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In this paper, a multiscale approach to capture the behaviour of mate-

rial layers that possess a micromorphic mesostructure is presented. To this

end, we seek to obtain a macroscopic traction-separation law based on the

underlying meso and microstructure. At the macro level, a cohesive inter-

face description is used, whereas the underlying mesostructure is resolved as

a micromorphic representative volume element. The micromorphic contin-

uum theory is particularly well-suited to account for higher-order and size-

dependent effects in the material layer. On considering the height of the

material layer, quantities at different scales are related through averaging

theorems and the Hill condition. An admissible scale-transition is guaranteed

via the adoption of customized boundary conditions, which account for the

deformation modes in the interface. On the basis of this theoretical frame-

work, computational homogenization is embedded within a finite-element

approach, and the capabilities of the model are demonstrated through nu-

merical examples.

1. Introduction

Thin material layers that connect two bulk materials are found in many engineering

materials applications. For instance, laminated composite structures, building materials
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such as masonry, and geomaterials are a few notable examples, one of which is illus-

trated in Figure 1. Mechanically such a material layer is usually treated as a cohesive

interface within a continuum. For the constitutive relation, cohesive laws have been

proposed that relate the traction and the deformation jump. However, most approaches

assume that the tangential and normal responses of the interface are uncoupled (for

example, the cohesive law of Xu and Needleman (1)), and therefore might not properly

account for mixed-mode loading conditions. Remedies for the constitutive treatment of

this more general case have been proposed in Reference (2).

These purely phenomenological approaches reach their limit of applicability when

the material layer possesses a multiscale meso-/microstructure. On the one hand,

mesostructural heterogeneities in the geometry (voids or inclusions) or the stiffness

govern the material behaviour, which is not captured easily by macroscopic constitu-

tive laws. Furthermore, intrinsic microstructural features can also be found, for instance

in geomaterials such as rock or in metallic alloys that are composed of an assembly of

grains. If the typical microstructural length (e.g., the grain size in a granular mate-

rial) is relatively large compared to the size of the material layer, size effects become

pronounced, see References (3; 4).

In this paper, we employ the concept of homogenization to obtain the macroscopic

response of the material layer based on its underlying meso- and microstructure. Based

on the assumption that the material layer is thin compared to the total specimen, it

is treated as a cohesive interface embedded within a continuum at the macro scale.

Therefore from a macroscopic perspective we see a discontinuity only, which on closer

inspection, i. e. on the meso level appears continuous. The cohesive interface provides

a sound framework that permits the used of a straightforward vectorial representation

of the material layer deformation and the tractions transmitted across the layer. For

the underlying mesostructure, a representative volume element (RVE) is used, which

implies a statistically representative mesostructure, see e. g. the monograph (5). Both

scales are linked via homogenization, i. e., the averages of the characteristic quantities

over the representative volume element are linked to the corresponding macro quan-

tities under fulfilment of equivalence conditions coined as the Hill condition, which

goes back to the contributions of Hill (6; 7). The finite height of the mesostructure

is directly given by the thickness of the material layer, whereas the particular defor-

mation modes that can occur within the interface are reflected by the choice of appro-

priate boundary conditions on the representative volume element. Besides structural

size effects that are induced by heterogeneities and also treated in Reference (8), ad-

ditionally a size effect, which occurs when considering a relatively large intrinsic mi-

crostructure, is captured by employing a micromorphic continuum on the level of the

representative volume element. This micromorphic continuum was first introduced by

Eringen (9; 10; 11) and has recently been elaborated by Kirchner and Steinmann as well

as Hirschberger et al. (12; 13; 14; 15). It is characterized by so-called microcontinua

that are endowed to each continuum point. The deformation of these kinematically in-

dependent microcontinua is considered separately. Within the constitutive assumption,

an internal-length parameter is introduced that reflects the size dependence, and fur-

thermore, a coupling between meso and micro deformation is provided. The proposed
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Figure 1: Example for a material layer within a bulk material of different properties.

homogenization framework is implemented within a finite element method along the

lines of previous approaches (16; 17; 18; 19; 20) and subsequent refinements that ac-

count for the influence of higher gradients (21; 22). In the multiscale finite-element

solution scheme, we utilize cohesive interface elements to represent the material layer

at the macro level and a micromorphic finite-element boundary value problem on the

representative volume element to account for the mesostructure of the interface. Simi-

lar approaches can be found in the literature, e.g. with a micropolar continuum at the

macro level (23) or in the gradient-enhanced homogenization of thin sheet structures

(24). The use of cohesive interface elements dates back to the 1980s (25) and has been

employed in the modelling of decohesion in Reference (26; 27; 28), plastic localization

in References(29; 30; 31; 32; 33), and has been combined with a discontinuous Galerkin

approach towards the efficient numerical treatment of discontinuities in Reference (34).

In two-dimensional continua, which is the focus in this paper, the interface elements

are one-dimensional. On the macro level, the contribution of each interface element to

the global macro stiffness and the macro residual is obtained by a numerical integration

that involves vectorial traction and separation quantities rather than the complete stress

and strain tensor. The constitutive relation between the traction and the interface sep-

aration is numerically evaluated at each integration point of the interface element via

the finite-element solution of the mesostructural boundary value problem. As indicated

before, we model this meso boundary value problem such that it accounts for a rep-

resentative geometry and the composition of the underlying microstructure. Since the

micromorphic finite elements within the RVE incorporate both standard and additional

micromorphic degrees of freedom, a nonlinear meso–micro coupled system of equation

is solved. From the computational homogenization procedure, the macro traction vector

and the tangent operator are obtained from the RVE and embedded into the iterative

solution of the nonlinear macro boundary value problem.

Outline The remainder of this paper is organized as follows. In Section 2, we recall

the continuum mechanics framework for the macro level, before we introduce the mi-

cromorphic representative volume element in Section 3. In Section 4, the homogeniza-
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Figure 2: Interface geometry and deformation maps from the material configuration bΓ0

to the spatial configuration, bΓt .

tion framework to consistently link these scales is presented. The numerical approach of

computational homogenization is outlined in Section 5, which is followed by benchmark

numerical examples in Section 6 that display the effect of the micromorphic mesostruc-

ture on the macroscopic response. The paper is concluded in Section 7 with a summary

and an outlook on topics for future research that stem from this contribution.

2. Material layer as an interface at the macro level

At the macro level, we consider a body that consists of a bulk material, which is separated

into two parts by a very thin layer possessing decisively different properties. We treat

this layer as an interface, bΓ0, and define a material normal vector bN onto the plane of

the interface, which identifies the positive and the negative part of cB0, i. e. cB+0 and cB+0 :

bN(bX) = − bN
+
(bX) = + bN

−
(bX) ∀ bX ∈ bΓ0 (1)

as illustrated in Figure 2. Note that the plane of the interface reduces to a line for the

two-dimensional case. For the sake of completeness, we now briefly recall the governing

equation for the bulk, and introduce the problem setting for the macro perspective on

the material layer based on Reference (8).

2.1. Deformation

The deformation of the bulk is described by the canonical deformation mapping from the

material configuration cB0 to the spatial configuration cBt , namely by the deformation

map bx = bϕ(bX) and its gradient bF := ∇X bϕ for all material points bX ∈ cB+0 ∪ cB−0 \bΓ0,

compare Figure 2. A separate consideration for the interface is introduced based on the

assumption that its thickness is very small compared to the bulk dimensions and the

extension of the material layer. The relevant deformation quantity is the separation of

the opposite edges bΓ+t and bΓ−t in the spatial configuration,

¹ bϕº(bX) := bϕ+(bX)− bϕ−(bX) ∀bX ∈ bΓ0 . (2)
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2.2. Balance relations

The body cB0 is in equilibrium when the balance of momentum and the corresponding

Neumann boundary condition and Dirichlet boundary condition are fulfilled:

Div bP = 0 in cB0\bΓ0
bP · bN

ext
=: bt

ext

0 on ∂ cB t
0 bu = bu

ext on ∂ cBu
0 (3)

In the above equation, the Piola stress bP is energetically conjugate to the deformation

gradient bF , bt 0
ext

denotes the prescribed traction vector, and buext the prescribed displace-

ment vector. Body forces are omitted for the sake of simplicity.

We assume that, across the interface, cohesive tractions are transmitted. Thus the ad-

ditional equilibrium conditions must hold for the opposite sides of the cohesive interface,
bΓ+0 and bΓ−0 respectively

¹bPº · bN = 0 , {bP} · bN = bt 0 on bΓ0 , (4)

where ¹bPº denotes the jump and {bP} the average of the Piola stress across the interface.

Furthermore bt 0 represents the spatial traction vector with respect to material reference,

which is transmitted across the interface. The weak formulation of the balance of mo-

mentum comprises both the virtual work terms of the bulk and the interface:
∫

cB0

bP : δbFdV +

∫

bΓ0

bt 0 ·¹δ bϕºdA=

∫

∂ cB0

bt 0
ext
·δ bϕ dA (5)

Herein the contribution of the interface to the virtual work density is δÓW0

int
= bt 0 ·¹δ bϕº,

wherein the superscript (◦)int refers to ’interface’.

2.3. Constitutive relation

A constitutive relation is needed in order to relate the stress, respectively the traction,

and the deformation measures in Equation (5) to each other. For the surrounding bulk,

for the sake of simplicity we pose an a priori constitutive assumption based on a hy-

perelastic framework. In the cohesive interface, standard approaches would employ

a cohesive traction–separation law. Therein the traction is expressed as a function of

the separation, bt 0(¹ bϕº). Further dependencies will occur in the more general case of

an inelastic material, e.g., accounting for the deformation history and the deformation

state, but will not be considered here. However, these a priori choices are empirical and

phenomenological, which motivates us to rather seek a relation between traction and

separation based on the properties of the underlying mesostructure in the interfacial

material.

Since a Newton–Raphson procedure is used in the numerical solution, we are par-

ticularly interested in the macro tangent operator bA that appears in the incremental

formulation:

δbt 0 = bA ·¹δ bϕº , bA := D¹ bϕºbt 0 . (6)
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Figure 3: Material layer with periodic mesostructure and inherent microstructure:

choice of the RVE height ht and width wt .

The aim of this study is to present an appropriate multiscale framework to obtain

this relation. Thereby we currently restrict our consideration to a purely hyperelastic

material in the underlying micromorphic mesostructure, from which a hyperelastic re-

sponse follows at the macro level. The mesostructure will be treated using the concept

of representative volume elements, which we examine in the following section.

3. Micromorphic representative volume element at the

meso level

We use the concept of representative volume element (RVE) to model the mesostructure

underlying to a material segment of the interface. This RVE is required to be statistically

representative for the corresponding infinitesimal material element at the macro level.

Since we only consider the material layer, the finite height is adopted as a finite height

of the RVE, as illustrated in Figure 3. After a few remarks on the RVE’s geometry, we

briefly recall the governing equations of the micromorphic RVE which will be related to

the interface framework later on.

3.1. Geometry

The RVE is aligned to the interface in such a way that the geometric compatibility be-

tween the interface and the RVE is achieved. The initial height h0 of the RVE coincides

with the initial height of the material layer and the RVE is aligned with the interface

plane. The initial width w0 must be chosen sufficiently large to make the unit element

representative, yet small compared to the in plane dimension of the interface. With this

choice, the initial volume of the RVE computes as V0 = h0 w0. Accordingly, the spatial

height, width and volume are denoted as ht , wt , and Vt , respectively.
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Ḡ

ht

wt

h0

w0

Figure 4: Micromorphic representative volume element: deformation maps from B0 to

Bt .

3.2. Deformation

The micromorphic deformation within the RVE is described within the framework of

finite-deformation kinematics in the spirit of Eringen (9; 10; 11). As illustrated in Fig-

ure 4, at each mesocontinuum point, a so-called microcontinuum is attached, which

deforms homogeneously and kinematically independently from the mesocontinuum.

The kinematic description of both the mesocontinuum points and the corresponding

microcontinua is captured by considering a meso deformation map ϕ and its gradient F

as in a classical Boltzmann continuum plus additional quantities for the micro kinemat-

ics. In particular the micro deformation map F̄ being a second-order tensor represents

an additional primary kinematic variable. Moreover its gradient with respect to meso

placement Ḡ is introduced which consequently is a tensor of third order.

x = ϕ(X) , F(X) :=∇Xϕ(X) , x̄ = F̄(X) · X̄ , Ḡ(X) :=∇X F̄(X) . (7)

Further details can be found in References (12; 14; 13; 15).

3.3. Balance relations

Within the micromorphic RVE, the local form of the balance of momentum reads:

Div P = 0 in B0 , Div Q̄− P̄ = 0 in B0 , (8)

in terms of the meso stress P, the micro stress P̄, and the double stress Q̄ of Piola type,

omitting body forces. Note that the meso and the micro stress are tensors of second

order, whereas the the double stress Q̄ is a third-order tensor.
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The Neumann and the Dirichlet boundary conditions are given by the relations

P · N ≡ t
pre
0 on ∂B P

0 , Q̄ · N ≡ t̄
pre
0 on ∂B

Q̄
0 ,

ϕ ≡ ϕpre on ∂B
ϕ
0 , F̄ ≡ F̄

pre
on ∂B F̄

0 (9)

for the traction vector t 0 and the double traction tensor t̄ 0, as well as for the meso and

micro deformation map. Note that all boundary tractions and deformations act on the

boundary of the meso level, ∂B0. Thereby within each scale, the boundaries follow

the usual disjointness requirement, ∂B P
0 ∩ ∂B

ϕ
0 = ; and ∂B

Q̄
0 ∩ ∂B

F̄
0 = ;, whereas the

boundary regions for the meso and the micro quantities are mutually independent.

3.4. Constitutive behaviour

A hyperelastic framework is assumed, for which the stored energy density acts as a

potential. Thus the Piola-type stress measures are derived as the energetically conjugate

measures to the above-introduced deformation measures as:

P := DFW0 , P̄ := DF̄W0 , Q̄ := DḠW0 . (10)

These are evaluated for a particular constitutive assumption. Here the micromorphic hy-

perelastic formulation for the stored energy density proposed by Hirschberger et al. (14)

is adopted:

W0 =
1

2
λ ln2 J + 1

2
µ [F : F − ndim− 2 ln J] + 1

2
µ l2

Ḡ :· Ḡ + 1

2
p [F̄ − F] : [F̄ − F] . (11)

where the Jacobian determinant J := det F , and µ and λ are the Lamé material parame-

ters. The internal-length parameter l accounts for the size of the microstructure and the

parameter p controls the scale transition between meso and micro scale.

3.5. Boundary value problem

The boundary value problem on the RVE level needs to be solved according to boundary

conditions imposed by the interface at the macro level. The particular relations between

the RVE and the interface will be consistently addressed in the context of the scale

transition in the following section.

4. Meso–macro transition

Between the cohesive interface at the macro level and the micromorphic RVE on the

meso level, a scale transition is achieved via a homogenization. The governing quantities

in the interface, i. e. the traction, the deformation jump and the virtual work, are related

to the averages of the corresponding quantities within the RVE. The macro deformation

or traction are applied as boundary conditions on the RVE, which must fulfil the Hill

condition. We present different consistent options for these boundary conditions, before

we introduce a hybrid set of boundary conditions that accounts particularly well for the

geometry and deformation modes imposed by the material layer.
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4.1. Homogenization

Since the continuum embedding the interface at the macro level is considered as a stan-

dard continuum, and within the RVE we consider a continuum of higher order, we relate

the micromorphic meso quantities to the corresponding measures in the interface. The

micromorphic micro quantities are implicitly accounted for by the micromorphic virtual

work and the coupling in the stored energy-density formulation.

4.1.1. Deformation

The average deformation in the RVE needs to be related to a macroscopic deformation

measure in the interface. To this end, we avail ourselves of a tensorial quantity as it is

commonly used in the approaches to localized plastic deformation at finite deformations,

see for instance References (29; 31; 32; 33). This tensor is posed to be equivalent to the

average of the RVE deformation gradient 〈F〉 as

I +
1

h0

¹ bϕº⊗ bN ≡ 〈F〉= 1

V0

∫

∂B0

ϕ ⊗ N dA (12)

Hereby, in order to obtain the RVE average in terms of a surface rather than a volume

average, the canonical relation1
1 is used.

4.1.2. Traction

In order to relate the macroscopic traction vector across the interface to the underlying

average RVE stress, we employ the Cauchy theorem in the form (4)2. With this, the

average RVE stress 〈P〉 enters the macro traction across the interface as follows:

bt 0 = 〈P〉 · bN , {bP} ≡ 〈P〉=
1

V0

∫

∂B0

t 0⊗ X dA . (13)

4.1.3. Virtual work

The Hill condition requires the average virtual work in the interface to equal the product

of average stress and average virtual deformation gradient. For the micromorphic con-

tinuum, the virtual work comprises contributions of all stress measures, while the meso

stress and the meso deformation gradient shall be related to the macro level:

〈P〉 : 〈δF〉 ≡ 〈P : δF + P̄ : δF̄ + Q̄ :·δḠ〉 . (14)

1The following auxiliary relations are commonly utilized to convert the averaging theorems from volume

to surface integrals (e.g. (35; 36))

F = Div (ϕ ⊗ I) P
t = Div (X ⊗ P) P : F = Div (ϕ · P)

9
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With the kinematics (12) and the traction (13), we obtain the the macroscopic virtual

work performed in the interface as:

bt 0 ·¹δ bϕº≡ h0〈P : δF + P̄ : δF̄ + Q̄ :·δḠ〉=
1

w0

∫

∂B0

t 0 ·δϕ + t̄ 0 : δF̄ dA . (15)

The scale transition is not complete yet without appropriate boundary conditions, which

follow next.

4.2. Boundary conditions

The boundary conditions to be imposed on the RVE ensure a correct scale transition

if they meet the Hill condition, also denoted as macro-homogeneity condition in ref-

erence (36). The aspired boundary conditions shall in particular account for the two

deformation modes, which can occur in the interface, i. e. relative shear and normal

tensile opening. For further details also refer to Reference (15).

4.2.1. Deformation boundary conditions

We propose the following linear deformation boundary conditions for the meso and the

micro deformation map,

δϕ ≡

�
1

h0

¹δ bϕº⊗ bN
�
· X ∀X ∈ ∂B

ϕ
0 , δF̄ ≡ 0 ∀X ∈ ∂B F̄

0 . (16)

for a given current macro interface separation. These boundary conditions are admissi-

ble as shown in Appendix A.1. For the given RVE of height h0 described in Section 3.1,

the prescribed meso deformation (16)1 obeys the simplified expression for the meso

deformation at the top and bottom boundary:

δϕ ≡± 1

2
¹δ bϕº ∀X ∈ ∂B

ϕ±
0 , (17)

whereby the identities bN · X = h0/2 ∀X ∈ ∂BT
0 , bN · X = −h0/2 ∀X ∈ ∂BB

0 are used.

4.2.2. Traction boundary conditions

Constant traction boundary conditions fulfilling the Hill condition (14) can be imposed

on the micromorphic representative volume element as follows

t 0 ≡ {bP} · N ∀X ∈ ∂B P
0 , t̄ 0 ≡ 0 ∀X ∈ ∂B

Q̄
0 . (18)

This is shown in Appendix A.2.

10
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∂BT
τ

∂BB
τ

∂BR
τ

∂BL
τ e1

e2

Figure 5: Hybrid boundary conditions on the RVE, τ ∈ {0, t}.

4.2.3. Periodic boundary conditions

The standard periodic deformation boundary conditions that go along with antiperiodic

tractions, for a micromorphic RVE read (see Hirschberger et al. (14)):

δϕ+ −δϕ− = 0 ∀X ∈ ∂B
ϕ±
0 , t

+
0 + t

−
0 = 0 ∀X ∈ ∂B

ϕ±
0 , (19)

δF̄
+
−δF̄

−
= 0 ∀X ∈ ∂B F̄ ±

0 , t̄
+
0 + t̄

−
0 = 0 ∀X ∈ ∂B F̄ ±

0 . (20)

Herein the positive boundary ∂B+0 comprises the top and the right edge, while the left

and the bottom edge represent the negative boundary ∂B−0 , analogously to the litera-

ture (37; 35). The admissibility of these periodic boundary conditions can be verified

based on the Hill condition (14), see Appendix A.3.

4.2.4. Hybrid boundary conditions

To account for the deformation modes and the geometry of the material layer, at the top

and bottom boundaries of the RVE, which are conceptually aligned with the positive and

negative edges of the interface, bΓ+0 and bΓ−0 , respectively, we fully prescribe the meso-

deformation boundary conditions by means of the macro interface separation ¹ bϕº as

δϕ(X) = 1

2
¹δ bϕº ∀X ∈ ∂B

ϕ T

0 , δϕ(X) =− 1

2
¹δ bϕº ∀X ∈ ∂B

ϕB

0 (21)

as examined for the uniform displacement boundary conditions (17). For the micro

deformation map, the trivial boundary condition (16)b must be fulfilled on the top as

well as on the bottom

δF̄(X) = 0 ∀X ∈ ∂B
ϕ T

0 ∪ ∂B
ϕB

0 (22)

Consequently, we choose the micro deformation map to remain as the identity: F̄ = 1 at

the top and bottom boundaries. In the plane of the interface, periodic meso and micro

deformations, which encounter antiperiodic tractions and double tractions, are applied

as presented in Equations (19)–(20). Thus the periodic deformation and antiperiodic

11
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traction boundary condition in plane specify to be formulated with respect to the left

and right corner as:

δϕR− δϕL = 0 ∀X ∈ ∂B
ϕ L/R
0 , t

R
0 + t

L
0 = 0 ∀X ∈ ∂B

ϕ L/R
0 , (23)

δF̄
R
−δF̄

L
= 0 ∀X ∈ ∂B F̄ L/R

0 , t̄
R
0 + t̄

L
0 = 0 ∀X ∈ ∂B F̄ L/R

0 . (24)

This choice of boundary conditions can be shown to be admissible with respect to the

Hill condition (14), see Appendix A.4.

5. Computational homogenization

With the theoretical multiscale framework presented, we now strive for a finite-element

based multiscale procedure to efficiently solve boundary value problems which incor-

porate the both the meso heterogeneity and the intrinsic microstructure within the ma-

terial layer. Therefore we avail ourselves of computational homogenization, as for in-

stance proposed in References (16; 18), in which a nested finite element solution is

performed at both the macro and the meso level. In our approach, cohesive interface el-

ements situated between continuum elements represent the material layer at the macro

level, as already proposed in Reference (8). While the constitutive behaviour of the sur-

rounding bulk is postulated, the constitutive behaviour or rather the traction–separation

relation (6) of the interface element is obtained from the underlying micromorphic

mesostructure. Therefore, within a deformation-driven computational homogenization

in particular the macro cohesive traction vector and the macro tangent operator at each

interface element integration point need to be obtained from the representative volume

element during the iterative solution.

5.1. Nested multiscale solution scheme

For the iterative solution of the nonlinear multiscale boundary value problem, a nested

multiscale solution scheme along the lines of References (37; 22; 35) is applied. In ex-

tension to the scheme presented in Reference (8), the procedure illustrated in Figure 6,

here involves both the macro and the meso level explicitly as well as the micro level

implicitly. At each integration point of each interface element, the macro jump ¹ bϕº
is evaluated, being zero initially. It is applied as boundary condition to the respective

micromorphic RVE finite-element mesh. With the RVE’s stiffness matrix and the residual

vector, both the macroscopic tangent operator bA and the macroscopic traction vector bt 0

of this interface integration point are computed and stored. This procedure is repeated

for each integration point of each interface element during each macro iteration step.

5.2. Numerical solution of the RVE problem

For the solution of the RVE boundary value problem in Bh
0 involving the micromorphic

continuum, the numerical framework for the micromorphic continuum presented by

12
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Figure 6: Computational homogenization between the interface integration point (IP) of

the interface element on bΓ e
0 at the macro level and the underlying representa-

tive volume elementBh
0 with boundary ∂Bh

0 and microcontinua B̄0 providing

additional micro degrees of freedom at each mesocontinuum point X .
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Hirschberger et al. (14; 15) is exploited. The primary unknown variables at the finite-

element nodes are the meso deformation map ϕK and the micro deformation map F̄ L.

In general, different orders of approximation will be used for these two, and thus we

denote the nodes with unknown meso deformation map with I and K, whereas those

with unknown micro deformation map with J and L. A coupled problem is obtained, as

recalled here in its linearized format:

∑

I ,J

∑

K ,L


 K

ϕϕ
IK K

ϕ F̄

I L

K
F̄ϕ
JK K

F̄ F̄
K L


 ·

 ∆ϕK

∆F̄ L


 =
∑

I ,J


 ∆f0I

∆f̄0J


 . (25)

The spatial residual vector [f0I , f̄0J]
t contains the nodal forces f0I resulting from the

tractions as well as the nodal double forces f̄0J stemming from the double tractions.

5.2.1. Boundary conditions on the RVE

We make use of the hybrid boundary conditions on the RVE as introduced in Sec-

tion 4.2.4, which account both quantitatively and qualitatively for the interface deforma-

tion. For the periodicity of the deformation along the interface, the RVE finite-element

mesh is subjected to the restriction that the left and the right-hand side boundary, ∂Bh
0

L

and ∂Bh
0

R
, respectively, have the same arrangement of nodes. This periodicity is en-

forced by a transformation of the system of equations into a system in terms of the

independent degrees of freedom only, as suggested in References (37). These indepen-

dent degrees of freedom cover all degrees of freedom of the boundary nodes at the

top, bottom and left boundary as well as those of the interior nodes. The remaining

right boundary nodes represent the dependent degrees of freedom. The macro deforma-

tion (21)–(22) is applied incrementally on all top and bottom nodes of the RVE within

the reduced system of equations.

5.2.2. Solution and update of the degrees of freedom

During each macro Newton–Raphson iteration step, within the respective RVE, the re-

duced system of equations enveloping the independent degrees of freedom is iteratively

solved using a Newton–Raphson scheme. Once equilibrium is found, we recompute the

dependent degrees of freedom and store the entire current (or rather spatial) RVE meso

and micro degrees of freedom.

5.3. Homogenized interface quantities

Since we want to extract the sought-for macroscopic quantities, i.e. the traction vector
bt 0 and the tangent operator bA, from the system of equations on the RVE or rather meso

level is condensed such that only the stiffness matrix and the residual in terms of the

prescribed degrees of freedom remain.
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5.3.1. Macroscopic traction vector

The macro traction vector is obtained based on the averaging (13) which is rewritten is

the discrete version as

bt 0 =
1

V0

∑

I

f0I ⊗ X I · bN I ∈ ∂BhB ∪ ∂BhT . (26)

The summation runs over all boundary nodes I the deformation is prescribed at.

5.3.2. Macroscopic tangent operator

With the relation between the macro and meso kinematics (12)1 and the deformation

boundary conditions (21)–(22), the tangent operator (6) is extracted from a summation

over all prescribed nodes I , K:

bA=
1

w0h2
0

[ bN ⊗ bN] :



∑

I

∑

K

[XK ⊗ X I] : K
ϕϕ
IK


 , I , K ∈ ∂BhB ∪ ∂BhT . (27)

See Appendix B to follow the derivation of this tangent in more detail.

These quantities provide the sought-for constitutive information in each interface inte-

gration point in the macro boundary value problem, which enable to pursue the iterative

macro solution.

6. Numerical examples

The framework of the computational homogenization with the interface element at the

macro level and the micromorphic RVE on the meso and micro level is applied to nu-

merical examples, which shall display the successful implementation of the proposed

computational multiscale framework and thereby particularly reveal the framework’s

capability to simulate size effects of the intrinsic microstructure in the material layer on

the macroscopic response. To this end, we investigate the influence of the choice of the

additional micromorphic material parameters within the RVE on the macro response.

Since for homogeneous deformations, the micro deformation would not be excited at

all, we primarily choose RVE geometries that introduce some kind of meso heterogene-

ity, which in a rather straightforward case is a void.

First, in two benchmark-type examples with a simplified macro boundary value prob-

lem, we display the characteristics of the micromorphic RVE subject to the proposed

hybrid boundary conditions under shearing and tensile mode loading. Besides the re-

sulting traction–separation laws, we show the Cauchy-type meso stress field in the RVE

for the different sets of micromorphic parameters to provide a reference for future stud-

ies. With these benchmark-type results at hand, we move on to two multiscale problems

with a more complex macrostructures in order to show the capability of the model to

in fact solve macro boundary value problems using the additional information on the

material layer material provided through the RVE.
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buM

buM
buM

buM

Figure 7: Example 6.1: Benchmark problem for multiscale framework: Single interface

element subjected to shear.

A finite-element simulation is performed on both the macro and the meso level, with

the boundary value problem described for the macro scale and the constitutive response

evaluated on the RVE. At the macro level, we use four-node plane-strain elements with

bi-linear interpolations for the bulk as well as interface elements with four nodes and

two Gaussian integration points. For the micromorphic RVE we utilize Lagrangian plane-

strain elements with bi-quadratic interpolation for both the meso placement X and the

meso deformation map ϕ, as well as bi-linear interpolation for the micro deformation

map F̄ . Throughout the section, the components of the respective displacement jumps

and tractions will be expressed in terms of the orthonormal basis M , N shown in Fig-

ure 2.

6.1. Interface under fully prescribed shear mode loading

As a benchmark problem, we first consider a single interface element, which is subject to

shear mode loading, as depicted in Figure 7. The deformation of the surrounding bulk

is fully controlled so that no degrees of freedom are activated there. The RVE is mod-

elled as a square specimen with a circular centred hole of 20 % void fraction, meshed

with 96 micromorphic elements. Within the RVE of height h0, the sample material pa-

rameters, i.e. Young’s modulus E = 1000 and Poisson’s ratio ν = 0.3 are chosen for all

computations. At first, the internal length is varied for a fixed scale-transition parameter,

p/E = 10, see Section 6.1.1. Secondly, in Section 6.1.2 the scale-transition parameter is

varied for a fixed internal length of l = 0.2h0.

6.1.1. Influence of the micromorphic internal length – size dependence

The traction–separation curves at an integration point in the interface element are shown

for different values of the micromorphic internal-length parameter related to the total

height of the interface in Figure 9. The traction–separation curve in loading direction in

Figure 9(a), bt0 bM vs. ¹ bϕ bMº, obeys an approximately linear relation. Moreover a strong

size dependence is observed in the sense that larger internal-length parameters yield a
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notably stiffer response. The traction–separation curve, bt0bN vs. ¹ bϕ bMº, perpendicular to

the loading direction shown in Figure 9(b) reveals a coupled response. The tangential

tractions are much smaller than the normal components, nevertheless a nonlinear re-

lation is observed. The dependence of the internal length is reverse compared to the

first curve; here smaller internal length yield the stiffer normal response for the shear

loading.

The corresponding spatial configurations with the micromorphic meso stress are dis-

played in Figure 10. We observe that for increasing internal length, the deformation of

the specimen around the hole becomes less pronounced. Moreover, for non-zero inter-

nal length we observe the typical non-symmetric meso stress, when looking at the shear

components. Especially, the shear component σ bM bN is significantly higher for the largest

internal length. Also the normal stress in tangential direction σ bM bM is remarkably larger,

while the influence on the other two components is rather weak.

6.1.2. Influence of the micromorphic scale transition parameter

Next, we study the influence of the scale-transition parameter p, which controls the

kinematic correlation between the meso and the micro scale. For a variation of the

parameter p in exponential steps to the basis ten, the spatial meshes of the macro and

the mesostructure are presented in Figure 11. The resulting traction–separation curves,
bt0 bM vs. ¹ bϕ bMº and bt0bN vs. ¹ bϕ bMº, are shown in Figure 12. First of all, we notice that

the response is coupled in the sense that an exclusively shearing deformation also yields

normal tractions. As observed before, the shear component bt0 bM vs. ¹ bϕ bMº obeys an

approximately linear relation, while the tension response to the shear deformation bt0bN
vs. ¹ bϕ bMº is strongly nonlinear, however significantly smaller. Furthermore, we observe

that smaller scale transition parameters yield a stiffer response in the shear traction bt0 bM
vs. ¹ bϕ bMº and a weaker response in the normal traction, bt0bN vs. ¹ bϕ0 bMº. The meso stress

components are plotted in Figure 13. For larger scale-transition parameters, all stress

components becomes more pronounced in the direct vicinity of the hole.
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l/L0 = 0 l/L0 = 0.1 l/L0 = 0.2 l/L0 = 0.4

Figure 8: Example 6.1: Spatial macro mesh, spatial RVE meshes at different internal-

length parameters.
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Figure 9: Example 6.1: Traction–separation curves for different internal-length

parameters.
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σ bM bM

σbN bN

σ bM bN

σbN bM

l/L0 = 0.0 l/L0 = 0.1 l/L0 = 0.2 l/L0 = 0.4

Figure 10: Example 6.1: Cauchy-type meso stress components at different internal-

length parameters.

p/E = 0.1 p/E = 1 p/E = 10 p/E = 100

Figure 11: Example 6.1: Spatial macro mesh, spatial RVE meshes at different scale-

transition parameters.
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Figure 12: Example 6.1: Macro traction–separation curves for different scale-transition

parameters.
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Figure 13: Example 6.1: Cauchy-type stress components for different scale-transition

parameters
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bubN

bubN

bubN

bubN

Figure 14: Example 6.2: Benchmark problem for multiscale framework: Single interface

element subjected to tension.

6.2. Interface under fully prescribed tensile-mode loading

The second benchmark problem for the interface homogenization is simulated with the

same macro and meso geometry as above, however here the interface deformation is

applied in the tensile mode, as illustrated in Figure 14. Also the material parameters

are adopted from the previous section. The corresponding spatial meshes of the macro

problem and the RVE are displayed in Figures 15 and 17.

In the following, we once more investigate the influence of both additional micro-

morphic material parameters on the response, i.e. the internal-length parameter l and

the scale-transition parameter p. From Figures 16 and 18, we directly observe that the

tangential traction component, bt0 bM , is zero for any of the considered combination of

material parameters.

This fact is attributed to the kinematics imposed on the RVE that does not incorporate

a lateral contraction and restricts the top and the bottom nodes to maintain the same

distance tangential to the interface.

6.2.1. Influence of the micromorphic internal length – size dependence

For the present tensile-mode loading, the traction–separation curves in loading direction,
bt0bN vs. ¹ bϕ0bNº, are compared for different internal length parameters in Figure 16. This

response obeys a nonlinear behaviour, whereby the curves display a stiffer response for

larger internal-length parameters l. The deformed meso meshes in Figure 15 reflect the

same observation: For a larger internal length, the opening of the void is less pronounced

which underlines the stiffer continuum response. The particular components of the meso

stress of Cauchy type are shown in Figure 19. Again for a larger internal length, the non-

symmetry of the Cauchy type meso stress proves to be stronger. However, different from

the shear loading, where the distribution of the shear meso stress underwent a significant

influence, the qualitative influence is comparatively small for the tension loading at

hand.
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6.2.2. Influence of the micromorphic scale-transition parameter

The influence of the micromorphic scale-transition parameter p on the macroscopic

traction–separation response is plotted in Figure 18. Thereby the parameter is varied in

exponential steps to the basis ten. We observe that the specimen with the higher scale-

transition parameter p exhibits a stiffer behaviour. This is reflected by the deformed

meshes in Figure 17 particularly in the direct vicinity of the hole. In the corresponding

Cauchy-type meso stress component, shown in Figure 20, for larger p, again the stress

is significantly larger at the edge of the hole. This matches well the observations in

Reference (14), that for larger scale-transition parameters p, the region in which meso

deformation map and the deformation gradient deviate from each other are strongly

localized to the heterogeneity.
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l/h0 = 0.0 l/h0 = 0.1 l/h0 = 0.2 l/h0 = 0.4

Figure 15: Example 6.2: Spatial macro mesh, spatial RVE meshes at different internal-

length parameters.
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Figure 16: Example 6.2: Traction–separation curves for different internal-length

parameters.

p/E = 0.1p/E = 1p/E = 10p/E = 100

Figure 17: Example 6.2: Spatial macro mesh, spatial RVE meshes at different scale-

transition parameters.
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Figure 18: Example 6.2: Macro traction–separation curves for different scale-transition

parameters.
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σ bM bM

σbN bN

σ bM bN

σbN bM

l/h0 = 0.0 l/h0 = 0.1 l/h0 = 0.2 l/h0 = 0.4

Figure 19: Example 6.2: Cauchy-type meso stress components at different internal-

length parameters.
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σ bM bM

σbN bN

σ bM bN

σbN bM

p/E = 0.1 p/E = 1 p/E = 10 p/E = 100

Figure 20: Example 6.2: Cauchy-type meso stress components at different scale-

transition parameters.
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bu bM

bu bM

bubN

bubN

Figure 21: Example 6.3: Infinite periodic shear layer including material layer: multiscale

boundary value problem.

6.3. Material layer within an infinite shear layer under shear-dominated
mixed-mode loading

After the benchmark-type examples shown so far, which only considered the micromor-

phic RVE and the resulting homogenized traction–separation relations, now the macro

response is also taken into account.

Therefore at the macro level a material layer within the periodic shear layer is en-

dowed with micromorphic representative volume elements, see Figure 21. Micromor-

phic microstructures consisting of a square RVE with a lentil-shaped void of horizontal

and vertical orientation, respectively, are compared with another specimen with a circu-

lar centred hole. Furthermore a homogeneous shear layer is considered as a benchmark

RVE.

The deformation-driven load, bu bM = 5bubN , is applied step-wise at the top and in the

opposite direction at the bottom, until the maximum lateral top displacement of bu bM =
0.2h0 is reached. A fixed set of material parameters is used. Particularly Young’s modulus

in the RVE is chosen significantly weaker than that of the macro bulk, bE/2000 = E = p;

lateral contraction is allowed by setting Poisson’s ratio to bν = ν = 0.3. The internal

length is chosen to be l = 0.1h0, while the height of the material layer relative to the

height of the macro shear layer is h0/ bH0 = w0/ bH0 = 0.05.

The column of elements, which represents the periodic shear layer at the macro scale,

is shown in Figure 22 for the different RVEs after the last load step, with the correspond-

ing RVE meshes being plotted in Figure 23. For the RVE of Figure 23(d) that represents

an infinite homogeneous shear layer, the bulk elements at the macro level are deformed

homogeneously as under simple shear, while the RVE itself obeys an S-shape. The latter

appears due to the boundary conditions for the micro deformation map at the top and

bottom boundaries of the RVE.

Figure 24 shows the load displacement curves at the top of the macro column for the

different microstructures. The response to the shear dominated mixed-mode loading
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(a) (b) (c) (d)

Figure 22: Example 6.3: Spatial macro meshes at bu bM = 0.2h0, for RVE with (a) hole,

(b) vertical lentil-shaped void, (c) horizontal lentil-shaped void, (d) homoge-

neous shear layer.

(a) (b) (c) (d)

Figure 23: Example 6.3: Spatial RVE meshes with (a) hole, (b) vertical lentil-shaped

void, (c) horizontal lentil-shaped void, (d) homogeneous shear layer at bu bM =
0.02h0.

caused by the vertically orientated lentil void is the stiffest, while the other two differ

for the considered component, i. e. normal or tangential. Contrary to the classical RVE

in Reference (8), here the homogeneous RVE does not result in the stiffest response.

This can be attributed to the fact that, due to the nearly homogeneous deformation, the

additional micro degrees of freedom and thus especially the gradient of the micro defor-

mation map are barely excited and the respective contributions in the potential-energy

density (11) do not come into play as strongly as for the heterogeneous specimens.

With this example it is successfully shown that macroscopic boundary value problems

involving a material interface can be solved numerically by applying computational ho-

mogenization to obtain the response of the latter.

6.4. Material layer within a specimen with a hole

The forth and last example consists of a square specimen with a circular centred hole at

the macro level, comparable to the meso specimen in Sections 6.1 and 6.2, meshed

with 72 bulk elements. Additionally at both lateral sides of the hole, a horizontal

layer of three interface elements is arranged. The specimen is subject to constant

uni-axial tension in vertical direction. At each interface integration point, the under-

lying micromorphic RVE of Sections 6.1 and 6.2 is evaluated. Once more, the internal-

length parameter in the RVE is varied for an otherwise fixed set of material parameters

(bE = 100E = 1× 105, bν = ν = 0.3, p/E = 1000= 10bE, bh0 = 20h0).
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Figure 24: Example 6.3: Macro force–displacement curve at top of the macro shear layer.

In Figure 25, next to the spatial macrostructure, the deformed RVEs at the six interfa-

cial integration points along the material layer are shown for the maximum displacement

applied, bubN/bh0 = 0.025 . The particular deformed heights ht of the RVEs qualitatively

coincide well with the expected peak of both normal stress and normal strain close to the

heterogeneity, the hole. This is also reflected by the normal components of the macro

separation, ¹ bϕbNº, and the macro traction, bt0bN , which are plotted versus the horizontal

coordinate of the relative placement, bΞ, in Figure 26. This relative horizontal position
bΞ = 2bX/bw0 is given relative to the half width of the macro specimen.

While the normal separation ¹ bϕbNº is larger for smaller internal length, the normal

traction bt0bN increases with internal length. This observation matches well with the stiffer

behaviour for larger internal length that the traction–separation curves in Figure 27 dis-

play. The macroscopic response is illustrated in the same figure: the prescribed displace-

ment in vertical direction, ubN , at the top of the macro specimen is plotted versus the total

reaction force fbN in vertical direction at this edge. Here an influence of the underlying

RVE is observed: once more the specimen with the RVE of the highest internal lengths

obeys the stiffest macro response.

7. Conclusion

7.1. Summary

In this contribution, in the framework of finite deformations we have successfully ex-

tended the available concepts of theoretical and computational homogenization to ma-

terial layers with an underlying mesostructure, which is on the one hand heteroge-

neous (see also Reference (8)) and on the other hand possesses a significant intrinsic

microstructure.

We have linked the macro quantities, which are governed by the deformation jump

across the material layer, to their corresponding quantities in the micromorphic RVE by

homogenization. Thereby the two different types of continua, namely a classical (Boltz-
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Figure 25: Example 6.4: Spatial macro mesh in the centre with correspond-

ing spatial meso meshes at the macro interface integration points at

the macro interface integration points located at coordinates bΞi =

0.522,0.581,0.638,0.737,0.821,0.952.
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Figure 26: Example 6.4: Separation vs. placement, homogenized traction vs. placement

along the interface
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Figure 27: Example 6.4: Traction–separation curve near the hole, load–displacement

curve at macro top nodes for different internal-length parameters,
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mann) continuum on the macro level and a micromorphic continuum on the meso level,

are consistently related to each other by means of a homogenization approach. In this

context we have formulated boundary conditions which clearly account for the defor-

mation induced by the cohesive interface, while they fulfil the Hill macro-homogeneity

condition. Through the incorporation of the micromorphic continuum within the repre-

sentative volume element, we are now able to account for size-dependence effects that

arise due to the underlying microstructure in the material layer, as it can for instance be

found in geomaterials, metals, etc.

The proposed computational homogenization framework involves a nested multiscale

solution scheme, which comprises both the solution of the nonlinear macro boundary

value problem and of the underlying nonlinear RVE boundary value problems. For the

latter micromorphic problem, being coupled between the meso and the micro defor-

mation, the formulation of Hirschberger et al. (14) provided the appropriate numerical

framework.

7.2. Outlook

Besides a hyperelastic representative volume element, it is desirable to involve irre-

versible phenomena for the meso and micro level in a next step. With such, for in-

stance with plasticity and damage, the presented approach shall yield to the well-known

cohesive laws that display softening behaviour. A distinct improvement is particularly

expected for mixed-mode loading that now can be treated more accurately under incor-

poration of the mesostructural response.

By consideration of the micromorphic continuum, besides the macro level including

the interface, and the meso level with the representative volume element, a third scale

has been intrinsically involved in the model. It can be seen as a challenge for future

research to relate the present model representation of the attached microcontinua to

actual physical microstructures, such as granular assemblies as for instance treated in

References (38; 39) and in the framework of homogenization in References (40; 41).

Thereby the effects such as inter-granular friction result in non-symmetric homogenized

stresses and therefore particularly motivate the use of micromorphic or micropolar con-

tinua.
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A. Admissibility of boundary conditions imposed on the

representative volume element with respect to the Hill

conditions

To show that the chosen boundary conditions meet the Hill condition (14), the following

relations

〈P〉 : 〈δF〉= 〈P : 〈δF〉〉= 〈〈P〉 : δF〉 (28)

are used. With these at hand, the Hill condition to be fulfilled is rewritten as:

h0〈P : δF + P̄ : δF̄ + Q̄ :·δḠ〉 − h0〈P : 〈δF〉〉
.
= 0 (29)

h0〈P : δF + P̄ : δF̄ + Q̄ :·δḠ〉 − h0〈〈P〉 : δF〉
.
= 0 (30)

whereby the first equation is utilized for fully prescribed deformation and the latter for

constant traction on the RVE boundary.

A.1. Prescribed deformation on the RVE boundary

To show the admissibility of the deformation boundary conditions of Section 4.2.1, Equa-

tion (29) is verified here:

h0〈P : δF + P̄ : δF̄ + Q̄ :·δḠ〉 − h0〈P : 〈δF〉〉

=
1

w0

∫

∂B0

δϕ · P · N − 〈δF〉 : [P · N ⊗ X] +δF̄ : Q̄ · N dA (31)

=
1

w0

∫

∂B0

[δϕ − 〈δF〉 · X] · t 0+δF̄ · t̄ 0 dA
.
= 0

This term identically equals zero if the deformation boundary condition (16) is applied.

A.2. Constant traction on the RVE boundary

In view of the traction boundary condition of Section 4.2.2, identity (30) is modified in

the following steps:

h0〈P : δF + P̄ : δF̄ + Q̄ :·δḠ〉 − h0〈〈P〉 : δF〉

=
1

w0

∫

∂B0

δϕ · [P − 〈P〉] · N +δF̄ : Q̄ · N dA (32)

=
1

w0

∫

∂B0

δϕ · [t 0− 〈P〉 · N] + δF̄ : t̄ 0 dA
.
= 0 .

From this result, it can easily be seen that for the choice of traction boundary conditions

(18) with the Piola type stress equivalence (13), this requirement is fulfilled identically

.
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A.3. Periodic deformation and antiperiodic traction on the RVE
boundary

From the derivation (31) for prescribed deformations, it is straightforward to recognize

that periodicity in deformations and antiperiodicity in tractions of Section 4.2.3 fulfil

the condition (29). Particularly, 〈δF〉 · X is a priori periodic for the macro deformation

affinely imposed on the RVE. With this, the fluctuation term [δϕ − 〈δF〉 · X] is periodic

and together with antiperiodic tractions, the integral over opposite boundaries vanishes.

The same holds for the micro deformation map, which must go along with antiperiodic

double tractions. A detailed proof is elaborated in Reference (15).

A.4. Hybrid boundary conditions on the RVE

For the hybrid choice of boundary conditions presented in Section 4.2.4, the derivation

for the top and bottom boundary is already given by Equation (31). The validity of

the periodicity for the opposite left right edges can directly be adopted from the fully

periodic case, Section A.3.

B. Tangent operator from computational homogenization

The tangent operator (27) is derived from the increment of the traction (26) with the

reaction forces in the coupled system (25) and the prescribed deformation (21) and (22)

at the top and bottom nodes :

∆bt 0 =
1

V0

∑

I

∆f0I ⊗ X I · bN =
1

V0

∑

I

∑

K ,L

h
[K
ϕϕ
IK ·∆ϕK +K

ϕ F̄

I L ·∆F̄ L]⊗ X I

i
· bN

=
1

V0

∑

I

∑

K ,L

�
[K
ϕϕ
IK · [

1

h0

¹∆ bϕº⊗ bN] · XK +K
ϕ F̄

I ,L ·∆F̄ L]⊗ X I

�
· bN (33)

=


 1

h2
0 w0

[ bN ⊗ bN] :
∑

I

∑

K

K
ϕϕ
IK : [XK ⊗ X I]·


¹∆ bϕº

Herein the term in the outer brackets is identified as the macro tangent operator, which

relates the current increment of the macro deformation jump to the current traction in-

crement. Thereby the trivial identity∆I = 0 has been used and, based on the assumption

(22), ∆F̄ = 0 encounters the coupled contribution of K
ϕ F̄

I L to vanish.
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