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Abstract

In Part I [Int. J. Solids Struct., 2003], we described the implementation of the extended finite element method (X-

FEM) within Dynaflowe, a standard finite element package. In our implementation, we focused on two-dimensional

crack modeling in linear elasticity. For crack modeling in the X-FEM, a discontinuous function and the near-tip

asymptotic functions are added to the finite element approximation using the framework of partition of unity. This

permits the crack to be represented without explicitly meshing the crack surfaces and crack propagation simulations can

be carried out without the need for any remeshing. In this paper, we present numerical solutions for the stress intensity

factor for crack problems, and also conduct crack growth simulations with the X-FEM. Numerical examples are

presented with a two-fold objective: first to show the efficacy of the X-FEM implementation in Dynaflowe; and second

to demonstrate the accuracy and versatility of the method to solve challenging problems in computational failure

mechanics.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In a prior study (Sukumar and Pr�eevost, 2003) (referred to hereafter as Part I), we have described the

implementation of the extended finite element method (X-FEM) for the modeling of crack discontinuities

within Dynaflowe (Pr�eevost, 1983), a standard finite element package. The methodology adopted for

modeling crack discontinuities falls within the purview of the X-FEM (Mo€ees et al., 1999; Daux et al., 2000),
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which is a particular instance of the partition of unity method (Melenk and Babu�sska, 1996; Duarte and

Oden, 1996).

In the X-FEM, special functions are added to the finite element approximation using the framework

of partition of unity. For crack modeling, a discontinuous function and the two-dimensional asymptotic
crack-tip displacement fields are used to account for the crack. This enables the domain to be modeled

by finite elements without explicitly meshing the crack surfaces. Hence, crack propagation can be

simulated without any user-intervention or the need to remesh as the crack advances. For additional

details and an exhaustive list of references on the X-FEM and related methods, the interested reader can

refer to Part I.

In this paper, we focus our attention on the application of the X-FEM to crack problems in isotropic

and bimaterial media. Numerical examples are presented to demonstrate the accuracy of the numerical

technique and to show its versatility to solve challenging problems in computational failure mechanics.
2. Numerical applications

We present numerical results for the computation of the stress intensity factors (SIFs) and also study

crack propagation simulations in isotropic and layered materials. First, three benchmarks problems in

linear isotropic elasticity are considered with the following objectives:

• To verify and test the X-FEM implementation in Dynaflowe;

• To show the accuracy obtainable on unstructured as well as structured meshes that are relatively coarse

at the crack-tip; and
• To study domain independence in the SIF computations.

Then, in keeping with the strength of the X-FEM, we present crack propagation simulations that reveal the

potential of the technique. In particular, first a brittle crack growth simulation in a double cantilever beam

is carried out, and then a mud-crack pattern is simulated to illustrate the advanced crack growth capa-

bilities with the X-FEM. The phenomenon of spalling crack in thin-film structures is studied, and the

application of the X-FEM to channel-cracking in thin films is conducted to show the relative ease with

which strong singularities can be modeled within the partition of unity framework.

2.1. Center-crack in tension

As the first example, we model a center-cracked test specimen under pure tension. The model geometry
shown in Fig. 1 consists of a plate of height 2h and width 2b, with a center crack of length 2a (a ¼ 90�). For
very large h and b (h; b � a), the mode I stress intensity factor KI at the crack tip is r

ffiffiffiffiffiffi
pa

p
, where r is the

applied tensile stress on the remote boundary. For finite h and b, a dimensionless correction factor that

depends on the ratio a=b is introduced for the SIF:
KI ¼ F ða=bÞr
ffiffiffiffiffiffi
pa

p
: ð1Þ
The values of the correction factor for various ratios of a=b are listed in Tada et al. (2000). For example, if

a=b ¼ 0:1, then F ða=bÞ ¼ 1:006. In addition, the value of the SIF is independent of the thickness of the

specimen, so that both plane strain and plane stress approximations give the same SIF.

In Fig. 2, a structured and an unstructured mesh for the model geometry with a=b ¼ 0:1 and h=b ¼ 1:5
are illustrated. Due to symmetry, only half of the specimen is meshed. All enriched degrees of freedom

associated with nodes on the essential boundary are set to zero. The structured mesh (Fig. 2a) consists
of uniform bilinear quadrilateral elements (50 · 100 elements), whereas in the unstructured mesh (Fig. 2b
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Fig. 1. Inclined crack under uniaxial tension.
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and c), linear triangular finite elements (3362 elements with 1762 nodes) are used. The crack terminates on

an element edge in the structured mesh (Fig. 2a), whereas in the unstructured mesh the crack-tip is in the

interior of an element (Fig. 2c). In the rectangular mesh, the element size he is one-tenth of the crack length
(he ¼ a=5). The elastostatic boundary-value problem is solved using the X-FEM and the mode I SIF at the

crack-tip is computed using the domain form of the interaction integral (see Part I for details). In Tables 1

and 2, the normalized SIF values are listed for different radii rd of the integration domain used in the

domain integral computations. In Table 1, we present results for the X-FEM with the Heaviside and near-

tip enrichment functions, and also with only the Heaviside enrichment function. The use of the near-tip

fields does lead to better accuracy; the comparison, however, would be more favorable for a crack in a finite

domain in which a coarser mesh can be used. We observe that the KI results are independent of the choice of

the domain radius for radii rd that are about twice or greater than the crack-tip element size. The numerical
solution obtained on structured and unstructured meshes is in excellent agreement with the reference

solution (Tada et al., 2000); the error is less than 1.0%.

2.2. Inclined crack in tension

As an example of a mixed mode crack problem, we consider an inclined crack (2a ¼ 2) that is located at

the center of a plate. The plate has dimensions 20 · 30 (b ¼ 10, h ¼ 15), and the crack is inclined at an angle
a with respect to y-axis (Fig. 1). Uniaxial tension loading conditions are assumed (ry ¼ r). As a reference

solution, we use the SIF solutions for an inclined crack in an infinite domain (Sih et al., 1962):
KI ¼ r
ffiffiffiffiffiffi
pa

p
sin2 a; KII ¼ r

ffiffiffiffiffiffi
pa

p
sin a cos a: ð2Þ
In the numerical model, a uniform mesh consisting of 100 · 100 elements is considered. Numerical results

for the SIFs are obtained for a ¼ 15�, 30�, 45�, 60�, 75�, and domain independence in the SIF computations

is also studied. In Table 3, the normalized SIFs are compared to the reference solution (Sih et al., 1962).

Excellent agreement between the numerical solution and the reference solution is obtained, and domain
independence is realized for domain radii rd P 0:4.



Fig. 2. Finite element meshes for the center-crack problem: (a) structured mesh; (b) unstructured mesh; and (c) unstructured mesh

(vicinity of the crack).
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Table 1

Normalized SIFs for the center-crack problem (structured mesh)

rd
a

KI

r
ffiffiffiffiffiffi
pa

p (X-FEM)
KI

r
ffiffiffiffiffiffi
pa

p (X-FEM)H

0.283 1.033 0.999

0.354 1.015 1.010

0.424 1.004 0.994

0.566 1.005 0.997

0.707 1.005 0.999

Table 2

Normalized SIFs for the center-crack problem (unstructured mesh)

rd
a

KI

r
ffiffiffiffiffiffi
pa

p (X-FEM)

0.424 1.023

0.573 1.000

0.716 0.992

0.859 0.994

Table 3

Normalized SIFs for the inclined crack problem

a SIFs Exact X-FEM

rd ¼ 0:2 rd ¼ 0:4 rd ¼ 0:6 rd ¼ 0:8 rd ¼ 1:0

15� KI

r
ffiffiffiffiffiffi
pa

p 0.0670 0.0565 0.0677 0.0681 0.0675 0.0673

KII

r
ffiffiffiffiffiffi
pa

p 0.2500 0.2105 0.2656 0.2556 0.2458 0.2418

30�
KI

r
ffiffiffiffiffiffi
pa

p 0.2500 0.2651 0.2514 0.2518 0.2521 0.2516

KII

r
ffiffiffiffiffiffi
pa

p 0.4330 0.4321 0.4331 0.4392 0.4384 0.4328

45�
KI

r
ffiffiffiffiffiffi
pa

p 0.5000 0.5007 0.4982 0.5025 0.5029 0.5029

KII

r
ffiffiffiffiffiffi
pa

p 0.5000 0.5040 0.4978 0.4994 0.4997 0.5000

60�
KI

r
ffiffiffiffiffiffi
pa

p 0.7500 0.7711 0.7578 0.7535 0.7534 0.7538

KII

r
ffiffiffiffiffiffi
pa

p 0.4330 0.4480 0.4307 0.4384 0.4372 0.4315

75�
KI

r
ffiffiffiffiffiffi
pa

p 0.9330 0.8724 0.9362 0.9356 0.9364 0.9367

KII

r
ffiffiffiffiffiffi
pa

p 0.2500 0.1479 0.2595 0.2529 0.2444 0.2403
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2.3. Arc-shaped cracks

Consider a circular crack AB of radius R and interior angle 2b in an infinite isotropic material under

biaxial tension r1
x ¼ r1

y ¼ r at infinity (Fig. 3). The exact solution for the mixed mode SIFs is (Sih et al.,

1962)
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Fig. 3. Arc-shaped crack under far-field biaxial tension.
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KI ¼
r

1þ sin2 b
2

pR sin bð1þ cos bÞ
2

� �1=2
; ð3aÞ
KII ¼
r

1þ sin2 b
2

pR sin bð1� cos bÞ
2

� �1=2
: ð3bÞ
The sample geometry is 10 · 20 (half-model), and the arc radius R ¼ 1. The finite element mesh consists of

rectangular elements. In order to capture the curvature and to also model the infinite domain problem, a
structured mesh with Cartesian grid refinement in a narrow band near the crack is used. In Fig. 4, the mesh

in the vicinity of the crack is illustrated. The finite element mesh consists of 21,390 elements with a mesh size

he ¼ 0:02 in the vicinity of the crack, and he ¼ 0:26 away from the crack. In the half-model, five linear

segments are used to represent the crack for b ¼ 45�, whereas for b ¼ 90�, ten linear segments are adopted

in the numerical simulations.

In Table 4, the mode I and mode II stress intensity factors are presented for different choices of the radii

(rd) in the domain integral computations. As opposed to the center-crack and inclined crack problems, a

finer mesh is required for arc-shaped cracks due to the resolution of the crack curvature coupled with the
Fig. 4. Structured mesh in the vicinity of the crack for the arc-shaped crack problem (b ¼ 90�).



Table 4

Normalized SIFs for the arc-shaped crack problem

b SIFs Exact X-FEM

rd ¼ 0:02 rd ¼ 0:04 rd ¼ 0:06

45� KI

r
ffiffiffiffiffiffi
pR

p 0.6776 0.6832 0.6965 0.6956

KII

r
ffiffiffiffiffiffi
pR

p 0.2807 0.2869 0.2722 0.2717

90�
KI

r
ffiffiffiffiffiffi
pR

p 0.4714 0.5110 0.4982 0.4984

KII

r
ffiffiffiffiffiffi
pR

p 0.4714 0.4582 0.4657 0.4653
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fact that the crack size needs to be much smaller than the specimen dimensions to accurately represent the

infinite domain problem. The X-FEM results are in good agreement with the reference solution. For do-

main sizes that vary up to the length of the crack-tip segment, domain independence is observed in the SIFs;

the length of the crack-tip segment (b ¼ 90�) is ‘c � 0:08. Typically, when rd > ‘c, the presence of non-

collinear crack segments (crack curvature) tends to deteriorate the accuracy in the SIFs. In the curved crack

problem, there exists an interplay between the appropriate crack discretization, crack-tip element size, and
the radius rd used in the domain integral for the accurate evaluation of the SIFs. The above results are,

however, not surprising since the J -integral is path-independent only for straight cracks; the use of ap-

propriate path-independent integrals for curved (circular arc-shaped) cracks (Lorentzon and Eriksson,

2000) is required to attain domain independence in the SIF computations.
2.4. Double cantilever beam

In Fig. 5, a double cantilever beam is illustrated. By symmetry, a crack on the mid-plane of the sample is

under pure mode I, and it would propagate straight ahead; however, this straight path is unstable. A crack

lying slightly off the mid-plane tends to curve away from the mid-plane. In Fig. 5, the specimen dimensions
are 6 · 2, and the initial pre-crack (a ¼ 2) is placed slightly above the mid-plane of the cantilever beam.

Quasi-static crack growth is governed by the maximum hoop stress criterion (Erdogan and Sih, 1963) (see

Part I too), and the crack growth increment is Da ¼ 0:1. In Fig. 5, a representative crack growth simulation

(120 · 41 mesh) for 11 steps is shown. In Belytschko and Black (1999) a similar simulation was considered,
Fig. 5. Crack growth in double cantilever beam specimen.
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with the crack-tip perturbed by an initial angle. The simulated crack path qualitatively agrees with ex-

perimental observations. The authors are unaware of any quantitative experimental results for comparison.

To study the influence of the mesh discretization, domain radius rd ¼ rkhe (he is the crack-tip element

size), and the crack growth increment Da, a series of simulations were performed. The numerical results are
illustrated in Fig. 6. In Fig. 6a, crack growth simulations for four different meshes are presented (Da ¼ 0:1
and rk ¼ 1:5); it is observed that under the given simulation conditions, the crack path is not mesh-sensitive.

Domain independence is obtained in the numerical simulations with little difference as the domain radius is

varied (Fig. 6b); the simulations are for the 360 · 121 mesh with Da ¼ 0:1. The influence of the crack growth

increment Da on the simulations is depicted in Fig. 6c. The results clearly indicate that Da has the most

pronounced effect on crack growth; for Da < 0:025, the simulations are indistinguishable. On the basis of

the above results, we can make the following inferences:

1. The mesh size, domain radius, and the crack increment should satisfy two conditions, namely (a) the do-

main radius should be at least 1.5 times the mesh size, and (b) the crack increment should be greater than

the domain radius. These two conditions set an upper limit for the mesh size for a specific crack incre-

ment. Within this limit (Da > rd > 1:5he), the results appear to be relatively insensitive to the mesh size.

2. The crack path depends on the crack increment, which is reasonable because we are modeling a smooth

curve with a piece-wise linear approximation. Accuracy improves on using smaller Da, but a smaller Da
requires a finer mesh. This is a consequence of the C0 approximation for the crack and a limitation of the
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Fig. 6. Parametric study of simulated crack paths in double cantilever beam specimen: (a) influence of mesh discretization (rk ¼ 1:5,

Da ¼ 0:1); (b) influence of domain radius (360· 121 mesh, Da ¼ 0:1); and (c) influence of crack growth increment Da (360· 121 mesh,

rk ¼ 1:5).
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present implementation; the use of smooth representations of the crack and adoption of appropriate

path-independent integrals for curved cracks are avenues that need to be explored for improvements

in the crack growth capabilities with the X-FEM.
2.5. Mud-crack pattern

The simulation of multiple cracks in a brittle thin film bonded to an elastic substrate is carried out. A
two-dimensional shear lag model is used to describe the deformation, which introduces the presence of a

body force b ¼ �lu=hH in the model (Liang et al., 2003) (see Part I for the weak form). Here, u is the

displacement vector, l is the shear modulus of the substrate, and h and H are the thickness of the film and

the substrate, respectively. The thin film is subjected to a biaxial initial stress (ri
11 ¼ ri

22 ¼ r). In crack

growth modeling of multiple cracks, a notion of time-dependence is required since the amount that each

crack should grow is not known a priori. To meet this goal, a sub-critical crack growth law is used which is

based on a V –G curve (velocity versus energy release rate). Crack growth is assumed to occur when the

energy release rate G > Gth, and if G < Gth, the crack is stationary (Gth is a threshold value that is less than
the critical energy release rate Gc). A path-independent contour integral (modified form of the J -integral)
that includes the presence of the body force is proposed (Liang et al., 2003). Following Li et al. (1985), the

contour integral is converted to its equivalent domain form to compute the energy release rate. For a given

crack, the energy release rate at its tip is computed and on using the V –G relation, the velocity V c
i at tip i is

evaluated. The crack increment Daci ¼ V c
i Dt, where Dt is the time increment.

In the numerical model, we consider a domain X ¼ ð�5; 5Þ2 with a uniform mesh of 200 · 200 elements;

the element size he ¼ 0:05 (Fig. 7a). The spatial and temporal dimensions in the simulation are normalized

with respect to the length and time scales in the model. The time step Dt ¼ 0:01 and the simulations are
carried out for 100 steps. We assume that the cracks do not intersect (cannot cross each other); if two cracks

come closer than a distance � ¼ 10�4, then they cannot grow any further. In the domain integral
Fig. 7. Crack growth of multiple cracks (mud-crack pattern): (a) initial crack configuration; and (b) final configuration.
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computations, rd ¼ 0:075 is chosen as the domain radius, and the maximum hoop stress criterion (Erdogan

and Sih, 1963) is used to determine the crack growth direction. The initial crack configuration (35 cracks) is

shown in Fig. 7a, and the final pattern is illustrated in Fig. 7b. In Liang et al. (2003), a different initial crack

configuration and ensuing crack pattern is presented. From Fig. 7b, we observe that in most instances two
cracks meet at right-angles, and when the crack-tips of two cracks are proximal, they tend to move towards

each other and form small islands (cells) since the tip motion ceases.
2.6. Spalling of substrates

For a pre-tensioned thin film bonded to a thick brittle substrate, cracks originating from the edges have a

tendency to divert into the substrate, and follow a trajectory parallel to the film-substrate interface. Such

spalling cracks were observed experimentally by Cannon et al. (1986) in ceramic substrates and Thouless

et al. (1987) in glass plates. Detailed experimental and analytical investigations of this problem have been

conducted by Evans et al. (1990), Suo and Hutchinson (1989), and Chiao and Clarke (1990). For a film

bonded to a semi-infinite substrate with the same elastic modulus, an analytical solution for the steady-state

spalling was obtained by Hutchinson and Suo (1992), where the spalling depth is dss ¼ 2:86h (measured
from the interface) and the mode I energy release rate is: Gss ¼ 0:343r2h=E. The film thickness is h, initial
stress r, Young�s modulus E, Poisson�s ratio m, and plane strain modulus E ¼ E=ð1� m2Þ. On considering

the effect of elastic mismatch and finite substrate thickness, Suo and Hutchinson (1989) found that the

spalling depth strongly depends on both the elastic mismatch and the substrate thickness but the dimen-

sionless energy release rate is insensitive to the substrate thickness for H=h > 10.

The model problem with specimen dimensions is shown in Fig. 8a. The elastic modulus of the substrate

and that of the film are the same, the substrate thickness is H ¼ 10h ¼ 10, and L ¼ 20. An initial crack of

length h is introduced at the edge below the interface. The reference solution for this problem is (Suo and
Hutchinson, 1989)
pre-
Gss ¼ 0:281r2h=E; dss ¼ 1:05h: ð4Þ
For the model problem (Fig. 8a), ri
11 ¼ r is the only non-zero initial stress component in the thin film. In

the X-FEM computations, a uniform mesh (200 · 110) is used. In Fig. 8b, the simulated (quasi-static crack

growth conditions) crack path after 100 steps is illustrated. The crack path evolves and approaches the

steady state. The depth of the steady-state crack is dss ¼ 1:026h, and the computed energy release rate is
Film
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H
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steady-statecrack path
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Fig. 8. Spalling of substrate: (a) initial crack and specimen dimensions; and (b) crack path until steady-state.
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Gss ¼ 0:284r2h=E. The X-FEM results agree closely with the steady-state solution obtained by Suo and

Hutchinson (1989), and the simulation also shows the transient stage of the crack growth.

2.7. Channel-cracking of thin films

Various crack patterns have been observed in thin-film structures, such as spalling of the substrate and

channel-cracking of the film. In the case of channel-cracking, the crack channels through the film in the

direction parallel to the interface, but arrests at the interface in the direction perpendicular to the interface,

with the substrate being intact (Fig. 9). When the channel length exceeds a few times the film thickness, the

crack reaches a steady-state, at which point the energy release rate can be computed from a 2-d plane strain

problem, for example see Hutchinson and Suo (1992) and Huang et al. (2003). The steady-state energy

release rate is given by (Hutchinson and Suo, 1992; Beuth, 1992)
Gss ¼
r
2h

Z h

0

dðyÞdy; ð5Þ
where dðyÞ is the opening displacement. The plane strain problem involves a crack perpendicular to the

interface with the tip at the interface. The stress singularity exponent for a crack terminating at a bimaterial

interface depends on the elastic mismatch between the film and the substrate (Zak and Williams, 1963); the

enrichment functions used in the X-FEM to model the crack-tip singularity for this problem was intro-
duced in Huang et al. (2003), and a short description on the same appears in Part I.

The integral given in Eq. (5) is numerically evaluated to obtain the steady-state energy release rate.

Results are presented in terms of the dimensionless driving force Z (Hutchinson and Suo, 1992; Evans et al.,

1990):
Gss ¼
Zr2h

E1

; ð6Þ
where E1 is the plane strain modulus of the film. In Fig. 10, the dimensionless energy release rate Z is plotted

as a function of the Dundurs parameter a; the Poisson�s ratio of the thin film and the substrate are both
equal to 1/3 and hence the other Dundurs parameter b ¼ a=4. The Dundurs parameters a are b are defined

in Part I. The results in Fig. 10 are compared to a prior study by Beuth (1992) in which a dislocation-based

formulation was adopted. The numerical results using X-FEM are in good agreement with the reference

solution in Beuth (1992)––the difference is less than one percent for a < 0:9 but higher for a > 0:9.
Compared to the approach pursued in Beuth (1992), the X-FEM allows one to analyze the effects of crack-

spacing and finite substrate thickness.
hFilm σ

Substrate

S

H

Gss

Fig. 9. Channel-cracking in a thin-film structure.
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To model channeling cracks in thin films bonded to compliant substrates using traditional finite elements

is particularly challenging. When the substrate material is very compliant compared to the film, the stress

singularity is much stronger (k > 1=2) than the
ffiffi
r

p
-singularity (k ¼ 1=2) for a crack in a homogeneous

material (rij � r�k). Typically, to resolve the strong stress singularity with finite elements an extremely fine

mesh at the crack-tip is required, which in some instances might not be computationally feasible. To
illustrate this, we compare the X-FEM computations with those obtained using the ABAQUSe (Hibbit

et al., 1993) finite element software. In the finite element calculations, eight-noded (bi-quadratic) quadri-

lateral elements are used with six-noded triangular elements in the vicinity (focused mesh) of the crack-tip.

For the spacing S=h ¼ 4 and H=h ¼ 2, the dimensionless driving force Z is computed using the X-FEM and

the FEM for a ¼ 0 (no mismatch) and a ¼ 0:99 (very compliant substrate). The results are listed in Table 5,

where h is the film thickness and he is the mesh density (size) in the vicinity of the crack-tip. When a ¼ 0 and

the crack-tip mesh density is about an order of magnitude greater than that used in the X-FEM, the dif-

ference in Z is less than one percent. However, when a ¼ 0:99 (k � 0:94), the computations favor the X-
FEM: in order to obtain about two percent difference in Z, the mesh density at the crack-tip in the finite

element analysis is 106 times that used in the X-FEM. This disparity becomes significantly more pro-

nounced with increasing values of the spacings S=h and H=h, as is the case for a single crack on a semi-

infinite substrate (Huang et al., 2003).
Table 5

Comparison of energy release rate obtained using the FEM and the X-FEM for a channel-crack in a thin-film structure

Method h
he

Z (a ¼ 0) Z (a ¼ 0:99)

X-FEM 20 1.363 1.926

FEM 102 1.373 1.779

103 1.374 1.819

105 – 1.863

107 – 1.882
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The numerical examples we have presented in this paper are just a few of the many applications that are

based on the X-FEM implementation described in Part I. The X-FEM has facilitated the modeling of new

and challenging material failure problems in small structures (Huang et al., 2002, 2003; Liang et al., 2003, in

press).
3. Conclusions

In Sukumar and Pr�eevost (2003), we described a simple and robust means to model discontinuous fields
(extended finite element method, X-FEM) within Dynaflowe, a finite element program. In the X-FEM

(Mo€ees et al., 1999), the crack is modeled through the displacement approximation using the framework of

partition of unity (Melenk and Babu�sska, 1996). Crack modeling can be carried out without the need to

mesh the crack surfaces, and in addition, no remeshing is required for crack growth problems. In this paper,

we have presented numerical applications of the X-FEM to demonstrate the efficacy of our implementation

and to show the capabilities of the method to solve challenging problems in computational failure me-

chanics.

Our focus in this paper was on computational fracture applications in isotropic and layered materials.
Accurate stress intensity factor computations (mode I and mixed-mode) were obtained for benchmark

problems such as the center-crack and the inclined crack under uniaxial tension. In addition, arc-shaped

cracks under biaxial tension were also studied. Excellent domain independence in the SIF computations

was realized for straight crack problems. For the arc-shaped cracks, appropriate choice of the crack rep-

resentation, crack-tip element size, and the domain size used in the domain integral evaluation lead to

accurate SIFs. The use of the path-independent form of the J -integral for circular arc-shaped cracks

(Lorentzon and Eriksson, 2000) is required to obtain domain independence in the numerical (FEM or

X-FEM) computations.
The crack growth capabilities of the X-FEM were demonstrated through growth simulations in the

double cantilever beam specimen, complex mud-crack patterns that develop on an elastic substrate, and

crack spalling in a thin-film structure. A parametric study of crack growth was performed in the double

cantilever beam specimen. The numerical results revealed that the crack path was most sensitive to the

crack increment, and for piece-wise linear approximations of the crack, the relation Da > rd > 1:5he pro-
vided a reasonable guideline to obtain relatively mesh-insensitive crack growth results. In the layered

material, the steady-state crack trajectory in the substrate was parallel to the thin-film interface which was

in agreement with earlier findings. The crack driving force for a channel crack in a thin-film structure was
also studied. The enrichment functions in the X-FEM were selected as those that span the asymptotic

crack-tip displacement fields for a crack normal to and terminating at a bimaterial interface. The energy

release rate of a single channeling crack in a thin film bonded to a semi-infinite substrate was obtained using

the X-FEM, and the numerical results were found to be in good agreement with the reference solution

(Beuth, 1992). A comparison of the X-FEM and the FEM for a channel crack impinging a compliant

substrate was studied. The results revealed that for very compliant substrates (0:9 < a < 0:99), the finite

element method was not as competitive as the X-FEM and as a ! 0:99, the FEM computations became

prohibitively time-intensive.
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