use of C1 formulations on such meshes require many more degrees of freedom. Meshfree meth-
ods have been tailored for unstructured meshes: Liu et al. [19] proposed the reproducing kernel
element method, whereas Duarte et al. [20] constructed arbitrarily smooth generalized finite ele-
ment approximations. In Ref. [20], a Shepard partition-of-unity function for polygonal domains is
constructed using R-functions, which is then multiplied by a linear combination of monomials to
form the discrete approximation. In all these previous developments that use finite elements and
meshfree approximants, the basis functions that accrue are wiggly and change sign in general.

A simple illustration to demonstrate the effects of varying the support of the nodal basis func-
tions follows. Let us denote the number of rings that surrounds a node by NR: the one-ring (NR = 1)
for a node is the support of standard Delaunay interpolants (piecewise linear finite elements basis
functions); the two-ring (NR = 2) is that of subdivision basis functions [4]. In Fig. 1, the nodal
basis functions that contribute at a sample point (marked by a ×) are shown for LME and for the
cell-based max-ent (CME) approach that we propose. LME approximants have a Gaussian decay
that is modulated by a nondimensional parameter γ, which controls the aspect ratio and effective
support of the resulting basis functions as h

√
− log(ε0)/γ, where h is the nodal spacing and ε0 is a

cutoff-tolerance below which the basis functions are considered to be zero. From Fig. 1, we ob-
serve that the nodal neighbors of a sample point for LME approximants with γ = 0.8 and ε0 = 10−6

corresponds to about the four-ring (NR = 4). The neighbors for NR = 2 and NR = 3 are also
depicted, which we use in Section 3 for the CME approximants.
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Figure 1: Nearest nodes affecting a given sample point (×) for local and cell-based maximum-entropy approximation
schemes.

A dense connectivity structure leads to many entries in the system matrix. The sparsity of the
system matrix is quantified by the total number of nonzeros (NNZ) of the matrix. We consider the
NNZ generated by a set of N points in 2D (3D) that are uniformly distributed in a square (cube),
with one degree of freedom per node. In Fig. 2, we show the ratio between the NNZ for max-ent
approximants and that of piecewise linear finite element basis functions (NR = 1) in 2D (triangles)
and 3D (tetrahedra). A dramatic rise in NNZ with increasing NR is observed, which is especially
pronounced in three dimensions. In 3D, in comparison to the LME approximant (γ = 0.8, ε0 =

10−6), the CME (NR = 2) approximants leads to an order of magnitude fewer nonzeros in the
system matrix. If cell-based approximants with tighter support can deliver comparable accuracy to
standard meshfree basis functions at a significantly less computational cost, then these new basis
functions are an attractive choice in Galerkin methods. Furthermore, due to the element-based
support, the CME approach can be more easily integrated within existing finite element codes.
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Figure 2: Relative number of nonzeros (NNZ) of sparse matrices as a function of the number of nodes N. The NNZ
are scaled by the NNZ of piecewise linear elements on triangles/tetrahedra, which is equivalent to considering NR = 1.
We show curves of the relative NNZ for CME with NR = 2, 3, and for LME with γ = 0.8, 1.8, 4.8 and ε0 = 10−6.
Results for uniform grids in 2D (left) and 3D (right) are depicted.
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This paper is organized as follows. Section 2 provides the constrained variational formulation
for max-ent using the relative entropy functional. We also describe the construction of the nodal
prior weight function, which is formed by joining R-functions that approximate the distance to a
polygonal curve. The nodal weight function depends on two integer parameters m and s: increasing
values of m provides a better approximation to the exact distance function, and the exponent s con-
trols the smoothness of the weight function. Applications to the Galerkin solution of elliptic PDEs
are showcased in Section 3, which demonstrate the accuracy and the optimal rate of convergence
of the method in Sobolev norms. Finally, some concluding remarks with promising directions for
future work are mentioned in Section 4.

2. Method

We describe the main ingredients towards the conception of cell-based max-ent approximants.
We begin with the notion of minimizing the relative entropy (Kullback-Leibler divergence) [21,
22], where a discrete probability distribution {pa}

n
a=1 is sought, given a known initial guess (prior

probabilities) {qa}
n
a=1 and a set of linear constraints involving {pa}

n
a=1. For a nodal set {xa}

n
a=1 ⊂ R

d

and a point x ∈ Rd that lies in the convex hull of this set, the connection is readily established
to obtain nonnegative max-ent meshfree basis functions [6, 23], where φa(x) ≥ 0 is a−th basis
function evaluated at x, and the prior probabilities are referred to as nodal prior weight functions
wa(x) ≥ 0, a = 1, . . . , n. The constant and linear reproducing conditions on {φa(x)}na=1 constitute
the d + 1 equality constraints. The solution of the variational problem provides {φa(x)}na=1 that are
closest to the chosen weight functions and satisfy all the constraints, which can also be interpreted
as a correction [12] of the nodal weight functions. The resulting convex approximant possesses
a weak Kronecker-delta property on the boundary of the domain [6]. Furthermore, subject to
some restrictions on the support-width of basis functions, the basis function φa(x) inherits the
smoothness of the a priori known weight function wa(x) [24, 25].

The CME approximant that we desire should be smooth and compactly-supported in polygons
subordinate to a mesh. The polygons are built using NR number of nearest neighbors defined
through the connectivity of the mesh. Let Ω

NR
a be the polygonal region of the mesh that is within

NR rings of xa, and if x < Ω
NR
a , then we set wa(x) := 0. Formally, to achieve our stated objectives,

we require prior weight functions wa(x) that must fulfill the following three conditions:

(i) supp wa(x) = Ω
NR
a

(ii) wa(x) ≥ 0 and smooth in Ω
NR
a

(iii) ∂pwa(x) = 0 on ∂Ω
NR
a \∂Ω for p = 0, 1, . . . , k.

The last condition enforces that wa(x) and all its derivatives up to order k vanish along the portion
of the boundary of Ω

NR
a that is interior to the domain (interior edges of the mesh). This ensures

that wa(x) ∈ Ck(Ω), where wa(x) is extended to Ω\Ω
NR
a by zero. If we extended condition (iii) to

∂Ω
NR
a instead of ∂Ω

NR
a \∂Ω, then our approximants would have zero gradient on the boundary of the

domain, thereby excessively restricting the approximation space. We consider second- and third-
rings of neighbors; the first-ring of neighbors, as in standard piecewise linear finite elements, is too
narrow to achieve our objectives. First, the relative entropy formulation for max-ent basis functions
is presented in Section 2.1. The main idea behind our construction of prior weight functions is as
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follows. Assume that there exists a function da(x) that is smooth within Ω
NR
a , provides a sufficiently

good approximation of the distance function to the boundary of the polygonal domain Ω
NR
a , and

extends to zero outside the polygon. This function is only C0(Ω), but setting wa(x) = ds
a(x) (s ∈

N ≥ 2) yields a compactly-supported function that is C s−1(Ω). This observation, taken together
with the construction of approximate distance functions based on R-functions [16] is used to form
wa(x) in Section 2.2. Finally, we graphically illustrate the resulting CME basis functions and their
gradients in Section 2.3.

2.1. Minimum relative entropy approximants
Maximum-entropy approximation schemes [6] fall within the class of convex approximants—

other examples include natural neighbor approximants [7], subdivision schemes [4], NURBS and
B-splines basis functions [2]. Approximants formed from convex basis functions {φa(x)}na=1 that
reproduce affine functions are intimately linked to convex geometry. The max-ent approximants
that we construct are only linearly complete. Extensions to second-order approximation schemes
based on adding extra constraints is discussed in Refs. [9, 26], whereas in Ref. [27], a method
based on de Boor’s algorithm is proposed. The max-ent approximation of a scalar-valued function
u(x) is written as

uh(x) :=
n∑

a=1

φa(x)ua, (1)

where ua are nodal coefficients, and the nonnegative basis functions {φa(x)}na=1 fulfill the zeroth-
and first-order reproducing conditions:

φa(x) ≥ 0,
n∑

a=1

φa(x) = 1,
n∑

a=1

φa(x) xa = x. (2)

The definition of the max-ent approximant is not explicit, but rather follows from an optimization
problem that is set up at each evaluation point x, where {φa(x)}na=1 are the unknowns, and (2) are
the linear constraints. As shown in Ref. [6], the constraints are only feasible within the convex hull
of the nodal set.

Since the basis functions are nonnegative and form a partition of unity (zeroth-order repro-
ducing condition) at each point x, they can be interpreted as a discrete probability distribution.
This information-theoretic viewpoint allows us to pose a statistical inference problem where the
{φa(x)}na=1 are the unknowns. A canonical measure of the uncertainty associated with a discrete
probability distribution is the informational entropy, and the principle of maximum entropy pro-
vides the least-biased approximation scheme that is consistent with the constraints.

When nodal prior weight functions are used, the formulation of max-ent approximants is based
on maximizing the Shannon-Jaynes entropy measure [28]:

H(φ|w) = −

n∑
a=1

φa(x) ln
(
φa(x)
wa(x)

)
, (3)

where D(φ|w) := −H(φ|w) ≥ 0 is the relative entropy measure and the principle of minimum
relative (cross) entropy is the corresponding variational principle [22]. The variational formulation
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for max-ent basis functions can now be stated as:

(ME)w For fixed x, maximize H(φ|w)
subject to φa(x) ≥ 0 (a = 1, . . . , n)

n∑
a=1

φa(x) = 1

n∑
a=1

φa(x)xa = x.

(4)

This concave optimization problem is efficiently and robustly solved using duality methods [6, 23]:

φa(x) =
wa(x) exp [λ(x) · (x − xa)]

Z (x, λ(x))
,

where

Z(x, λ) =

n∑
b=1

wb(x) exp [λ(x) · (x − xb)]

is the partition function and λ is the Lagrange multiplier vector. The unconstrained convex opti-
mization problem for the dual vector λ is:

λ∗(x) = arg min
λ∈Rd

ln Z(x, λ), (5)

where λ∗ is the converged solution for the Lagrange multiplier vector at x.
The basis functions that result from the (ME)w convex scheme – and hence the approximant

in (1) – inherit the smoothness of the nodal prior weight functions [24, 25]. These approximants
are noninterpolating in general, except on the boundary of the convex hull of the nodal set, where
a weak Kronecker-delta property holds. This property renders it straightforward to impose es-
sential boundary conditions unlike other meshfree methods such as those based on MLS approxi-
mants [29]. The expression for the gradient of the basis functions is provided in Ref. [30]. In the
interest of being self-contained and complete, we present the derivation for ∇φa(x) in Appendix
A.

For the convex problem stated in (5) to have a unique solution for the Lagrange multiplier
vector, every point x ∈ Ω must be overlapped by at least d+1 nodal weight functions. The choice of
the nodal prior weight functions provides flexibility to construct tailored approximants with desired
properties—Gaussian weight function [6, 31, 32] and quartic polynomial weight function [30, 33,
34] in meshfree analysis, level set based nodal weight function (representing the union of edges) to
construct linearly and quadratically precise shape functions on arbitrary planar polygons [35, 36],
and exponential nodal weight functions for convection-diffusion problems [37, 38].

2.2. Nodal prior weight functions built from approximate distance functions
The desirable conditions that nodal prior weight functions must meet – smoothness, compact-

support in a few rings of neighbors and unimodality (unique maxima) – motivates us to consider
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approximations of the distance function to planar curves [16]. Such distance functions find use in
many applications: for example, heterogeneous material modeling [39], to satisfy Dirichlet bound-
ary conditions in a Rayleigh-Ritz approximation [40], and to construct geometric enrichment for
partition-of-unity approximations [41]. Since the nodal support of a basis function terminates on a
polygon, we consider polygonal (closed and open) curves in R2 that are described by the union of
piecewise linear segments. We point out two well-known choices to approximate the distance func-
tion to polygons: (1) inverse of the sum of the nodal weight functions that appear in the formula for
mean value coordinates [42] (see also Ref. [43]), and (2) the theory of R-functions [14]. Our fo-
cus is on smooth distance approximations developed for polygonal curves using R-functions [15].
While we adopt this particular approach, the field of constructive geometric modeling with implicit
functions is rapidly evolving and may offer better solutions [44–47].

2.2.1. R-functions
Consider a real-valued function F(ω1, ω2, . . . , ωq), where ωi(x) : R2 → R (i = 1, . . . , q) are

also real-valued functions. If the sign of F(·) is completely determined by only the signs and not the
magnitude of its arguments ωi(x), then F(·) is known as an R-function. For example, F1(x, y) = xy
and F2(x, y) = x2 +y2 are R-functions, whereas F3(x, y) = x2 +y2−1 is not. On combining Boolean
operations with such functions, the inverse problems of analytic geometry (solid modeling) are
readily tackled using algebraic functions. The construction of implicit function representation for
complex geometries permits fast evaluation of predicates (on, in or out) for geometric objects. Just
as logical functions are written using the symbols: ¬ (negation), ∨ (union), ∧ (intersection), and ∼
(equivalence), every R-function can be written as the composition of the corresponding elementary
R-functions: R-negation (x̄ ≡ −x) that assumes the negative sign, R-disjunction (ω1 ∨ ω2), R-
conjunction (ω1 ∧ ω2), and R-equivalence (ω1 ∼ ω2). We defer the discussion of R-equivalence to
Section 2.2.4. A representative example of R-disjunction and R-conjunction is [15]:

Rα(ω1, ω2) :=
1

1 + α

(
ω1 + ω2 ±

√
ω2

1 + ω2
2 − 2αω1ω2

)
, (6)

with (+) and (−) signs defining R-disjunction and R-conjunction, respectively. For α = 1, ω1∨ω2 =

max(ω1, ω2) and ω1 ∧ ω2 = min(ω1, ω2), which are the simplest examples of R-disjunction and
R-conjunction, respectively. Note that the triangle inequality is used in (6) to write the term within
the braces with −1 < α < 1 being the cosine of the angle between the two sides. Hence, if ω1 and
ω2 are positive, then so are ω1 ∨ ω2 and ω1 ∧ ω2. The R-functions defined in (6) are not analytic
at points where ω1 = ω2 = 0. Smoothness can be obtained by defining the function (α = 0 is
selected) [15]

Rs(ω1, ω2) := ω1 + ω2 ±

√
ω2

1 + ω2
2

(
ω2

1 + ω2
2

) s
2
, (7)

which renders these functions C s-continuous. Equations (6) and (7) serve as prototypical examples
of R-functions.

2.2.2. Distance functions and normalization
The distance function provides an implicit representation for curves and surfaces. Since the

exact distance function is not smooth, we seek a smooth approximation to the exact distance field.
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The theory of R-functions is an appealing choice to construct smooth approximations to exact
distance fields. Let S ⊂ Rd denote an object with boundary ∂S and unit normal n. We denote by
d ≡ d(x) an approximation to the exact distance function to ∂S . If ∂S is a polygonal curve that is
composed of piecewise linear segments, then we use ρ ≡ ρ(x) to denote the approximate distance
function to each segment. For a point x ∈ Rd on ∂S , any meaningful approximation to the distance
function should satisfy d = 0. Furthermore, to mimic the distance function, the normal derivative
at the boundary should be unity (∂d/∂n = 1), and all higher-order normal derivatives should be
zero. An m-th order approximate distance function satisfies that the second- to m-th-order normal
derivatives vanish on all regular points (unit normal is well-defined) on ∂S [16]:

∂d
∂n

= 1;
∂kd
∂nk = 0 (k = 2, 3, . . . ,m), (8)

and such a function is said to be normalized to the m-th order. For finite m, the normalized function
matches the exact distance function only in the vicinity of the boundary; for points that are away
from the boundary, it deviates from the exact distance. As discussed in Ref. [16], normalized dis-
tance functions mitigate the undesirable bulging (undulations near the surface) phenomenon [44].
The R-conjunction and R-disjunction functions given in (7) (used in Ref. [20]) are not normalized.

2.2.3. Normalized functions for line segments
Given a node a with coordinate xa, we compute the polygonal region Ω

NR
a that lies within the

NR-ring of xa. The boundary, ∂Ω
NR
a , defines a polygonal curve that is composed of piecewise linear

segments. Let us consider one line segment of this polygon with end-points x1 ≡ (x1, y1) and
x2 ≡ (x2, y2). The center of this segment is denoted by xc := (x1 + x2)/2, and the length of the
segment is: L = ||x2 − x1||. Now, we define [16]

f ≡ f (x) :=
(x − x1)(y2 − y1) − (y − y1)(x2 − x1)

L
, (9)

which is the signed distance function from point x to the line that passes through x1 and x2.
Since the representation of the segment can be viewed as the intersection of an infinite line

with a disk of radius L/2, we consider the following trimming function that is normalized to first-
order [16]:

t ≡ t(x) =
1
L

[(L
2

)2

− ||x − xc||
2
]
, (10)

where t ≥ 0 defines a disk with center at xc. Now, with f (x) and t(x) on-hand, we define a
normalized function (up to first-order) ρ(x) that is differentiable for points away from the line
segment [16]:

ρ ≡ ρ(x) :=

√
f 2 +

1
4

( √
t2 + f 4 − t

)2
. (11)

This function is an approximation of the distance function to the segment with end points x1 and
x2. Figure 3 provides a graphical illustration of f , t and ρ.
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⇢pxq

fpxq

Figure 3: The top plot shows the signed distance function (9) to a line enclosing a segment, the middle plot shows the
trimming function (10), and the bottom plot shows the resulting approximation of the distance function (11) to a line
segment.

2.2.4. R-equivalence for line segments
Given the normalized functions ρ1 and ρ2 for two line segments `1 and `2 (see Section 2.2.3),

then a distance field F(ρ1, ρ2) for the union `1 ∪ `2 must be zero when either ρ1 = 0 or ρ2 = 0 and
positive otherwise. The naive R-equivalence formula F(ρ1, ρ2) = ρ1ρ2 is no longer normalized at
the regular points of the original lines; in Ref. [35] this is used for the union of edges of a polygon.
An R-equivalence solution that preserves normalization up to order m of the distance function to
two line segments on all regular points (nonvertices) is provided in Biswas and Shapiro [16]:

ρ1 ∼ ρ2 =
ρ1ρ2

m
√
ρm

1 + ρm
2

=
1

m

√
1
ρm

1
+ 1

ρm
2

, (12)

which is illustrated in Fig. 4.
The formula for the case when there are n line segments that define a polygonal curve follows.

Claim 1. If ρ1, ρ2, . . . , ρn are normalized functions for n line segments that define a polygonal
curve, then the approximation of the distance function d that is normalized up to order m is given

9



m=1 m=3 m=6

Figure 4: Approximation of the distance function to two line segments by R-equivalence composition (12) for three
different values of the normalization parameter m (m = 1, 3, 6).

by

d(`1, . . . , `n) := ρ1 ∼ ρ2 ∼ · · · ∼ ρn =
1

m

√
1
ρm

1
+ 1

ρm
2

+ . . . + 1
ρm

n

. (13)

Proof. We establish the above using mathematical induction. For n = 2, (13) holds since it reduces
to the formula in (12). Let (13) hold for n = k and we proceed to show that (13) is true for n = k+1.
For n = k, we have

d(`1, . . . , `k) := ρ1 ∼ ρ2 ∼ · · · ∼ ρk =
1

m

√
1
ρm

1
+ 1

ρm
2

+ . . . + 1
ρm

k

and therefore

d(`1, . . . , `k, `k+1) := ρ1 ∼ ρ2 ∼ . . . ∼ ρk ∼ ρk+1 = (ρ1 ∼ ρ2 ∼ . . . ∼ ρk) ∼ ρk+1

=

 1

m

√
1
ρm

1
+ 1

ρm
2

+ . . . + 1
ρm

k

 ∼ ρk+1

=


 m

√
1
ρm

1
+

1
ρm

2
+ . . . +

1
ρm

k


m

+
1
ρm

k+1


− 1

m

=
1

m

√
1
ρm

1
+ 1

ρm
2

+ . . . + 1
ρm

k
+ 1

ρm
k+1

,

which completes the proof.

The R-conjunction, ρ1∧ρ2 = ρ1+ρ2−
m
√
ρm

1 + ρm
2 , is a function that is normalized to the (m−1)-th

order [16]. However, the joining operation is not associative, which makes this choice undesirable.
The R-equivalence joining relation, as (13) reveals, is associative.
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2.2.5. Normalized distance function for a polygonal curve and prior weight functions
As mentioned earlier, for a node a, we seek a smooth nodal prior weight function wa ≡ wa(x)

that vanishes on the boundary of the polygon, ∂Ω
NR
a \∂Ω. Let ∂Ω

NR
a \∂Ω be composed of na line

segments. As the first step, we consider the joining of normalized distance functions for these na

line segments via (13):
da ≡ da(x) := ρ1 ∼ ρ2 ∼ . . . ∼ ρna . (14)

Now to modulate the smoothness of the desired weight function, we raise da to a power s ≥ 2, and
to ensure that the weights are bounded, they are normalized so that 0 ≤ wa ≤ 1 form a partition-of-
unity:

wa(x) =
ds

a(x)∑
b∈Nx ds

b(x)
, (15)

where Nx are the indices of the NR-ring nodal neighbors of point x. The gradients of wa(x) and
da(x) are presented in Appendix B.
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Figure 5: Approximate distance functions d(x) in one-dimension to x = ±1 (shown as filled circles) are obtained
by composition via R-equivalence up to normalization order m = 1, 2, 3, 10 (left). We also show the powers of the
approximate distance functions

(
d(x)

)s for s = 2, 3 (middle, right). In all plots, the exact distance function to a power
s is shown as a thick black line.

We now illustrate these functions via a one-dimensional example. Consider the prior weight
function w(x) for a node located at x = 0; w(x) must vanish at x = ±1. Plots of powers of the actual
distance and its R-function approximations, ds(x), are shown in Fig. 5. The plot on the left depicts
curves for s = 1 and varying m (order of normalization); as we approach x = ±1, the nodal weight
functions agree with the exact piecewise linear distance function. The effect of the higher-order
normalization is clear in this figure. The smoothness near the boundary is accomplished by raising
d(x) to a power s, which is shown in Fig. 5 (right). Indeed, since

(ds(x))′ = sds−1(x)d′(x), (16a)

(ds(x))′′ = s(s − 1)ds−2(x)
[
d′(x)

]2
+ sds−1(x)d′′(x) (16b)

and so on for any m ≥ 1, we obtain C s−1 extensions of ds(x) on the real line for s ≥ 2.
Now we present an example in two dimensions. Consider a polygonal curve that is formed

by the union of line segments from the boundary of the two-ring neighbors (∂ΩNR with NR = 2)
of a point located at the origin xa ≡ (0, 0). Figure 6 shows powers of the approximated distance
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Figure 6: The figure on the upper-right corner shows the mesh considered in this example. The boundary of the
polygonal curve ∂Ω

NR
a for a node xa located at the origin (NR = 2) has been highlighted and is composed of na = 12

line segments. The four panels on the top-left show the approximate distance function raised to different powers ds
a(x)

and the associated prior weight function wa(x) (Shepard-form) for the node located at the origin. The approximate
distance functions have been obtained by using composition via R-equivalence up to normalization order m = 2, and
powers s = 1, 2. The bottom four panels display the derivative along the x-direction, where the bulging/creasing effects
are apparent close to the vertices of the polygon; see zoom views.

function ds
a(x) for s = 1, 2 and their associated prior weight functions wa(x) computed using (15).

As expected, for s = 1, the approximate distance function is only C0(Ω). The partition of unity
propagates the derivative discontinuities in wa(x) to all the edges in the mesh. Instead, for s = 2,
the prior weight function is C1(Ω). As discussed in Ref. [16], joining operations such as the R-
equivalence in (13) introduce undesirable bulging and creasing effects at vertices. Here, this effect
is particularly noticeable when two nearly collinear segments are joined, which is observable in
Fig. 6. When segments are exactly collinear, they can be merged to avoid bulging. As shown later,
increasing m or s makes bulging less prominent. While the resulting prior weight functions are
smooth, alternative approaches to geometric modeling with implicit functions may lead to even
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smoother functions [44–47].

Figure 7: Cell-based max-ent basis functions (arbitrary scale) for several values of the normalization order m and the
exponent s. The number of neighbor rings is two (NR = 2). The top two rows display plots of the basis functions, and
the bottom two rows show the derivative along the x-direction.

2.3. Basis functions
Having shown that the technology of R-functions allows us to produce prior weight functions

wa(x) satisfying the requirements listed at the beginning of this section, we now proceed to examine
linearly complete basis functions that result from entropy maximization in (4). As mentioned
earlier, by construction these functions inherit the smoothness and support of the prior weight
functions, and therefore the properties of the basis functions can be controlled by the number of
rings NR, the normalization order m, and the exponent s.

We consider a convex domain, and second- and third-rings. The basis function of an inte-
rior node is shown in Fig. 7 for NR = 2 and different choices for m and s. One of the partial
derivatives is also depicted. We observe that the support of the basis functions coincide with the
two-ring set of elements. Mathematically, the smoothness of the basis functions increases with
s; however, increasing this parameter also flattens out the basis functions at the boundary of their
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Figure 8: Cell-based max-ent basis functions (arbitrary scale) for several values of the normalization order m and the
exponent s. The number of neighbor rings is three (NR = 3). The top two rows display plots of the basis functions,
and the bottom two rows show the derivative along the x-direction.

support. Computational experiments reveal that when s increases, while remaining smooth, the
basis functions tend to the piecewise linear finite element basis functions. Increasing m improves
the approximation to the exact distance function, and hence leads to smeared creases in the basis
functions. However, there is a broad range of parameters that lead to smooth and visually pleasant
basis functions. Figure 8 shows the basis functions obtained for NR = 3. From these plots, we
recommend parameters in the range s = 3, 4, and m = 2, 3.

One of the original motivations for developing CME was to create smooth basis functions,
similar to LME, but with a smaller support conforming to cells. In Fig. 9, we compare a LME
basis function (γ = 1.7, ε0 = 10−6) with an analogous CME basis function (NR = 2, s = 3, m = 2).
Both basis functions are visually very similar, and have nearly the same maximum value. The
figure clearly shows that the support of the CME function is significantly smaller than that of the
LME function, which approximately extends to the three-ring neighborhood.
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CME (NR = 2, s = 3, m = 2)LME (ɣ = 1.7, ε0 = 10-6)

Figure 9: An example of visually similar LME and CME basis functions. The support size of the CME basis function
is significantly smaller.

3. Numerical examples

The performance of CME approximants for the Galerkin solution of elliptic boundary-value
problems is assessed. We consider two Poisson problems, and a standard benchmark problem
in linear elasticity. In all the examples, we compare the proposed CME approximants with two
and three rings to LME approximants with aspect ratio parameters γ = 0.8, 1.8, 4.8, and also to
linear finite elements. For the LME computations, ε0 = 10−6 is used. Gauss-Legendre integration
rules for triangular domains are considered, and the number of quadrature points per element is
selected in accordance with the discretization technique. For linear finite elements, 3 Gauss points
are used to accurately integrate the source terms, whereas for the LME approach the number of
integration points are 12, 7, 6 for γ = 0.8, 1.8, 4.8, respectively. The appropriate quadrature for
CME computations is investigated in the next section.

3.1. Homogeneous Poisson problem
Consider the following Poisson boundary-value problem with nonhomogeneous Dirichlet bound-

ary conditions:
∆u = 0 in Ω = (0, 1)2 ⊂ R2,

u(0, y) = u(1, y) = u(x, 0) = 0,
u(x, 1) = x(1 − x),

(17)

whose exact solution is:

u(x, y) =
4
π3

∞∑
i=1

1 − (−1)i

i3 sinh(iπ)
sin(iπx) sinh(iπy). (18)

Maximum-entropy approximants satisfy a weak Kronecker-delta property on the boundary of the
convex hull of the nodes, which facilitates the imposition of essential boundary conditions. For this
example, this weak Kronecker-delta property implies that only nodes on a given face contribute
to the approximation on that particular face. Since a quadratic field is imposed on the top edge,
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we compute the nodal coefficients involved in imposing the nonhomogeneous Dirichlet boundary
condition via a least-squares fit involving the basis functions of nodes on that edge only.

CME (NR = 2, s = 4, m = 2) 
CME (NR = 3, s = 3, m = 2) 
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Figure 10: Comparison of FE, LME and CME approximants for a Poisson problem with nonhomogeneous Dirichlet
boundary conditions. Left plot shows the error sensitivity with respect to the number of quadrature points for CME
approximants. The results on the left panel correspond to two uniform meshes of 65 × 65 nodes (h = 1/64, dashed
line) and 129×129 nodes (h = 1/128, solid line). The plot on the right shows convergence curves for the relative error
in the L2 norm. Results for CME on the right panel have been obtained with 12 quadrature points.

We first examine the sensitivity of the CME solutions to the accuracy of the quadrature. A
Delaunay mesh of the domain Ω is used, with Gauss-Legendre quadrature rules of order 2, 3, 4, 5,
6, 7, 8, 10, and 15 on each triangle; these integration schemes have 3, 4, 6, 7, 12, 13, 16, 25 and
54 quadrature points per triangle, respectively. Figure 10 (left) shows the relative error in the L2

norm for two different levels of refinement (h = 1/64, 1/128), and different number of quadrature
points. These results suggest that rules with at least 12 quadrature points are adequate to ensure
that the integration error is significantly less than the approximation error. From hereon, we use 12
Gauss points for all calculations involving CME approximants.

Results (not shown) for the CME approximants are relatively insensitive to combinations of
parameters s = 3, 4 and m = 2, 3. We have selected as representative values the pair (s = 4,m = 2)
for NR = 2, and the pair (s = 3,m = 2) for NR = 3. The convergence plots depicted in Fig. 10
(right) compare FE, LME (γ = 0.8, 1.8, 4.8) and CME schemes. The relative error in the L2 norm
converges at the optimal rate of 2 for all methods. The accuracy of CME is on par with LME
(γ = 1.8). In particular, CME with NR = 2 is almost as accurate as LME with γ = 1.8, but at a
substantially less computational cost (see Fig. 2).

3.2. Poisson problem with localized sources
We present the convergence in the L2 norm of the FE, LME, and CME trial approximants in

the Galerkin solution of the following Poisson boundary-value problem:

−∆u = s(x, y) in Ω = (0, 1)2

u = ū on ∂Ω,
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where the source s(x, y) and the boundary data ū are chosen such that the exact solution is:

u(x, y) =

4∑
i=1

Ai e−βi[(x−xi)2+(y−yi)2].

The coefficients that appear in the exact solution are provided in Table 1. This example was consid-
ered by Rosolen et al. [9], and is chosen here to showcase how CME approximants on unstructured
meshes can readily resolve the localized sharp features in the exact solution.

Table 1: Coefficients to calculate the exact solution for the Poisson problem.

i Ai βi xi yi

1 10 180 0.51 0.52
2 50 450 0.31 0.34
3 100 800 0.73 0.71
4 50 1000 0.28 0.72
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Figure 11: Illustration of an adapted mesh (set of nodes) for the Poisson problem with localized sources (left). Relative
error in the L2 norm and the energy seminorm (right) on the adapted meshes: FE, LME (γ = 0.8, 1.8, 4.8; ε0 = 10−6)
and CME (NR = 2, s = 4,m = 2; NR = 3, s = 3,m = 2) approximants are used.

The numerical solutions are computed on meshes with an adapted distribution of nodes as
illustrated in Fig. 11 (left). The adapted grids are obtained with centroidal Voronoi tessellations
(CVT) [48, 49], which allow the distribution of nodes to follow a prescribed density function. A
density function that is proportional to the norm of the gradients of the exact solution is used.
Note that the CVT method does not create nested grids upon refinement, and the notion of nested
approximants does not apply to CME or meshfree methods in general.

The numerical solution is computed for each grid with FE, LME (γ = 0.8, 1.8, 4.8; ε0 = 10−6),
and CME (NR = 2, s = 4, m = 2; NR = 3, s = 3, m = 2) approximation schemes. The convergence
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curves of the relative error in the L2 norm and the energy seminorm are shown in Fig. 11 (right).
The guiding straight lines with slopes of two and one are also depicted. It can be seen that all
methods exhibit the optimal rate of convergence. In this example, we again observe that CME and
LME (γ = 1.8) approximants perform similarly.

3.3. Cantilever beam problem
We consider the standard benchmark problem of an isotropic, linear elastic cantilever beam,

which is built-in on one end and subjected to a parabolic shear traction at the other end (Fig. 12).
The analytical solution for the displacement field is [50]:

u(x, y) = −
Py

6ĒI

[
(6L − 3x)x + (2 + ν̄)

(
y2 −

D2

4

)]
, (19a)

3(x, y) =
P

6ĒI

[
3ν̄y2(L − x) + (4 + 5ν̄)

D2

4
x + (3L − x)x2

]
, (19b)

where Ē = E/(1 − ν2) and ν̄ = ν/(1 − ν) are the effective Young’s modulus and Poisson’s ratio
under plane strain conditions. The exact solution for the stresses are [50]:

σ1 = −
P
I

(L − x)y, (20a)

σ2 = 0, (20b)

τ12 =
P
2I

(
D2

4
− y2

)
, (20c)

where L and D are the length and height of the beam, I = D3/12 is the moment of inertia of the
beam with cross-section of unit width, and P is the total shear load at the right end.

L 

D P 
x 

y 

Figure 12: Schematic representation of the cantilever beam problem.

In the numerical computations, we choose L = 4, P = 1000, E = 107, and Poisson’s ratio
ν = 0.3. We consider a beam whose length-to-height ratio is 4 : 1. The problem is symmetric with
respect to the neutral axis of the beam, and therefore only the upper-half of the beam is analyzed.
In Fig. 13, the rates of convergence in the L2 norm and the energy seminorm are plotted for FE,
LME and CME approximants. The L2 norm of the error is defined as:

‖e‖L2 =

(∫
Ω

‖u − uh‖
2 dx

)1/2

, (21)
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whereas the energy seminorm is:

‖e‖E =

(
1
2

∫
Ω

(ε − εh) : (σ − σh) dx
)1/2

. (22)

In (21) and (22), u, ε, and σ denote the exact displacement, strain and stress fields, whereas uh, εh,
and σh denote the corresponding numerical approximations.
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Figure 13: Rates of convergence in the L2 norm and energy seminorm for linear FE, LME (γ = 0.8, 1.8, 4.8; ε0 = 10−6)
and CME approximants for NR = 2 (s = 4, m = 2) and NR = 3 (s = 3, m = 2).

Convergence plots are shown in Fig. 13. The CME approximant converges optimally: method
delivers rates of 2 and 1 in the L2 norm and the energy seminorm, respectively. Numerical results
reveal that the accuracy of CME is comparable to that obtained with LME approximants, the best
known scheme among convex meshfree schemes. In particular, CME with NR = 2 is comparable in
accuracy to the LME approximants with γ = 1.8, which exhibits a significantly denser connectivity
structure. Strikingly, CME with NR = 3 provides similar accuracy in the L2 norm than the very
expensive LME approximants with γ = 0.8 (see Fig. 2).

4. Concluding remarks

In this paper, we have proposed an approximation method with smooth and nonnegative ba-
sis functions, which are supported on groups of elements of a mesh. Our method to obtain the
basis functions relies on minimizing the relative entropy functional – starting from properly de-
signed prior weight functions that have the desired support and smoothness – and subject to the
linear reproducing conditions as the constraints. To construct these prior weight functions, we
have considered powers of smooth approximations to the distance function to the boundary of
the support. We have shown that these cell-based max-ent (CME) functions perform very well
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(accurate and deliver optimal rates of convergence in Sobolev norms) in the Galerkin approxima-
tion of two-dimensional elliptic partial differential equations. The method is closely related to
maximum-entropy and other meshfree methods. While the proposed method relies on a mesh, it
retains the high-accuracy of meshfree approximations for smooth problems, with the advantage of
having tight and well-controlled supports of the basis functions. This greatly reduces the compu-
tational costs in terms of memory and operation counts for large-scale problems. In the context of
convex approximations, our method provides a general route to smooth and nonnegative approxi-
mants supported on general unstructured grids. This issue is not settled at this point. Subdivision
schemes are limited to two dimensions, and spline-based techniques are quite rigid with regards
to domain topology or local refinement. We have implemented the method in two dimensions,
but it easily extends to three dimensions, once the approximate distance function to element faces
is defined. We believe that the proposed method can be refined by incorporating advances from
constructive geometric modeling with implicit functions in the construction of the prior weight
functions.

The present work provides many new opportunities for future research. For example, some
of the problems that we are currently pursuing are: (1) extending CME schemes to nonconvex
domains; (2) implementing these approximants on meshes with quadrangular and hexahedral ele-
ments; (3) blending CME approximants with a high-fidelity description of the boundaries; and (4)
developing approximants that satisfy the second-order reproducing conditions.
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Appendix A. Derivatives of the basis functions

We present the derivation for the derivatives of the max-ent basis functions. The spatial gradient
of a scalar-valued function f (x) is denoted by ∇ f (x), whereas for vector-valued functions, Du(x)
represents the matrix of partial derivatives of u(x). The symbol ∂ denotes partial differentiation,
and subindices a, b and c refer to nodes. Within the scope of the appendix, we define the following
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functions:

fa(x, λ) := exp[λ · (x − xa)], Z(x, λ) :=
n∑

b=1

wb(x) fb(x, λ) (A.1a)

ga(x, λ) :=
fa(x, λ)
Z(x, λ)

(A.1b)

φa(x, λ) :=
wa(x) fa(x, λ)

Z(x, λ)
= wa(x)ga(x, λ) (A.1c)

r(x, λ) :=
n∑

a=1

φa(x, λ) (x − xa) (A.1d)

J(x, λ) :=
∂r
∂λ

=

n∑
a=1

φa(x, λ) (x − xa) ⊗ (x − xa) − r(x, λ) ⊗ r(x, λ). (A.1e)

From hereon, to ease the notation, the dependence of the above functions on the evaluation point
x and the Lagrange multiplier vector λ is suppressed. A superscript ∗ on any function indicates
that the function is evaluated at λ∗(x), which is given in (5). This introduces explicit and implicit
dependences on x in all functions with a superscript ∗. Note that what has been denoted by φa in
the main body of the paper is denoted by φ∗a in this Appendix. No implied sum is assumed for
repeated nodal indices.

Let ∇φ∗a denote the gradient of the basis function φ∗a. It follows that

∇φ∗a = ∇wa g∗a + wa∇g∗a. (A.2)

On applying the chain rule, we have

∇g∗a =

(
∂ga

∂x

)∗
+

(
∂ga

∂λ

)∗
Dλ∗, (A.3a)

where (
∂ga

∂x

)∗
= −g∗a

n∑
b=1

g∗b∇wb,

(
∂ga

∂λ

)∗
= g∗a (x − xa) (A.3b)

are obtained using (A.1b). The only term that is not explicitly available in (A.3) is Dλ∗. In order
to compute it, we note that since r∗ is identically the zero-vector:

0 = Dr∗ =

(
∂r
∂x

)∗
+

(
∂r
∂λ

)∗
Dλ∗,

where (
∂r
∂λ

)∗
= J∗,

(
∂r
∂x

)∗
=

n∑
a=1

g∗a∇wa ⊗ (x − xa) + I.
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It follows that

Dλ∗ = − (J∗)−1

 n∑
a=1

g∗a∇wa ⊗ (x − xa) + I
 . (A.4)

From (A.2) and (A.3), we finally obtain the expression for the spatial gradient of φ∗a:

∇φ∗a = g∗a ∇wa + φ∗a

(x − xa) · Dλ∗ −
n∑

b=1

g∗b ∇wb

 , (A.5)

where Dλ∗ is given in (A.4). Expressions for wa and ∇wa are given in (15) and (B.1), respectively.

Appendix B. Gradient of the prior weight functions

We present the expression for the gradient of the prior weight function wa(x), which requires the
gradient of the approximation of the distance function da(x) that is computed via the R-equivalence
joining relation, and the gradient of the normalized function for a line segment, ρ(x), which is given
in (11).

In the interest of clarity, we once again suppress the dependence on x for the functions that
follow. The gradient of the prior weight function wa is:

∇wa =
s

Zw

ds−1
a ∇da − wa

∑
b∈Nx

ds−1
b ∇db

 , (B.1)

where Nx contains the indices of the NR-ring nodal neighbors of x, and the partition function
Zw ≡ Zw(x) is:

Zw =
∑
b∈Nx

ds
b. (B.2)

The gradient of the normalized distance function da (see (13) and (14)) is:

∇da =

∑na
i=1

(
ρi
)−m−1

∇ρi(∑na
i=1

(
ρi
)−m

)m+1
m

, (B.3)

where ρi are normalized functions (see Section 2). The gradient of this function for a given segment
is:

∇ρ =
1
ρ

 f∇ f +

 √
t2 + f 4 − t

4

  t∇t + 2 f 3∇ f√
t2 + f 4

− ∇t

 , (B.4)

where for ease of notation we have omitted the subindex i. Finally, the gradient of the distance
function to a line f in (9) and that of the trimming function t in (10) are:

∇ f =
1
L

[
(y2 − y1)e1 − (x2 − x1)e2

]
, ∇t = −

2
L

(x − xc). (B.5)
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