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Abstract In this paper, we provide a retrospective ex-

amination of the developments and applications of the

extended finite element method (X-FEM) in computa-

tional fracture mechanics. Our main attention is placed

on the modeling of cracks (strong discontinuities) for

quasistatic crack growth simulations in isotropic linear

elastic continua. We provide a historical perspective on

the development of the method, and highlight the most

important advances and best practices as they relate to

the formulation and numerical implementation of the X-

FEM for fracture problems. Existing challenges in the

modeling and simulation of dynamic fracture, damage

phenomena, and capturing the transition from continuum-

to-discontinuum are also discussed.

Keywords elastic fracture, strong discontinuities,

singularities, cracks, partition-of-unity enrichment,

X-FEM

1 Introduction

The eXtended Finite Element Method (X-FEM) was in-

troduced in Moës et al. (1999) as a new approach to
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represent fracture surfaces and to capture their evolu-

tion within a standard Galerkin-based method. Since its

inception, the method has experienced dramatic growth

and development. This is due to many factors, not the

least of which is the potential of the X-FEM to circum-

vent long-standing issues in finite element mesh gener-

ation and adaptation for fracture problems. Moreover,

even though there are many alternative numerical meth-

ods for fracture, none of them offer the combination of

features that the X-FEM affords: extension to nonlinear

problems, relative ease of implementation, robustness,

efficiency and accuracy. In this paper, our intent is not

to provide an exhaustive overview of the X-FEM; many

such reviews are already available in the literature (Be-

lytschko et al., 2009; Fries and Belytschko, 2010). Rather,

we aim to provide an appraisal of the method for fracture

problems: discussing the key advances, unifying and pro-

viding connections between previous contributions, and

establishing best practices as they relate to the formu-

lation and implementation of the method. We highlight

the strengths and weaknesses of the method, and dis-

cuss missing gaps that can form the subject for future

research.

The field of computational fracture mechanics is rela-

tively mature, and many advances have been made with

finite elements and boundary element methods. Never-

theless, fracture remains a challenging problem, and new

methods continue to arise. With the standard finite el-

ement method, cracks are viewed as internal boundary

surfaces that are explicitly meshed. The X-FEM is an

advance in element technology — it allows for strong dis-

continuities (discrete cracks) to arbitrarily cut through

elements. Prior to its introduction, there were many other

approaches that addressed this challenge, among which,
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enhanced assumed strain (Simo et al., 1993) and mesh-

free methods (Belytschko et al., 1996) are prominent.

Simo et al. (1993) considered embedded discontinu-

ities from the viewpoint of the constitutive relationship.

A local crack initiation criterion is posited within each

element based on the loss of ellipticity (singularity of

the acoustic tensor), and then the kinematics are en-

hanced in each element to accommodate this discontinu-

ity. Due to the element-level nature of the formulation,

this method leads to a nonconforming displacement ap-

proximation across element boundaries (compatibility of

the strain field is weakly enforced). Furthermore, the ini-

tial approach did not ensure a continuous crack surface,

which was subsequently corrected by incorporating lin-

ear interpolation between adjacent elements (Linder and

Armero, 2007). For a discussion of various early finite

element methods that embed discontinuities, we direct

the reader to the work of Jirásek (2000).

The partition-of-unity finite element method (PUFEM)

(Melenk and Babuška, 1996; Babuška and Melenk, 1997)

permits local asymptotic crack solutions (enrichment func-

tions) to be incorporated within a finite element (FE)

setting. This notion of augmenting the standard FE ap-

proximation by known asymptotic solutions is not new

(Fix et al., 1973; Strang and Fix, 1973; Benzley, 1974);

however, in these prior studies, the additional functions

are added globally to the finite element approximation.

Moreover, these approaches are in stark contrast to the

PUFEM, where the finite element basis functions are

used to partition the enrichment function so that all

basis functions are compactly-supported. The resulting

stiffness matrix is symmetric and banded, and its spar-

sity is not significantly compromised. Another instance

of the PUFEM is the generalized finite element method

(GFEM), in which handbook solutions and eigenfunc-

tions for corner singularities and crack problems in elas-

ticity are selected as enrichment functions (Duarte et al.,

2000; Strouboulis et al., 2001).

On using finite elements to form the partition-of-

unity functions as introduced in the PUFEM, Belytschko

and Black (1999) adopted a local or minimal enrichment

perspective to enrich the finite element approximation

with the asymptotic crack-tip basis functions (Fleming

et al., 1997) to model two-dimensional cracks (crack in-

terior and crack tips), which were represented by the

union of piecewise linear segments. This required a se-

ries of mappings to describe such a crack. On using a

discontinuous (generalized Heaviside) enrichment func-

tion, a much simpler approach to model the crack inte-

rior was realized by Moës et al. (1999), and this method

was coined as the extended finite element method (X-

FEM) (Daux et al., 2000). For modeling cracks, discon-

tinuous enrichment is now also adopted in the GFEM (Si-

mone et al., 2006; Duarte and Kim, 2008), and hence for

fracture problems, the X-FEM and the GFEM are prac-

tically indistinguishable.

In the X-FEM, crack discontinuities are incorporated

via the kinematics: the displacement field is enriched

with discontinuous and crack-tip asymptotic functions.

The X-FEM permits simple meshes to be used that need

not conform to the crack geometry, thereby avoiding the

need to remesh for crack propagation simulations. For

crack modeling and crack growth problems in isotropic

linear elastic fracture mechanics, the advantages of the

X-FEM over C0 Lagrange finite elements have been well-

established. In this paper, our main emphasis is on the

modeling of elastic fracture with the X-FEM. In Sect. 8,

we also share our perspectives on using the X-FEM and

other emerging methods for the modeling of dynamic

fracture, damage and other challenging problems in in-

elastic fracture mechanics.

2 Formulation

Consider a homogeneous linear elastic body that occu-

pies the domain Ω ⊂ Rd (d = 2, 3) with an internal

traction-free crack. The boundary Γ = Γu ∪Γt ∪Γc with

Γu ∩ Γt = ∅ (see Fig. 1). Displacement boundary con-

ditions are prescribed on Γu, and tractions are imposed

on Γt. The crack domain is Γc, and we denote the crack

front (crack tip in R2) by Λc. The governing equations

for elastostatics in the absence of body forces are:

∇ · σ = 0 in Ω, (1a)

σ = C : ε, (1b)

ε =∇su, (1c)

where σ is the Cauchy stress tensor, u is the displace-

ment field, ε is the small-strain tensor, ∇s is the sym-

metric gradient operator, and C is the material moduli

tensor for a homogeneous linear elastic isotropic mate-

rial. The essential and natural boundary conditions are:

u = ū on Γu, (2a)

σ · n = t̄ on Γt, (2b)

σ · n = 0 on Γc, (2c)

where n is the unit outward normal on a boundary, and

ū and t̄ are the prescribed displacements and tractions

on Γu and Γt, respectively.
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Fig. 1: Elastostatic boundary-value problem with an em-

bedded traction-free crack.

The weak form of the boundary-value problem posed

in (1) and (2) is: find u ∈ U such that

a(u, δu) = `(δu) ∀δu ∈ U0, (3a)

a(u, δu) :=

∫
Ω

σ : δε dx, `(δu) :=

∫
Γt

t̄ · δu dS, (3b)

where U and U0 are the trial space for the displacement

field and the test space (virtual displacements), respec-

tively. The trial and test spaces admit functions that are

discontinuous across Γc.

3 Displacement approximation

To discretize the weak form in (3), we require trial and

test approximations for the displacement field. Consider

a finite element mesh that discretizes the two-dimensional

domain (without considering Γc) shown in Fig. 1. The

embedded crack shown in Fig. 2 has two crack tips. Let

the number of nodes of a given finite element be nen,

and the index set I := {1, 2, . . . , nen}. Now, the two-

dimensional extended finite element displacement approx-

imation in an element takes the form (Moës et al., 1999):

uhe (x) =
∑
i∈I

Ni(x)ui︸ ︷︷ ︸
standard FE

+
∑
j∈J⊆I

Nj(x)ϕ(x)aj︸ ︷︷ ︸
discontinuous contribution

+

2∑
t=1

∑
k∈Kt⊆I

Nk(x)

4∑
α=1

Fαt(x)bkαt︸ ︷︷ ︸
crack-tip contribution

, (4a)

with

Fαt(x) =
√
r

{
sin

θ

2
, cos

θ

2
, sin

θ

2
sin θ, cos

θ

2
sin θ

}
, (4b)
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Fig. 2: Enriched nodes for an embedded crack. The crack-

tips are labeled as 1 and 2. The nodes that are en-

riched with the discontinuous function are shown by

open-circles, whereas those that are enriched with the

asymptotic near-tip crack functions are shown by filled-

circles. The shaded region is the support ωi of the nodal

finite element basis function for node i.

where J is the index set of nodes whose basis function

support is cut by the interior of the crack Γc, and K1

and K2 are the index sets of nodes whose basis function

support contains the crack-tips Λ1
c and Λ2

c , respectively.

In addition, Ni(x) are the finite element shape functions,
ϕ(x) is a discontinuous (generalized Heaviside) function

that is defined with respect to the crack, and Fαt(x)

in (4b) are the crack-tip asymptotic functions defined

with respect to a polar coordinate system (r, θ) with ori-

gin at the crack-tip t. If the crack-tip is located inside

a finite element, then crack-tip enrichment is needed to

represent the crack; enriching with the functions in (4b)

also significantly improves the accuracy of the stress in-

tensity factors in extended finite element computations.

The unknown coefficients in (4a) corresponding to the

standard FE, discontinuous, and near-tip basis functions

are ui, aj , and bkαt, respectively. The enriched nodes

contained in I, J and Kt (t = 1, 2) are shown in Fig. 2.

Arguably the most successful and widely-implemented

aspect of the approximation (4) is the generalized Heavi-

side enrichment — ϕ(x) := H(x), where given the orien-

tation of the crack, H(x) assumes a value +1 above the

crack and a value −1 below it. This may be due to several

factors. Whereas the near-tip enrichment functions are

specifically designed for problems in linear elastic frac-

ture mechanics, the Heaviside enrichment suffers no such
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limitations. It has been applied in a wide range of con-

texts, including finite deformation problems and inelas-

ticity. It is also the simplest aspect of the approximation

to implement, as it only requires knowledge of which side

of the discontinuity a material point resides.

Another component to the success of Heaviside en-

richment concerns the work of Hansbo and Hansbo (2004).

Consider an element that is separated into two distinct

material regions by a crack geometry. Instead of using en-

richment to capture the discontinuity, Hansbo and Hansbo

(2004) proposed an approach that creates two partial el-

ements, one for each side of the crack. Earlier, Jirásek

and Belytschko (2002) had illustrated the same idea for a

discontinuity in one dimension. For each partial element,

newly defined shape functions are associated with all the

nodes of the element. Furthermore, for each component

of the displacement approximation, double the number

of shape functions contribute in the element. The stan-

dard nodal Lagrange finite element shape function is de-

composed into the sum of two discontinuous functions,

which serve as the two new nodal shape functions — each

is nonzero on one of the partial elements and is identi-

cally zero on the other. In a subsequent work, Areias

and Belytschko (2006) illustrated how the kinematics

that are enabled by this approach are in fact identical to

what can be achieved via Heaviside enrichment. Imple-

mentations of both approaches can be found in modern

production codes. The particular choice largely depends

on the structure of the code and the ease of implemen-

tation (see Sect. 3.4). We point out that the approach

of Hansbo and Hansbo (2004) is sometimes referred to

as the phantom-node method (Song et al., 2006).

Over the past decade, several other modifications to

the approximation (4) and enrichment functions have

been proposed. Perhaps the most important is the con-

cept of geometric enrichment (Laborde et al., 2005; Béchet

et al., 2005). For the initially proposed extended finite

element approximation in (4a), the set Kt of nodes with

near-tip enrichment was limited to those nodes whose ba-

sis function support contained a crack-tip. This is often

referred to as topological enrichment. With topological

enrichment, the square root crack-tip singularity limits

the convergence rate, and O(h1/2) decay in the energy

seminorm of the error is realized, which matches the con-

vergence rate that is obtained using quarter-point finite

elements. With geometric enrichment, the enriched nodal

set is expanded to all nodes within a specified distance

from a crack-tip. This permits near-tip enrichment to

be active over the entire region where the asymptotic

fields dominate the solution, which translates to signif-

icant improvements in accuracy. Moreover, this radius

of influence is taken to be independent of the mesh,

such that the cardinality of Kt increases with refinement.

Even though the stress field is singular, geometric enrich-

ment allows the method to yield the same rates of con-

vergence that are available for smooth problems (Strang

and Fix, 1973; Nicaise et al., 2011). The drawback to

this approach is that it increases the system size and im-

pacts conditioning, but the latter can be addressed with

suitable preconditioners (see Sect. 5).

We also discuss blending elements (elements that have

partially enriched nodes) (Chessa et al., 2003) and the

use of shifted enrichment functions. The former is espe-

cially pertinent for material interface problems, in which

use of the distance function as the enrichment led to sub-

optimal rates of convergence (Sukumar et al., 2001). For

this choice of the enrichment function, the extended fi-

nite element approximation cannot pass the patch test

(affine field on either side of a rectilinear interface) for

a bimaterial interface problem. A subsequent advance

— use of the ridge enrichment function (Moës et al.,

2003) for material interfaces — yielded optimal conver-

gence rates without the presence of blending elements.

However, it is noteworthy to point out that the presence

of blending elements does not compromise the conver-

gence rates for crack problems with near-tip enrichment,

provided that geometric enrichment is adopted (Béchet

et al., 2005; Fries and Belytschko, 2010; Nicaise et al.,

2011).

The use of a shifted enrichment function (Zi and

Belytschko, 2003) was introduced in part to facilitate

plotting and to avoid the presence of blending elements

when certain enrichment functions are used. A shifted

enrichment simply adjusts the enrichment functions so

that they vanish at the nodes; fundamentally, it does not

change the approximation. A shifted enrichment ensures

that the extended FE approximant becomes a nodal in-

terpolant; however, this alone does not provide a means

to impose Dirichlet boundary conditions. Furthermore,

if a node with coordinate xi lies on a crack, then H(xi)

is multi-valued and then a consistent choice for H(xi)

needs to be made. We also note that while this shifting

might appear to facilitate plotting, such an approach ef-

fectively hides the singularity and discontinuity, both of

which are vital to accurately displaying field quantities

near the crack for fracture problems.

As an aid to understanding the basis functions in

the different approaches, we present a one-dimensional

example. Consider a one-dimensional domain that is dis-

cretized by linear finite elements, which must permit

a discontinuity in the field variable at x = ξ, where

ξ ∈ Ωe = (x1, x2). Let the node at x = x1 be labeled

as 1 and the node at x = x2 be labeled as 2. We consider

all the basis functions that are associated with nodes 1
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φ1(x)

x1 x2ξ

(a)

H(x)φ1(x)

x1 x2ξ

(b)

φ2(x)

x1 x2ξ

(c)

H(x)φ2(x)

x1 x2ξ

(d)

φH11(x)

x1 x2ξ

(e)

φH12(x)

x1 x2ξ

(f)

φH21(x)

x1 x2ξ

(g)

φH22(x)

x1 x2ξ

(h)

φ1(x)

x1 x2ξ

(i)

[H(x)−H(x1)]φ1(x)

x1 x2ξ

(j)

φ2(x)

x1 x2ξ

(k)

[H(x)−H(x2)]φ2(x)

x1 x2ξ

(l)

Fig. 3: Basis functions for a discontinuity in one dimension. (a)–(d) X-FEM with generalized Heaviside enrichment;

(e)–(h) Approach of Hansbo and Hansbo (2004); and (i)–(l) Shifted Heaviside enrichment.

and 2; the support of these basis functions intersect Ωe.

The basis functions in the X-FEM, those obtained us-

ing the approach of Hansbo and Hansbo (2004), and the

basis functions using shifted Heaviside enrichment are

shown in Fig. 3. Referring to Fig. 3, we can write down

the extended finite element basis functions in terms of

those in Hansbo and Hansbo (2004) as:

φ1(x) = φH11(x) + φH12(x), H(x)φ1(x) = φH11(x)− φH12(x),

φ2(x) = φH21(x) + φH22(x), H(x)φ2(x) = φH21(x)− φH22(x),

which shows that the two sets of basis functions span the

same discrete space.

3.1 Branched and intersecting cracks

The geometry of a crack or system of cracks can of course

be much more complex than that shown in Figure 2.

For example, a rapidly propagating crack can undergo

a bifurcation and branch dynamically, splitting into two

new crack fronts. More generally, multiple crack fronts

can exist at one point in time and subsequently inter-

act, potentially merging. Although multiple crack tips in

close proximity do present their own set of challenges for

asymptotic enrichment, most of the research effort has

been focused on strategies to handle the interior of the

crack network. In other words, the emphasis has once

again been on enhancing the approximation such that

the kinematics associated with a network of cracks (in-

tersecting and/or branched) are properly represented.

Early work along these lines by Daux et al. (2000)

considered cracks with multiple branches and the need

for additional types of enrichment functions for the inte-

rior. Consider, for example, the case of two independent

cracks that cross each other. At their crossing point, or

junction, a naive approach is to simply enrich each crack

with its own Heaviside function. Through comparison

with an analogous system that is explicitly meshed, it is
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shown in Daux et al. (2000) that these two enrichment

functions are not sufficient to represent all the kinematics

that ensue due to two cracks crossing. There are addi-

tional opening modes that need to be captured. This was

resolved by identifying a main crack and any associated

branches, and by adding junction enrichment functions

that exhibited discontinuities across both the main crack

and their respective branches. An improvement for junc-

tion enrichment that applies in two and three dimensions

was proposed by Simone et al. (2006).

Alternative strategies have also been developed by

the computer graphics community. The virtual node al-

gorithm developed by Molino et al. (2004) can be viewed

as an extension of the Hansbo-Hansbo approximation for

multiple cracks. Each partial element is viewed as con-

sisting of physical and virtual nodes. In this approach,

virtual nodes are created based on the number of unique

partitions (by crack geometry) formed in the region de-

fined by the support of the first-order nodal basis func-

tions (nodal one-rings). New partial elements are then

created based on the topology and connectivity of the

physical and virtual nodes. This approach naturally han-

dles the case when a crack branches within an element,

and it generalizes to three-dimensional problems. It bears

emphasis that the resulting kinematics are identical to

what can be obtained through Heaviside and junction

enrichment.

More recently, Richardson et al. (2011) proposed a

method for geometrically elaborate cracks. In contrast

to the nodal-based approach of Molino et al. (2004), this

is an element-based approach to creating new partial el-

ements. The first step is to identify all distinct material
regions in each element as dictated by the fracture geom-

etry. In an intermediate step, partial elements are gen-

erated for each of the material regions in each of these

elements. The final step reconnects these partial elements

and collapses degrees of freedom based on common ma-

terial regions at element edges (or faces in three dimen-

sions). As pointed out by Richardson et al. (2011), in

some cases this approach results in element kinematics

that are distinct from what can be achieved via tradi-

tional enrichment algorithms.

3.2 Adaptivity

The basic approximation (4a) of the X-FEM is constructed

using both standard finite element and enriched basis

functions. Both these classes of basis functions rely on

an underlying finite element mesh. While such an FE

mesh can be constructed independent of the crack geom-

etry, it nonetheless impacts the accuracy of the fracture

simulation. In general, the accuracy of a given extended

FE simulation is governed by the structure of the FE

mesh and the form of the near-tip enrichment (geomet-

ric or topological). In order to ensure a desired level of

accuracy, the background mesh will usually need to be

adaptively refined or some form of r-adaptivity will be

required to construct a suitable mesh. However, irrespec-

tive of the choice made, it is important to emphasize that

the process of adaptivity is greatly simplified since the

mesh need not conform to the crack geometry. It is much

simpler to locally refine a mesh in a region to some spe-

cific level of resolution than it is to construct a mesh that

conforms to a crack, and this is especially so in three di-

mensions.

Adaptivity with the X-FEM can be driven by sev-

eral considerations. In particular, we focus on the rep-

resentation of the crack geometry, the accuracy of the

approximate displacement field, and the extraction of

stress intensity factors. The first two are intimately re-

lated. On the one hand, the geometry of a crack or frac-

ture network can be captured by adapting the integration

cells within elements that contain cracks. When Heavi-

side enrichment is then added to the standard FE ap-

proximation, the kinematics of the crack geometry can

be captured by the displacement approximation, albeit

with some caveats. For example, a single Heaviside func-

tion cannot capture multiple cracks that pass through

a single element, and perhaps more importantly, it can-

not capture cracks that terminate inside elements. The

use of Heaviside enrichment alone implies that crack tips

terminate on element edges, which is limiting for many

fracture applications.

Near-tip enrichment not only allows a more precise

representation of the crack-tip geometry, it also improves

the accuracy of the displacement approximation by in-

troducing singular fields. But here too, there are limits

to the basic extended finite element approximation (4a)

as discussed in Bellec and Dolbow (2003). For cracks

that are sufficiently small relative to the mesh size, the

near-tip enrichment functions cease to be appropriate.

In these limiting cases, discontinuities in near-tip enrich-

ment functions can extend too far, beyond the end of

the crack on the other side. To some degree, accuracy

can be recovered by modifying the near-tip enrichment

to account for both tips.

Regarding stress intensity factors, if several crack tips

or fronts lie within the same element, it is difficult to sep-

arate contributions from each of them using domain and

interaction integrals. It is thus reasonable to adaptively

refine meshes so that several elements separate distinct

tips and fronts whenever possible. Such heuristics are less

than satisfactory. More generally, the appropriate level
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of mesh refinement needs to be analyzed through a poste-

riori error estimation techniques. Such error estimation

tools for the X-FEM have been designed, for example,

see Rodenas et al. (2008) and Duflot and Bordas (2008).

An interesting two-scale approach has been proposed

by Duarte and Kim (2008) for static cracks and extended

to propagating cracks in Pereira et al. (2011). The idea

is to use a fixed global mesh with finer, nested meshes to

obtain accurate fields near crack fronts. The macro prob-

lem on the global mesh uses enrichment functions that

are computed on the fine local grids using boundary con-

ditions of the global problem (at the previous step). This

decomposition between the two scales not only reduces

the computational time but also allows the global mesh

to remain fixed.

3.3 Extension to three dimensions

The displacement approximation (4) directly extends to

three dimensions. The crack geometry in three dimen-

sions is described by a surface (crack interior) and a

boundary curve (crack front). As enrichment functions,

the generalized Heaviside function is used for the crack

interior and the two-dimensional (plane-strain) asymp-

totic functions given in (4b) are used for the crack front.

The definitions for the sets of enriched nodes are identi-

cal to the two-dimensional case. For example, all nodes

whose basis function support contains the crack front

are enriched with the near-tip functions. In three di-

mensions, a local crack-tip coordinate system (r, θ) is
attached to each point s on the crack front (see Fig. 4).

For a given integration point x ∈ Ω, the point s on

the crack front is needed to determine the local coor-

dinate system to compute the enrichment functions as

well as in post-processing to extract the stress intensity

factors using the domain form of the contour interaction

integrals. In finite element analysis, a nonlinear Newton

iterative scheme is needed to compute the shortest dis-

tance, which is then used to set up the local coordinate

system at s (Gosz and Moran, 2002). An implicit repre-

sentation of the crack geometry using level sets greatly

simplifies these computations in the X-FEM (see Sect.

6).

While it is common to use the four functions (4b) for

both two and three-dimensional problems, it bears em-

phasis that they are only asymptotic under plane-strain

conditions. Many fracture problems in three dimensions

have cracks that intersect a free surface, where the na-

ture of the singularity changes. Theoretical analysis due

to Benthem (1977) reveals that the strength of the singu-

lar fields near a free surface depends on the Poisson’s ra-

x

x
n

x2

3x

1

s

s

s

s

Crack front Λc

r

θ

Fig. 4: Local coordinate system for crack front enrich-

ment.

tio ν. For ν = 0, a r−1/2 singularity in the near-tip stress

field exists, as one might expect. However, for ν > 0,

the strength of the singularity is generally less than 1/2.

This variation in the singularity near the free surface is

neglected in most studies that use the X-FEM. In very

recent work, González-Albuixech et al. (2015) modify the

enrichment functions to account for free-surface effects,

which shows improvements in the accuracy of the ex-

tended finite element computations.

We also mention some alternatives to near-tip en-

richment in three dimensions. Consider a standard eight-

node trilinear brick element, which employs eight stan-

dard shape functions and 24 degrees of freedom to ap-

proximate a vector-valued displacement field. When near-

tip enrichment is added in the form of (4b), an additional

12 degrees of freedom per enriched node are required.

As such, an eight-noded element with all nodes enriched

with near-tip functions employs 120 degrees of freedom

(24 standard and 96 enriched).

One approach to reduce this relatively large num-

ber of degrees of freedom and still capture the asymp-

totic field is to employ vectorial enrichment. The use of

vectorial enrichment for crack problems was first intro-

duced in Duarte et al. (2000). With the standard near-

tip enrichment, each of the four scalar enrichment func-

tions (4b) are multiplied by vectorial degrees of freedom

bkαt. By contrast, vectorial enrichment uses three vector-

valued enrichment functions that are each multiplied by

scalar degrees of freedom. The result is that the num-

ber of additional degrees of freedom per enriched node

is reduced from 12 to 3. Recent work by Chevaugeon

et al. (2013) and Gupta et al. (2015) in two and three di-

mensions, respectively, demonstrate that when combined

with the geometric enrichment strategy, use of vectorial

enrichment provides the same level of accuracy at re-

duced computational cost.
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3.4 Programming

The extended finite element approximation (4a) can be a

challenge to incorporate into standard finite-element pro-

grams, depending on the structure of the basic code and

its ability to manage degrees of freedom. Rather than a

standard element-centric philosophy, the X-FEM adopts

a nodal-centric viewpoint when building an enriched ap-

proximation. As indicated in Fig. 2, this gives rise to

elements with variations in both number and type of de-

grees of freedom. The number of enriched nodes for an

element can be zero, one, or all the nodes of the element.

More generally, elements can have a mix of standard,

near-tip, and Heaviside degrees of freedom.

Many finite-element programs assume that all ele-

ments within a block have the same number of degrees

of freedom. Using mesh structures that respect this re-

striction helps to optimize memory and reduce latency

for parallel calculations. When only Heaviside enrich-

ment is used, such structures can easily be maintained

by adopting the partial element approach of Hansbo and

Hansbo (2004). With near-tip enrichment, one (very in-

efficient) approach is to construct a mesh of elements

with all nodes enriched, and then to simply fix degrees

of freedom to zero for those nodes with basis function

supports that are far away from any crack tip.

Beyond these basic considerations, there are many

technical aspects to consider to properly and efficiently

handle the interaction between an arbitrary crack geome-

try and a background mesh. This includes the utilization

of geometric predicates to deal with tolerances and re-

cursive algorithms for constructing integration cells. For

details into these issues, we refer the reader to discus-

sions in Sukumar et al. (2000) and Sukumar and Prévost

(2003). Importantly, the enrichment strategies of the X-

FEM have been successfully incorporated into a wide

range of commercial and research codes: for example,

Abaqus, LS-DYNA, Code Aster and GetFem++ to name

just a few.

4 Numerical computation of weak form integrals

On using trial and test functions of the form (4) in the

weak form (3), we obtain the discrete set of equations in

the X-FEM (Moës et al., 1999). The entries of the stiff-

ness matrix are given by integrals with integrands that

are discontinuous across the crack and/or are also weakly

singular at the crack-tip. To accurately evaluate these

contributions to the stiffness matrix, additional proce-

dures are needed to perform the numerical integration.

First and foremost, since the crack is a line or sur-

face discontinuity that intersects an enriched element,

any numerical integration scheme must perform quadra-

ture over the subdomains on either side of the crack. To

this end, the simplest and most widely used approach is

the partitioning of the finite element into subcells (tri-

angles in R2 and tetrahedra in R3) for the purpose of

numerical integration (Moës et al., 1999; Sukumar et al.,

2000). In 2D, an enriched element is decomposed into

a collection of triangles, with the crack conforming to

the boundary edges of the triangles. It is worth pointing

out that this procedure is not equivalent to remeshing ,

since no additional degrees of freedom accrue and in ad-

dition, there are no restrictions placed on the shape of

these triangles. The partitioning is relatively easy to im-

plement in 2D, but for multiple cracks with kinks in 3D,

more sophisticated computational geometric algorithms

are needed for an efficient and robust implementation.

To avoid the need for partitioning the elements, algo-

rithms have also been devised for polynomial-precision

quadrature rules that integrate discontinuous functions

on either side of the crack (Ventura, 2006; Holdych et al.,

2008; Mousavi and Sukumar, 2010b; Ventura and Ben-

venuti, 2015); however, these approaches are still the sub-

ject of current research, and hence the partitioning pro-

cedure continues to be the preferred method-of-choice for

numerical integration within the X-FEM.

Elements that contain the crack-tip in two dimen-

sions or those that intersect the crack front in three

dimensions require special treatment, since the crack-

tip singularity lies within such elements. A higher-order

tensor-product Gauss quadrature rule as adopted in Moës

et al. (1999) and Sukumar et al. (2000) suffices for coarse-

mesh accuracy. However, to demonstrate robustness of

the method and to establish convergence for geometric

enrichment (Laborde et al., 2005; Béchet et al., 2005),

the singular (weakly) integrands must be accurately in-

tegrated to ensure optimal asymptotic rates of conver-

gence. Use of Gauss quadrature limits the accuracy for

such integrals, and hence in two dimensions an almost-

polar transformation (Laborde et al., 2005), which is

identical to the Duffy map (Duffy, 1982)
)
, and a parabolic

transformation (Béchet et al., 2005), were introduced.

When the crack-tip is located within an element, the

element is partitioned into triangles with the crack-tip

located at a vertex of each triangle. Mousavi and Suku-

mar (2010a) generalized the Duffy transformation to in-

tegrate weakly singular integrands. In this approach, an

affine transformation is first used to map each triangle

to the standard triangle T0 shown in Fig. 5. Then, the

unit square (unit cube in 3D) is mapped to the standard
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triangle (pyramid in 3D) via the transformation:

(u, v)→ (x, y) : x = uβ , y = xv = uβv, (5)

where β ∈ Z+. Consider integrating f(x) := g(x)r−α

over T0, where r =
√
x2 + y2 and g(x, y) is a bivariate

polynomial. Then, on applying (5), the kernel becomes

K(u, v) :=
g(uβ , uβv)|J |

rα
=
g(uβ , uβv)βu2β−1−αβ√

1 + v2
, (6)

where |J | is the Jacobian of the map in (5). The pa-

rameter β is selected so that the exponent of u in (6) is

the smallest positive integer. For α = 1, the 1/r singu-

larity is eliminated with β = 1 (Duffy transformation),

whereas for 1/
√
r (α = 1/2), β = 2 is optimal. Since 1/r

and 1/
√
r terms arise in the X-FEM for elastic fracture,

this approach is accurate in two dimensions (Mousavi

and Sukumar, 2010b; Minnebo, 2012; Cano and Moreno,

2015). Cano and Moreno (2015) provide a general pre-

scription to obtain the map Dg that cancels the sin-

gularity. These integration schemes are also pertinent

when other power singularities are present, for instance

in applications such as as hydraulic fracture (Gordeliy

and Peirce, 2015), crack impinging a bimaterial inter-

face (Huang et al., 2003), and Poisson and elasticity

problems with reentrant corners. For a crack front that

represents a line singularity, Minnebo (2012) describes a

comparison of existing approaches, and presents exten-

sions of the Duffy and parabolic transformation schemes

to integrate singular enrichment functions in 3D.

T0y

xu

v v

u

SS
Dβg D

Fig. 5: Transformations from the unit square to the stan-

dard triangle. The Duffy transformation D : S → T0
maps the unit square to the standard triangle. This is

followed by a power transformation Dβg : S → S that

maps the square onto itself. The composite map from

u→ x is: x = uβ , y = uβv, where β ∈ Z+ (Mousavi and

Sukumar, 2010a).

5 Conditioning of the linear system of equations

Conditioning issues may arise with the X-FEM, which

come in two types. The first is related to the crack-tip

enrichment, which was first observed in Laborde et al.

(2005) and Béchet et al. (2005). Ill-conditioning in the

X-FEM stems from the fact that on a given support of

a nodal finite element basis function, the enriched basis

functions may be nearly linearly dependent among them-

selves and/or with the finite element basis functions. We

note in passing that instead of forming the partition-of-

unity functions from the finite element shape functions,

use of flat-top functions (Griebel and Schweitzer, 2000)

ensures linearly independent basis functions and algo-

rithms are available that mitigate ill-conditioning in the

particle partition-of-unity method (Schweitzer, 2011). The

crack-tip enrichments given in (4b) introduce 8 (12) ad-

ditional degrees of freedom per node in 2D (3D). Glob-

ally, these enrichment functions are linearly independent.

However, on an element-level the basis functions ({NiFα})
that are associated with these enrichments can be lin-

early dependent, which was demonstrated in Laborde

et al. (2005). With just topological enrichment, the ill-

conditioning is not severe; however, it is exacerbated

with geometric enrichment. This is due to two reasons:

enriching many nodes within a fixed radius of the crack-

tip can introduce low-energy modes; and away from the

crack-tip,
√
r resembles a polynomial that introduces

near linear-dependencies between the enriched and FE

basis functions. Fortunately, remedies exist. The one pro-

posed in Laborde et al. (2005) is to reduce the number

of enriched degrees of freedom by tying them together,

leading to enrichment functions with larger support. This

approach, however, compromises accuracy.

Another remedy is to enrich each component of the

displacement field using the vectorial enrichment strat-

egy discussed in Sect. 3.3. The impact of vectorial en-

richment on conditioning was examined by Chevaugeon

et al. (2013). Vectorial enrichment improves conditioning

in large part because of the reduction in enriched degrees

of freedom — a factor of four at each node in 3D.

Yet another way to improve conditioning is to de-

sign an ad hoc preconditioner (Béchet et al., 2005). The

preconditioner is devised by considering all approxima-

tions functions related to a support and orthogonaliz-

ing them with respect to the bilinear form, i.e., block-

preconditioning, with each block gathering all the de-

grees of freedom for a particular node.

The generalized Heaviside (discontinuous) enrichment

can be the cause for the second type of ill-conditioning.

Indeed, if the support of a basis function is cut by a crack

that is very close to its boundary, the standard FE basis

function and the enriched basis function will be nearly

linearly-dependent. This issue may also arise if several

cracks cross the support of a basis function, partitioning

the support of the basis function into two pieces with
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one volume significantly smaller than the other (Siavelis

et al., 2013). Again, the specific X-FEM preconditioner

designed in Béchet et al. (2005) is found to be efficient.

Very recently, a new design of the enrichment func-

tions has been proposed to mitigate ill-conditioning in

partition-of-unity finite element methods. It is coined

SGFEM (stabilized generalized finite element method)

(Babuška and Banerjee, 2012). The key idea is to re-

move from the enrichment function its piecewise linear

continuous interpolant. The strategy is very efficient in

terms of reducing the condition number and an error re-

duction is also observed. Indeed, the SGFEM does not

give the same solution as the GFEM due to the ele-

ments that are located on the boundary of the enrich-

ment region. On these elements, the new enrichment

strategy appears to be more efficient. For a planar three-

dimensional edge-crack problem with vectorial enrich-

ment functions, Gupta et al. (2015) showed that the

SGFEM improves accuracy and reduces the condition

number vis-à-vis GFEM for topological as well as geo-

metric enrichment strategies.

6 Implicit representation of cracks in three

dimensions

In the X-FEM, cracks can be arbitrarily placed within a

finite element mesh. Since cracks are modeled indepen-

dent of the underlying FE mesh, their geometry needs

to be stored in some other manner. To this end, one ap-

proach is to explicitly provide the crack geometry as a set

of segments or parametric curves in two dimensions, and

as a set of triangles (nonplanar surface) in three dimen-

sions. Initial papers on the X-FEM did use this explicit

representation. A major drawback to this approach is

that it requires a completely separate infrastructure to

represent the crack, beyond what the background finite

element mesh can provide. Furthermore, while a great

deal of progress has been made using explicit represen-

tations of crack geometries to simulate crack growth in

three dimensions, the approach remains non-trivial for

industrial-grade problems. We point the reader to Gar-

zon et al. (2014) for insight into the state-of-the-art and

remaining challenges. Considerations such as these have

motivated the development and pursuit of alternative

methods for representing crack geometries.

Level set and fast marching methods (Sethian, 1999)

are numerical techniques for capturing moving interfaces.

They provide an implicit way to store boundaries and

to evolve them under known prescribed velocities on the

boundaries. The boundary is represented as the zero level

contour of a signed distance function that is associated

with it. The signed distance function may be discretized

by nodal values of a standard finite element field, and

hence geometrical features are transformed into finite el-

ement fields.

For closed surfaces of codimension 1 in Rd, the level

set representation and implementation is straightforward.

However, modeling cracks poses significant challenges,

since a crack does not decompose a domain into two dis-

joint parts (except when the domain is fully cut). Hence,

two level sets are needed to locate a crack: a normal

level set function φn(x) and a tangential level set func-

tion φt(x). For representing 2D cracks, the use of level

sets with the X-FEM was conceived in Stolarska et al.

(2001), and the extension to 3D was presented in Moës

et al. (2002) and Gravouil et al. (2002). The sign of the

function φn(x) indicates if a point x is above or below

the crack, and the function φt(x) provides the distance

to the crack front. On combining the two, the crack dis-

continuity and the crack front of the discontinuity are

represented by the sets

Γc = {x : φn(x) = 0 and φt(x) < 0}, (7a)

Λc = {x : φn(x) = 0 and φt(x) = 0}. (7b)

Figures 6a and 6b illustrate φn and φt in 2D and 3D,

respectively.

In addition to providing the location of the crack, the

use of these two level set functions offer additional ad-

vantages in extended finite element computations. First,

on using φn(x) and φt(x), the local crack-tip coordinates

(r, θ) (see Fig. 4) that are needed for evaluating enrich-

ment functions are readily computed:

r =
√
φ2n + φ2t , θ = tan−1

(
φn
φt

)
. (8)

Secondly, for even planar cracks (penny or elliptical in

shape) within X-FEM or those meshed within FEM,

knowing the associated level set fields is beneficial to

express the auxiliary fields that arise in the domain form

of the contour interaction integrals (see Sect. 7).

7 Extraction of stress intensity factors and crack

growth simulations

The notion of stress intensity factors (SIFs), which is

central to linear elastic fracture mechanics, appear in

Williams’s expansion of the stress field in the vicinity of

the crack-tip. The three (constant) stress intensity fac-

tors KI , KII and KIII that correspond to the open-

ing mode, in-plane shear mode, and out-of-plane shear

mode, respectively, are sufficient to define the so-called

K-dominant field. When small-scale yielding conditions



Extended finite element method in computational fracture mechanics: a retrospective examination 11

φn = 0

φn > 0

φn < 0

φt = 0

φt > 0

φt < 0

(a)

φn = 0

φ
t
 = 0

crack discontinuity

(b)

Fig. 6: Level set representation of a crack. Signed dis-

tance functions φn and φt to represent the crack interior

and the crack tip/front, respectively. The functions are

illustrated for 2D in (a) and for 3D in (b).

hold, the elastic K-field governs fracture and failure of

the material. Irwin showed that the energy release rate

(crack driving force) is related to the stress intensity fac-

tors. Stress intensity factors are used to both ascertain

whether or not cracks will grow under given loading con-

ditions, and also to determine the direction of crack prop-

agation under mixed-mode loading conditions.

For stress intensity factor computations with finite el-

ements or extended finite elements, the use of crack-tip

flux integrals leads to better accuracy than displacement

or stress extrapolation techniques. Domain forms of the

contour J-integral and associated contour interaction in-

tegrals remain the most popular method for extracting

SIFs from finite-element calculations (Yau et al., 1980;

Li et al., 1985; Shih et al., 1986; Moran and Shih, 1987;

Nakamura and Parks, 1989; Gosz and Moran, 2002).

In the interaction integral method, the two-dimensional

plane strain auxiliary fields are introduced and super-

posed on the actual fields that arise from the solution

of the boundary-value problem. By judicious choice of

the auxiliary fields, the contour interaction integral can

be directly related to the mixed-mode stress intensity

factors.

Interaction integral methods were employed in two-

dimensional analysis with the X-FEM (Belytschko and

Black, 1999; Moës et al., 1999). The domain represen-

tation of the interaction integral converts a contour in-

tegral around the crack-tip into an area integral over

the region enclosed by the contour. Let this domain of

integration be denoted by Ωhk . In two dimensions, the

process is completed in three basic steps. First, one iden-

tifies all elements having a node within a specified radius

rk := αhe of the crack-tip, where α is a scalar multiple

and he is the crack-tip mesh size. This set of elements de-

fines Ωhk . Then, a scalar-valued weight function, typically

designated as q(x), is constructed using the nodal shape

functions of these domain elements. A common proce-

dure is to use a plateau function for q(x), which assumes

a value of unity everywhere except near the boundary

of the domain where it vanishes. Finally, contributions

to the interaction integral, which involve field quantities

and their gradient, are assembled by looping over these

domain elements.

For planar cracks in three dimensions, the domain

form of the J-integral is used (Sukumar et al., 2000),

whereas for nonplanar cracks in three dimensions, the

interaction integral method of Gosz and Moran (2002)

is used to extract the SIFs in extended finite element

computations (Moës et al., 2002; Sukumar et al., 2008).

In three dimensions, the process is not as straightfor-

ward as in two dimensions, since the collections of ele-

ments that represent suitable domains for SIF extraction

along the crack front are not so easily identifiable. An ap-

proach that was introduced in Sukumar et al. (2000) is

to construct a completely independent group of hexahe-

dral cells near a point on the crack front where SIFs are

desired. Domain integrals are then assembled by loop-

ing over newly-created quadrature points in these cells.

At each quadrature point in a cell, it is necessary to lo-

cate the position of the point in the original mesh and

then extract the needed quantities such as the strain en-

ergy density. We note that these fields are discontinuous

across element boundaries, and as such there is error
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associated with the quadrature in these cells. SIFs ob-

tained with this approach tend to exhibit small oscilla-

tions, as shown in Sukumar et al. (2000). One means to

effectively smooth oscillations for SIFs along the crack

front is to adopt a modal decomposition, such as that

proposed by Galenne et al. (2007) for dynamic loading.

While this technique was originally proposed for cracks

that are meshed, it can be applied to embedded crack

surfaces as in the X-FEM.

Under fatigue-type crack growth conditions, knowing

the stress intensity factor distribution along the crack

front for the maximum and minimum load in each cycle,

the crack extent is computed from the Paris law for a

given number of cycles. The crack growth direction is de-

termined using the maximum hoop stress criterion (Er-

dogan and Sih, 1963). For two-dimensional cracks that

are represented by piecewise linear segments, the exact

geometry is available, and hence its extension during

crack growth is simple. In three dimensions, the use of

level set functions φn and φt is attractive to represent

cracks during crack propagation simulations. On know-

ing the magnitude and orientation of crack growth, both

φn and φt are updated using the level set method (Gravouil

et al., 2002).

For monotonically advancing interfaces such as crack

fronts, the fast marching method (FMM) (Sethian, 1999)

has certain advantages over the level set method — FMM

is a single-pass algorithm with no time-step restriction,

which is unlike the level set method that is limited by

a critical time-step to ensure stability. The FMM was

first adopted for crack propagation simulations of pla-

nar cracks in Sukumar et al. (2003) and subsequently

extended for nonplanar cracks in Sukumar et al. (2008).

Duflot (2007) has presented an overview of various algo-

rithms for the level set description for three-dimensional

cracks. Since these initial papers, with an eye on robust-

ness and speed, improvements have been proposed — use

of a narrow band FMM by Shi et al. (2010) and use of

alternative level set update equations by Colombo and

Massin (2010).

8 Extensions beyond quasistatic elastic fracture

The preceding sections have focused on the modeling

of cracks using the X-FEM within the purview of qua-

sistatic linear elastic fracture mechanics. Of course, frac-

ture phenomena is in general much richer and diverse,

and the extended finite element method has been brought

to bear on more complicated fracture problems in lin-

ear and nonlinear failure mechanics. Herein, we touch

upon some of the more important and noteworthy de-

velopments along these lines, including cohesive mod-

els of fracture, dynamic fracture, and inelastic fracture

governed by finite deformation kinematics and incom-

pressible material behavior. We also discuss important

advances concerning the development of models that en-

able transitions from damage to discrete fractures.

8.1 Cohesive models, dynamic fracture and nonlinear

fracture

Cohesive models are one of the more prominent means

to treat fracture and failure. They are characterized by

an interfacial constitutive law (often nonlinear) relating

tractions and displacements on crack faces. With cohe-

sive models and the X-FEM, a key question concerns

identifying the crack geometry and the extent of the co-

hesive region during the progression of the simulation.

This aspect is addressed in depth in Moës et al. (2002).

Another question concerns the stability of the formula-

tion as the effective stiffness of the interface increases, an

issue first raised by Ji and Dolbow (2004). This aspect

has been addressed in part through both the develop-

ment of stable (Ferté et al., 2014) and stabilized (An-

navarapu et al., 2014) formulations for treating interfa-

cial constitutive laws with the X-FEM. Mergheim et al.

(2005) and Mergheim et al. (2007) have adopted the ap-

proach of Hansbo and Hansbo (2004) to simulate prop-

agating cohesive cracks in quasi-brittle materials using

small-strain and finite-strain kinematics, respectively.

While cohesive zone models are relatively straightfor-

ward in their implementation, dynamic fracture is not.

Indeed, dynamic fracture has raised specific issues re-

lated to the X-FEM, including the need for appropriate

mass lumping strategies and stable time integrators with

near-tip enrichment (Menouillard et al., 2008). Schweitzer

(2013) has proposed a variational mass lumping scheme

for partition of unity methods, which holds promise for

dynamic fracture. Robust time integration schemes re-

main an open issue, in the sense that the use of an

explicit scheme precludes removing near-tip enrichment

from nodes as a crack propagates. Conditional stability

can only be guaranteed if the number of near-tip en-

riched degrees of freedom monotonically increases with

time (Réthoré et al., 2005).

Up to this point, we have confined our attention to

fracture problems in which the bulk material response is

linearly elastic. The basic ideas of the X-FEM have also

been adapted for other bulk material models, to varying

degrees. For example, it is trivial to extend the concept

of Heaviside enrichment to finite strains and nonlinear

elasticity, as shown in Wells and Sluys (2001). However,
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beyond linear elasticity, identifying near-tip enrichment

functions that are sufficiently accurate to recover opti-

mal rates of convergence becomes much more challeng-

ing (Legrain et al., 2005). Examples of recent attempts

to identify suitable near-tip enrichment functions can be

found in Elguedj et al. (2006) for plasticity and in Karoui

et al. (2014) for compressible hyperelasticity.

With nearly-incompressible material response, the stan-

dard approach with finite elements is to employ mixed

formulations (or their selective reduced-integration equiv-

alents) that are stable. The first attempt at this with

the X-FEM adopted an enhanced assumed strain for-

mulation, and introduced the concept of a discontinu-

ous version of the patch test (Dolbow and Devan, 2004).

More generally, not all element formulations remain sta-

ble once Heaviside and/or near-tip enrichment is intro-

duced. We point the reader to the work of Legrain et al.

(2008) for an exposé on this topic.

8.2 Connecting damage and discrete fractures

We have emphasized that the X-FEM is, first and fore-

most, an enabling technology. It provides a means to in-

troduce a discontinuity inside an element, as well as a

network of discontinuities inside a mesh. It also provides

a way to enhance finite element approximation func-

tions beyond the standard piecewise-polynomial func-

tions, such that near-tip singularities can be captured

on relatively coarse meshes. It bears emphasis that such

capabilities are not a replacement for the physics of frac-

ture. In order to be robust, fracture simulations employ-

ing the X-FEM need to be based on sound theoretical

underpinnings.

Robustness has proven to be elusive for complex three-

dimensional crack growth simulations, where for example

there is an interest in representing many crack surfaces

that nucleate, interact, and merge. Several researchers

have attempted to use relatively simple physical laws to

nucleate and grow multiple crack surfaces in three di-

mensions, with varying degrees of success (Molino et al.,

2004). While such approaches can undoubtedly enable

fragmentation simulations, spatial convergence in vari-

ous output quantities of interest has yet to be demon-

strated. On occasion, failures in this arena have been

attributed to the limitations of the X-FEM itself, but

we contend that in fact the issue is a reliance on physi-

cal models that are unsound, combined with algorithms

that employ heuristics.

We believe that a sound approach to treat this class

of problems is to view the X-FEM as a means to transi-

tion from continuum damage models to discrete fracture

surfaces. Early studies along these lines were performed

by Simone et al. (2003) who modeled the transition from

nonlocal damage to discrete cracks, and by Comi et al.

(2007) who used enrichment functions in the X-FEM

to facilitate the transition from a damage model to a

cohesive zone model. We also mention the contribution

of Seabra et al. (2012) who placed discontinuity surfaces

in plastic zones for ductile failure, as well as the recent

work of Tamayo-Mas and Rodriguez-Ferran (2015), who

placed them in damage zones for quasi-brittle failure.

Continuum damage models raise interesting theoretical

questions when the capabilities of the X-FEM are con-

sidered. When a standard damage model is employed

with finite elements, at some point damage accumulates

to such a degree that some elements are completely de-

graded. These regions introduce a number of challenges,

such as significant mesh distortion and poor condition-

ing. A crude way to treat such elements is to simply

remove them from the discretization. But this approach

results in a loss of mass, and fracture surfaces that are

jagged.

In principle, the X-FEM provides an elegant approach

to introduce a failure surface as damage progresses. But

where should distinct fracture surfaces be placed for a

given damage model, and how quickly should they ad-

vance? Surfaces that advance too quickly end up failing

material that has not fully degraded. Conversely, surfaces

that do not advance at the appropriate rate result in the

same issues that were mentioned above, where regions of

completely degraded elements can persist.

The aforementioned questions are not as much re-

lated to the X-FEM as they are to theoretical issues per-

taining to the transition from damage to fracture. The

recently proposed Thick Level Set (TLS) method (Moës

et al., 2011) is an attempt at addressing these questions.

In the TLS, the damage variable is tied to a level set

field, from which the contour of the crack (d = 1) can

be extracted. Damage reaches unity at exactly the same

rate as the crack advances. Once the crack geometry is

identified, the extended finite element technology is in-

troduced to capture displacement jumps. The TLS also

remedies a technological challenge with level sets and

fracture surfaces, in the sense that a single level set field

can be used for all the cracks in the domain. The method

has been used to simulate complex fracture problems in

three dimensions, including crack nucleation, branching,

and coalescence.
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9 Conclusions and future outlook

In this paper, we have provided our perspective on the

main developments of the X-FEM (and related methods)

in computational fracture mechanics. As stated in the

introduction, this is not a review paper, but rather a

synthesis of our views on the main thrusts in the X-

FEM. We have concentrated on the use of the X-FEM

for the simplest, but yet most widely-used mechanical

failure model — linear elastic fracture mechanics with a

crack growth model that only requires knowing the stress

intensity factors along the crack front.

The extended finite element method is an advance

in element technology for modeling cracks and to con-

duct crack growth simulations without the need for the

finite element mesh to conform to the crack geometry.

For crack modeling, the framework of partition-of-unity

enrichment is used to construct the displacement approx-

imation: Heaviside enrichment is used for the crack in-

terior and elastic near-tip asymptotic enrichment func-

tions are used for the crack tips. For comparable number

of degrees-of-freedom, use of the X-FEM with topologi-

cal enrichment (crack tips) yields better accuracy than

quarter-point finite elements; however, both approaches

deliver a (suboptimal) convergence rate of 1/2 in the en-

ergy seminorm. With geometric enrichment for the crack

tips, the accuracy in the X-FEM is further enhanced, and

more significantly, the optimal convergence rate of 1 in

the energy seminorm for first-order Lagrange finite ele-

ments is realized. The flexibility that the X-FEM affords

renders it particularly attractive to conduct parametric

linear elastic fracture studies for cracks that have varying

size, shape and location in complex geometries.

Notwithstanding the many advances and enhance-

ments of the X-FEM for linear and nonlinear fracture

computations, there still remain many challenges and

open issues that can form the subject for future research.

Further theoretical and numerical developments in r-

adaptivity and goal-oriented error estimation techniques

can ensure that a user-specified level of accuracy for the

stress intensity factors can be met in elastic fracture anal-

yses. Since geometric enrichment deteriorates the condi-

tioning of the stiffness matrix, efficient preconditioners

and solvers for ill-conditioned linear system of equations

are of interest. Devising efficient numerical integration

techniques without the need to partition the finite ele-

ments can lead to simplifications in the implementation

of the X-FEM for fracture problems, and also enhance

the robustness of the method. Since the crack geome-

try is not described by the FE mesh, the extraction of

stress intensity factors using the volume representation

of the interaction integral for three-dimensional crack

configurations is, both, error prone and computationally

demanding. Alternative approaches to compute SIFs in

extended finite element need to be explored that are ac-

curate, reliable and computationally efficient.

Conducting three-dimensional crack growth simula-

tions poses an additional set of challenges to capture the

evolution of cracks using level set functions. Variants of

the fast marching method to update the level set func-

tions for crack propagation simulations appear to be a

fruitful direction to pursue. For dynamic fracture, suit-

able enrichment strategies and mass lumping techniques,

and stable time-integration schemes can pave the way

towards accurate simulations, while simulating fragmen-

tation with a transition from continuum damage to dis-

crete cracks remains a challenge. Finally, as an enabling

technology, the X-FEM should now be also viewed as

a numerical tool that allows one to assess and validate

existing theoretical models against experiments and, in

case such tests fail, provides the impetus towards the

development of more appropriate models.
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Gravouil, A., N. Moës, and T. Belytschko (2002). Non-

planar 3D crack growth by the extended finite ele-

ment and level sets—Part II: Level set update. In-

ternational Journal for Numerical Methods in Engi-

neering 53 (11), 2569–2586.

Griebel, M. and M. A. Schweitzer (2000). A particle-

partition of unity method for the solution of elliptic,

parabolic and hyperbolic PDEs. SIAM Journal on

Scientific Computing 22 (3), 853–890.

Gupta, V., C. A. Duarte, I. Babuška, and U. Baner-
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and H. Bung (2008). Mass lumping strategies for X-

FEM explicit dynamics: Application to crack propa-

gation. International Journal for Numerical Methods

in Engineering 74, 447–474.

Mergheim, J., E. Kuhl, and P. Steinmann (2005). A finite

element method for the computational modelling of

cohesive cracks. International Journal for Numerical



Extended finite element method in computational fracture mechanics: a retrospective examination 17

Methods in Engineering 63, 276–289.

Mergheim, J., E. Kuhl, and P. Steinmann (2007). To-

wards the algorithmic treatment of 3D strong discon-

tinuities. Communications in Numerical Methods in

Engineering 23, 97–108.

Minnebo, H. (2012). Three-dimensional integration

strategies of singular functions introduced by the

XFEM in the LEFM. International Journal for Nu-

merical Methods in Engineering 92, 1117–1138.

Moës, N., M. Cloirec, P. Cartraud, and J.-F. Remacle

(2003). A computational approach to handle complex

microstructure geometries. Computer Methods in Ap-

plied Mechanics and Engineering 192, 3163–3177.
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