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Abstract

New Gaussian integration schemes are presented for the efficient and accu-

rate evaluation of weak form integrals in the extended finite element method.

For discontinuous functions, we construct Gauss-like quadrature rules over

arbitrarily-shaped elements in two dimensions without the need for parti-

tioning the finite element. A point elimination algorithm is used in the con-

struction of the quadratures, which ensures that the final quadratures have

minimal number of Gauss points. For weakly singular integrands, we apply

a polar transformation that eliminates the singularity so that the integration

can be performed efficiently and accurately. Numerical examples in elastic

fracture using the extended finite element method are presented to illustrate

the performance of the new integration techniques.
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1. Introduction

In partition of unity methods, special basis functions are added to the

solution space to allow the inclusion of a priori knowledge about the local

behavior of the solution [1–3]. In the extended finite element method (X-

FEM) [4–8], which is used for crack modeling without remeshing, the dis-

placement approximation is enriched by incorporating a discontinuous func-

tion and the near-tip asymptotic fields via the framework of partition of

unity. A closely-related approach to the X-FEM for modeling cracks is that

due to Hansbo and Hansbo [9], and recently a few different variants on the X-

FEM for fracture mechanics have been proposed [10–12]. In these methods,

a well-known and outstanding issue is the efficient and accurate evaluation

of the entries in the stiffness matrix corresponding to the enriched degrees

of freedom since the gradient of enriched basis functions contain discontinu-

ities and/or singularities. Traditionally, these elements are partitioned into

integration subcells (normally subtriangles in two dimensions) that conform

to the crack geometry and higher-order Gauss quadrature is used over them

for integration [5]. In this paper, we present the construction of generalized

Gaussian quadrature rules that exactly integrate polynomials on either side

of the crack without the need to partition the finite element. Furthermore,

we adopt the generalized Duffy transformation introduced by Mousavi and

Sukumar [13] to enable the efficient and accurate computation of weakly

singular stiffness matrix integrals in fracture computations with the X-FEM.

The integration of discontinuous functions arises in many partition-of-

unity enriched finite element applications: quasi-static crack growth [4, 5],

dynamic fracture [14–16], cohesive crack modeling [17–19], two-phase fluid

flow and fluid-structure interaction [20–23], surgical simulations [24, 25],

fracture animations [26], etc. Ventura [27] showed that an equivalent poly-

nomial function exists such that its integral gives the exact value of the
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discontinuous/non-differentiable function integrated on subcells; as a result

there is no need to divide the cut element into subcells and use quadra-

ture rules over the background cells. The coefficients of the equivalent poly-

nomials are functions of the location of the discontinuity in the element.

Tornberg [28] and Patzák and Jirásek [29] proposed regularized forms of the

Heaviside function that smear the strong discontinuity over a short distance

on which the discontinuous function is approximated by a smooth function.

Oh et al. [30] introduce several smooth-piecewise-polynomial regularized dis-

continuous functions that can be used in the X-FEM. Benvenuti et al. [31]

extended the method of Ventura [27] for regularized discontinuous enrich-

ment functions. The technique presented in References [27, 31] is restricted

to linear triangular and quadrilateral elements in two dimensions and linear

tetrahedral elements in three dimensions with cracks that do not kink in-

side elements [32]. Holdych et al. [33] proposed a method for construction

of quadrature rules over triangles and tetrahedrons (cut by a crack) by fix-

ing the location of the integration points and allowing for variable weights.

Belytschko et al. [34] showed that the weights of the quadrature points de-

termined by Holdych et al. [33] and the values of the equivalent polynomials

of Ventura [27] are related. For integrating discontinuous functions, the lim-

itations of the aforementioned methods are that they are dependent on the

element topology and due to the complexity of the algebraic expressions,

crack kinks within an element can not be handled.

Xiao and Gimbutas [35] presented the node elimination technique for the

construction and optimization of quadrature rules on triangles and squares

for general classes of functions based on group theory and numerical opti-

mization. Mousavi et al. [36] extended the algorithm for the construction of

efficient quadrature rules over arbitrary polygons. The quadratures that are

realized have desirable properties such as interiority of integration points,
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positive weights, and minimum number of points. Here, we generalize the

algorithm in Reference [36] to develop quadrature rules for piecewise poly-

nomials on finite elements that are intersected by kinked cracks.

Special conforming elements have been designed for accurate modeling

of crack-tip asymptotic fields in the finite element method [37–43]. The in-

terpolation functions of these elements are defined so that their derivatives

have the desired 1/
√
r crack-singularity. The integration of the stiffness

matrix entries over these crack-tip elements is done using either standard

Gaussian quadrature rules [37–39, 41, 43] or by means of ad hoc quadra-

tures tailored for specific singular shape function derivatives [40, 42, 44].

These techniques can not be applied to the X-FEM where the crack-tip can

lie inside an element—stiffness matrix integrands in these elements contain

singular terms of O(1/r) and O(1/
√
r). Moës et al. [5] subdivide the ele-

ment containing the crack-tip into conforming triangles and use higher-order

Gauss quadratures over each of them. Natarajan et al. [45] use the Schwarz-

Christoffel conformal mapping from an arbitrary polygon to the unit disk and

then apply a midpoint rule to the mapped domain. This approach obviates

the need to use two successive isoparametric mappings in polygonal finite

element applications [46, 47], which simplifies the implementation; however,

the number of integration points and the accuracy is of the same order as

the subdivision scheme presented by Moës et al. [5].

In adaptive integration schemes [48], the point-singularity that lies inside

the finite element is resolved by recursively subdividing the element into non-

conforming subcells until a prescribed error tolerance is achieved. Strouboulis

et al. [49] as well as Xiao and Karihaloo [50] use DECUHR [51], an adaptive

integration scheme based on nonuniform subdivision of elements for integra-

tion of singular functions. Schweitzer [52] adopts a hierarchical adaptive in-

tegration technique [53] for the enrichment functions in the particle-partition
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of unity method by decomposing the integration domain into cells and using

tensor-product quadrature rules over the cells. Standard Gauss quadratures

implicitly approximate the singular integrand with polynomials; therefore,

many integration points are needed for even modest accuracy. Béchet et

al. [54] present a scheme in which first the domain is triangulated with the

singularity lying at a vertex and then the integration of the singular kernel

over the triangle is transformed into a smooth integration over the biunit

square through a series of transformations. Although efficient in two dimen-

sions, the mapping in Reference [54] does not readily extend to three dimen-

sions. Park et al. [55] use the mapping of Nagarajan and Mukherjee [56] and

generalize it to three dimensions for crack problems. This mapping is advan-

tageous for integration of homogeneous functions where the integration with

respect to the radial term can be carried out analytically, which reduces the

dimensionality of the integral by one. However, in the finite element method,

where the integrand is in general neither homogeneous nor explicitly known,

this scheme has limitations. For fracture problems, Shen and Lew [12] use

the integration scheme proposed by Ventura et al. [57]—Green’s theorem is

used to convert the volume integral to a boundary integral for enrichment

functions that satisfy the equilibrium equations of elastostatics.

Laborde et al. [58] employ a rather straightforward transformation from

the triangle to the unit square to remove the singularity. This approach

was originally conceived by Fairweather et al. [59] in two dimensions and

Duffy [60] in two and three dimensions. The Duffy mapping removes the

1/r singularity and the transformed integral is amenable to tensor-product

Gauss quadrature. Mousavi and Sukumar [13] have shown that the Duffy

transformation is efficient for a 1/r singularity, but is not as efficient for 1/rα

singularities when α 6= 1 (e.g., crack modeling in the X-FEM where α = 1/2

is present). Moreover, for 1 < α < 2 in two dimensions (2 < α < 3 in three
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dimensions), the Duffy transformation does not remove the singularity. In

Reference [13], a generalized form of the Duffy transformation is introduced

in which a parameter β is judiciously selected so that the transformation

leads to removal of the weak singularity. Also, in case of a fractional α

such as α = 1/2, the generalized Duffy transformation permits dramatic

improvements in accuracy.

The remainder of this paper is organized as follows. In Section 2, a brief

review of the node elimination algorithm is presented, and the construc-

tion of quadratures for discontinuous functions is described with supportive

examples. In Section 3, the generalized Duffy transformation and its use

within the X-FEM is presented. Quadrature rules for discontinuous and sin-

gular functions are tested in Section 4 on static and quasi-static crack growth

simulations with the X-FEM to demonstrate the benefits of using the new

integration techniques. Finally, we close with a few final remarks in Section 5.

2. Quadrature Rules for Discontinuous Functions

2.1. Algorithm for the construction of efficient quadrature rules

A quadrature is a formula of the form

∫

Ω

ω(x)f(x) dx ≈
n

∑

i=1

wi f(xi), (1)

where Ω is the domain of integration, f is an integrand defined on Ω and ω is

the weight function. xi and wi are called quadrature points and weights, re-

spectively. Quadrature rules are designed so that (1) is exact for all functions

in a pre-selected set {φi}m
i=1, such as polynomials or trigonometric functions.

Different techniques have been used for construction of such quadrature rules,

for instance, moment fitting equations [61] and common zeros of orthogonal

polynomials [62]. Recently, Xiao and Gimbutas [35] combined group theory

and numerical optimization to present a new algorithm for the construction
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of efficient quadratures. They showed that given the basis functions and

the domain of integration, the points and weights of a quadrature can be

obtained by solving the following system of equations:
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ω(x)φ1(x) dx

∫
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ω(x)φ2(x) dx
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∫

Ω
ω(x)φm(x) dx
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Equation (2) is a nonlinear system of equations that can be solved using New-

ton’s least squares method. Xiao and Gimbutas [35] introduced the notion

of optimizing the obtained quadrature rule by eliminating one of the points

of the quadrature and solving (2) again. Once a solution, i. e., {xi, wi}n
i=1,

is available it implies that an n-point quadrature rule has been constructed

for the integration of the basis functions {φi}m
i=1 in Ω. Now, the integration

point that contributes the least is ascertained by computing the so-called

significance factor [35, 36]:

sj = wj

m
∑

i=1

φ2
i (xj), sk = min sj, (j = 1, 2, . . . , n)

and the weight wk is set to zero, and hence n−1 quadrature weights are now

non-zero. The set {x1, w1,x2, w2, . . . ,xk−1, wk−1,xk+1, wk+1, . . . ,xn, wn} is

then an approximate solution to (2). On starting from this approximate

solution and solving (2) once again, a (n − 1)-point quadrature rule is pro-

duced. This procedure (node elimination algorithm) is repeated until New-

ton’s method fails to converge. Wandzura and Xiao [63] and Xiao and Gimbu-

tas [35] applied this algorithm to triangles and squares for polynomial basis

functions of very high orders. The node elimination algorithm is flexible and

is not restricted to specific domain shapes nor classes of functions. Also,

features such as symmetries in the domain of integration can be exploited

by constructing quadrature rules on the symmetry group of the domain.
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Mousavi et al. [36] used the node elimination algorithm for the construction

of efficient quadrature rules on convex and concave polygons.

2.2. The node elimination algorithm for discontinuous functions

In this paper, we use the node elimination algorithm for the construction

of quadrature rules for discontinuous functions within the extended finite ele-

ment method. In the X-FEM, a crack discontinuity that fully cuts an element

is modeled by enriching the finite element space by a discontinuous (general-

ized Heaviside) function. The enriched approximation for the displacement

field is [5]:

uh(x) =
∑

I∈N

NI(x)uI +
∑

I∈NΓ

NI(x)H(x)aI , (3)

where N is the set of finite element nodes, NΓ is the set of nodes whose shape

function support is cut by the crack interior, NI(x) is the finite element shape

function and uI and aI are the unknown nodal coefficients corresponding to

the classical and Heaviside degrees of freedom, respectively. The generalized

Heaviside function H(x) is equal to +1 above the crack and −1 below the

crack. Alternatively, a shifted Heaviside function can be used [14]. The dis-

crete system of linear equations is obtained by substituting the trial and test

functions in the weak form for linear elasticity. For the sake of brevity, we

omit the derivation of the discrete equations and refer the reader to Refer-

ence [64]. The element stiffness matrix for an enriched element is:

Ke =





kuu kua

kau kaa



 =

∫

Ωe





BT
uDBu HBT

uDBu

HBT
uDBu H2BT

uDBu



 dΩ, (4)

where D is the material moduli matrix and Bu is the matrix of finite element

shape function derivatives. For an element with nel nodes, Bu is defined as

Bu =











N1,x 0 N2,x 0 . . . Nnel,x 0

0 N1,y 0 N2,y . . . 0 Nnel,y

N1,y N1,x N2,y N2,x . . . Nnel,y Nnel,x











. (5)
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In order to use the node elimination algorithm for the construction of discon-

tinuous quadrature rules it is beneficial to examine the kernel of the integral

in (4). The terms BT
uDBu and H2BT

uDBu are composed of polynomials on

triangular and rectangular elements and are not discontinuous inside an el-

ement, whereas the term HBT
uDBu is composed of polynomials multiplied

by the Heaviside function with a discontinuity across the crack. On setting

ω(x) = H(x) and {φi(x)}m
i=1 = Pd(x), where Pd(x) stands for all bivari-

ate polynomials up to order d and solving (2), the resulting set {xi, wi}n
i=1

is a quadrature rule that can integrate HBT
uDBu exactly over the element.

In other words, once convergence is attained, an n-point quadrature rule is

produced that can integrate the selected polynomials multiplied by the Heav-

iside function, and is specifically designed for the cracked element. The key

issue in the above procedure is the evaluation of the left-hand-side of (2),

which contains the integration of functions of the form H(x)p(x) over the

cracked element, where p(x) are bivariate polynomial basis functions that

are known analytically. In our implementation of the algorithm, since the

domain of integration, i.e., the cracked element, can be described by ana-

lytic curves (piecewise straight lines in this study), we evaluate the integrals

analytically over the two partitions above and below the crack without the

need to further subdivide them into triangles. Since the basis functions are

homogeneous, the integration can also be carried out numerically without

partitioning the cracked element into triangles, for instance by applying the

method of Lasserre [65, 66]. In a crack propagation simulation, the enrich-

ment changes only in the vicinity of the crack-tip, and the enrichment in

the elements that are fully cut by the crack remain unchanged. Therefore,

the discontinuous quadrature that is built in this process is saved so that it

can be reused during subsequent crack growth steps. The need and merits

of constructing the generalized Gaussian quadratures for elements that are
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fully cut is particularly noteworthy in applications such as mesh-independent

modeling of intergranular and transgranular fracture in polycrystalline mi-

crostructures, where the crack can assume a tortuous path [67].

2.3. Numerical examples

The algorithm for construction of quadrature rules and the node elimi-

nation algorithm is implemented in MATLAB�. Figure 1 shows a few examples

of quadrature rules constructed for triangular, quadrilateral and hexagonal

elements with different crack geometries. Figures 1a to 1d show quadrature

rules for integration of functions of the form p(x)H(x) where p(x) can be any

polynomial of total order 2 with respect to x and H(x) is a discontinuous

function. Figures 1e to 1l show similar results for higher order polynomi-

als. This algorithm is not restricted by the element topology or the crack

geometry; crack kinking inside an element can also be taken into account.

As illustrated in Figures 1d, 1h and 1l, the discontinuous quadrature rules

can also be applied to the extended finite element fracture computations on

polygonal elements [47]. In Figures 1m–1p, the locations of the integration

points are shown for elements that are cut by two cracks; in the quadrature

algorithm, the weight function ω(x) takes on the values 1, 0,−1 in the three

regions that are separated by the cracks. The quadrature points in elements

that are intersected by a branched crack [7, 68] are marked in Fig. 2. Since

all the above quadrature rules are exact to within machine precision by con-

struction, we do not study their accuracy here. We compare the number

of evaluation points required for the integration of discontinuous functions

shown in Figures 1 and 2 with standard quadrature rules over triangles ver-

sus our discontinuous quadratures in Table 1. Dunavant [69] presents 3-, 4-

and 6-point quadrature rules for integration of quadratic, cubic and quartic

polynomials over triangles. In each case the node elimination algorithm pro-

duces very efficient quadrature rules that can be saved and reused over the
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same element with just a one-time cost of calculating the quadrature points

and weights, provided that the element geometry and how it is cut by the

cracks remains fixed.

3. Quadrature Rules for Weakly Singular Functions

3.1. Generalized Duffy transformation

Duffy transformation [59, 60]: (u, v) → (x, y): x = u, y = xv = uv, maps

the standard triangle (Fig. 3a) to a unit square (Fig. 3b) and as a result,

eliminates singularities of the form 1/r. The singular integrand over the

standard triangle is transformed into a smooth function over the unit square

that can be integrated with fewer integration points [58, 60], e.g., by using

a tensor-product rule. Integration of any singular function over an element

with the singularity inside it can be carried out by following these steps:

triangulate the element so that the singularity occurs at one vertex of all

triangles, map each one of the triangles to the standard one and evaluate the

integration by using Duffy transformation and a standard Gauss quadrature

rule over the unit square. This scheme has been used for integration of

stiffness matrix entries in the X-FEM where the shape function space is

enriched with near-tip functions that have singular derivatives [58]. Mousavi

and Sukumar [13] presented a generalized form of the Duffy transformation:

(u, v) → (x, y): x = uβ, y = xv = uβv, which maps the same standard

triangle of Duffy transformation (Fig. 3a) to the unit square as follows:

I =

∫ 1

0

∫ x

0

f(x, y)

(x2 + y2)α/2
dx dy =

∫ 1

0

∫ 1

0

f(uβ, uβv)

(1 + v2)α/2
β u2β−1−αβ du dv. (6)

The authors showed that although Duffy transformation is very effective

for integration of functions with 1/r singularity, it does not lead to better

accuracy for integrating 1/rα singularities when α 6= 1, including α = 1/2

that arises in crack analysis in isotropic media. The deficiency in the accurate
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(a) nsp = 4 (b) nsp = 3 (c) nsp = 3 (d) nsp = 3

(e) nsp = 4 (f) nsp = 5 (g) nsp = 7 (h) nsp = 5

(i) nsp = 6 (j) nsp = 6 (k) nsp = 7 (l) nsp = 6

(m) nsp = 9 (n) nsp = 6 (o) nsp = 6 (p) nsp = 6

Fig. 1: Quadrature points for discontinuous functions. Element is cut by one

crack in a–l and by two cracks in m–p. (a-d) quadratic precision; (e-h) cubic

precision; (i-l) quartic precision; and (m-p) quartic precision (two cracks).
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Table 1: Comparison of number of integration points for integrating discon-

tinuous functions.

Case
Partitioning Discontinuous quadratures

(fig. no.) number of trianglesa nsp nsp

1(a) 7 21 4

1(b) 8 24 3

1(c) 26 78 3

1(d) 34 102 3

1(e) 7 28 4

1(f) 8 32 5

1(g) 26 104 7

1(h) 34 136 5

1(i) 7 42 6

1(j) 8 48 6

1(k) 26 156 7

1(l) 34 204 6

1(m) 19 114 9

1(n) 26 156 6

1(o) 50 300 6

1(p) 52 312 6

2(a) 31 186 6

2(b) 38 228 7

2(c) 46 276 6

a Partitioning is done as in Reference [64], where the polygons above and

below the crack are divided into triangles by connecting the vertices of the

element to the center of each polygon. Although this technique is not the

most efficient method of partitioning, it provides a means to realize automatic

subdivision of cracked elements.
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(a) nsp = 6 (b) nsp = 7 (c) nsp = 6

Fig. 2: Quadrature points in an element with a branched crack (quartic

precision).

x

y

(a) 0 ≤ x ≤ 1, 0 ≤ y ≤ x

u

v

(b) 0 ≤ u, v ≤ 1

Fig. 3: Duffy and generalized Duffy transformations. (a) standard triangle

and (b) unit square
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evaluation of these singular integrals is due to the presence of fractional

exponents of u in the transformed kernel [13]. However, the parameter β in

the generalized transformation can be determined judiciously according to

the exponent α so that the kernel after transformation remains a polynomial

with respect to u. For example, for α = {1, 1/2}, β = {1, 2} is suggested,

respectively. In addition, it is shown that increasing β results in a larger

exponent of u in the transformed kernel, which necessitates the use of a

slightly higher-order quadrature rule.

The generalized Duffy transformation was tested within a partition-of-

unity enriched finite element method for the solution of the well-known

benchmark problem of the L-shaped domain with a re-entrant corner [13].

The corner singularity required the evaluation of stiffness matrix entries that

had 1/rα singularities (α = 1/3, 2/3, 4/3), and hence β = 3 was adopted. Nu-

merical results were presented that demonstrated the remarkable improve-

ment in the accuracy and convergence rate over standard quadratures or

an adaptive integration scheme [49]. In this study, we apply the general-

ized Duffy transformation for the integration of stiffness matrix entries in

the crack-tip element that contains the near-tip enrichment functions. Sec-

tion 3.2 describes the application of the transformation for the integration of

such functions in the X-FEM.

3.2. Numerical examples

The displacement approximation in the X-FEM for elements that are

enriched with the near-tip functions is [5]:

uh(x) =
∑

I∈N

NI(x)uI +
∑

I∈NΛ

NI(x)
4

∑

α=1

ψα(x)bα
I , (7)

where N is the set of finite element nodes, NΛ is the set of nodes enriched by

near-tip enrichment functions, {ψα}4
α=1 are the near-tip enrichment functions
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in isotropic elasticity (see Reference [4]):

{ψα(x)}4
α=1 = {√r sin

θ

2
,
√
r cos

θ

2
,
√
r sin θ sin

θ

2
,
√
r sin θ cos

θ

2
}, (8)

and bα
I are the associated enriched degrees of freedom. The element stiffness

matrix for an element enriched with near-tip functions can be written as:

Ke =





kuu kub

kbu kbb



 =

∫

Ωe





BT
uDBu BT

uDBb

BT
b DBu BT

b DBb



 dΩ, (9)

where Bu and Bb are the matrix of shape function derivatives corresponding

to the classical and near-tip enrichment functions, respectively. The en-

tries of Bb are calculated using the chain rule. The classical shape function

derivatives belong to the space of polynomials for triangular and rectangular

elements, but the near-tip enrichment functions depend on r and θ (polar

coordinates in the crack-tip coordinate system) and as a result the stiffness

matrix entries corresponding to these enrichment functions are generally of

one of the two forms: {p(x)f(θ)/r} or {p(x)f(θ)/
√
r}.

Since r is the distance from the crack-tip and integration is done over

the element containing the crack-tip, the kernels of integration have 1/r and

1/
√
r singularities. As an example, we evaluate two entries of the element

stiffness matrix containing the near-tip enrichment functions: k11 where the

subscript 1 refers to the enriched degree of freedom of an element for the near-

tip function ψ1 =
√
r sin θ

2
in the x-direction; and k21 where the subscript 2

refers to the classical degree of freedom of the same node in the x-direction.

Equation (10) shows an expansion of the kernels for these integrations, where
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the subscript i = 1, 2 refers to the ith column of the matrix of derivatives:

k11 =

∫

Ωe

BT
1 DB1dV =

∫

Ωe

∇(N1ψ1) · ∇(N1ψ1)dV

=

∫

Ωe

[

(N1ψ1),x 0 (N1ψ1),y

]











(N1ψ1),x

0

(N1ψ1),y











dV

=

∫

Ωe

[

(N1ψ1)
2
,x + (N1ψ1)

2
,y

]

dV (10a)

and

k21 =

∫

Ωe

BT
2 DB1dV =

∫

Ωe

∇N1 · ∇(N1ψ1)dV

=

∫

Ωe

[

N1,x 0 N1,y

]











(N1ψ1),x

0

(N1ψ1),y











dV

=

∫

Ωe

[N1,x(N1ψ1),x +N1,y(N1ψ1),y] dV, (10b)

where N1 is the finite element shape function of the first node of the element

and a comma denotes the derivative with respect to the indicated spatial

coordinate. Clearly, the integrand in k11 has a 1/r singularity whereas the

integrand in k21 has a 1/
√
r singularity. In the derivation of (10), we have

assumed the constitutive matrix to be the identity without loss of generality

since D is a constant matrix in linear elastic fracture mechanics.

First, the integration is done on the biunit square with two crack config-

urations: crack-tip at the center of the element (Fig. 4a) and crack-tip very

close to one of the nodes (Fig. 4d). For the sake of integration, we subdivide

the element into five triangles by connecting the crack-tip to the nodes of the

element and also the intersection of the crack and the element edge. Differ-

ent integration schemes are compared: tensor-product over the triangles by

collapsing one of the nodes of a square, efficient Gaussian quadrature rules
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over the triangle [69], Duffy transformation (β = 1), and the generalized

Duffy transformation (β = 2). In Fig. 4b, which is for the evaluation of

k11 with a 1/r singularity, both the Duffy transformation (β = 1) and the

generalized Duffy transformation (β = 2) exhibit better performance than

standard Gaussian quadrature rules and attain an accuracy of 10−6 with a

6× 6 quadrature over each triangle. However, as can be observed in Fig. 4c,

for the evaluation of k21 with a 1/
√
r singularity, the Duffy transformation

(β = 1) is comparable in accuracy to standard Gauss quadrature, whereas

the generalized Duffy transformation (β = 2) shows remarkable improvement

in accuracy as in the case for k11. Figures 4e and 4f show similar trends when

the crack-tip is close to one of the nodes of the element. The integration accu-

racy is, however, generally lower in this case due to the presence of ill-shaped

triangles that result from subdivision. Figures 4g to 4l show similar results

for an arbitrary quadrilateral and Fig. 5 is for the integration on a linear

triangular element.

3.3. Combination of the generalized Duffy transformation and the node elim-

ination algorithm

In Section 2.2, the node elimination algorithm to construct quadrature

rules for discontinuous functions over the cracked elements is described. The

generalized Heaviside function H(x) is used as the weight function in the

discontinuous quadrature rules. The same approach is now adopted to il-

lustrate the construction of quadrature rules for 1/rα singularities. We set

ω(x) = 1/rα as the weight function to construct quadrature rules, which

bears similarity to the approach presented by Haegemans [70]. As in the

case of quadratures for discontinuous functions, the basis functions of the

singular quadratures {φi}m
i=1 are selected as bivariate polynomials in two di-

mensions. Fig. 6 shows singular quadrature rules for a biunit square and an

arbitrary quadrilateral for singularities α = 1 and α = 1/2 with precisions
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Fig. 4: Convergence of k11 and k21 over quadrilateral elements with different

crack-tip positions.
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Fig. 5: Convergence of k11 and k21 over a triangular element with different

crack-tip positions.
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of orders 2 and 5. To construct these quadrature rules, the left-hand-side

of (2) is calculated by dividing the element into four triangles by connecting

the source point to the vertices of the element so that the singularity lies

at the vertex of all the four triangles. Then, the left-hand-side integrations

are calculated using 10× 10 generalized Duffy quadrature rules with the ap-

propriate β over each triangle. For example, the 3-point quadrature shown

in Fig. 6b is equivalent to the 400 integration points over the entire element

for α = 1/2 and β = 2, and yields the same accuracy.

3.4. Integration error in the generalized Duffy transformation

The integration of singular functions over the standard triangle (Fig. 3a)

is done by mapping the triangle to the unit square (Fig. 3b). Any arbitrary

triangle with a vertex singularity is first translated so that the singularity is

moved to the origin and then an affine map to the standard triangle is used:

x = aX + bY and y = cX + dY , where (X,Y ) is the physical coordinate

system containing the arbitrary triangle and (x, y) is the plane of the standard

triangle. Equivalently, given an arbitrary triangle R having one vertex at

the origin, there exists an affine transformation A that takes the standard

triangle to R [71]. The transformation A can be used to map the points of

a rule over the standard triangle to R. The adverse effect of the mapping is

that it makes the denominator of (6) more complicated since 1+v2 changes to

1+ ξv+ ηv2, where ξ and η are functions of the coordinates of the vertices of

the arbitrary triangle. After the transformation, standard Gauss quadrature

rule is used in the u and v directions and as a result the irrational kernel

with respect to v, i.e., g(v)/(1 + ξv + ηv2)α/2, must be approximated by

polynomials. This can reduce the accuracy especially for ill-shaped triangles.

To further examine the effect of the affine mapping on the accuracy of

the integration, we fix the vertices (0, 0) and (1, 0) of a triangle and move

the third vertex (x, y) in the plane. The singularity is assumed to be located
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(a) nsp = 3, α = 1 (b) nsp = 3, α = 1/2

(c) nsp = 3, α = 1 (d) nsp = 3, α = 1/2

(e) nsp = 7, α = 1 (f) nsp = 7, α = 1/2

(g) nsp = 7, α = 1 (h) nsp = 8, α = 1/2

Fig. 6: Quadrature points (+) for functions with 1/rα singularity (•). (a-d)

quadratic precision; and (e-h) quintic precision.
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at the origin. For each position of the third vertex, we calculate
∫

Ω
1/rαdA

using the generalized Duffy transformation, where Ω is the triangle formed

from the three vertices. A constant in the numerator of the integrand is

used since as shown in Reference [13], the integration of a constant term has

a larger error than the integration of bivariate polynomials xiyj, i + j > 0.

This is so since the terms x and y have a polar dependence and hence cause a

milder singularity. The contours of the relative error for different values of α

and nsp are plotted in Fig. 7. As seen in Fig. 7, small angles at the singular

vertex do not lead to poor accuracy whereas large angles that are proximal to

180◦ are unfavorable. A combination of a large angle at the singular vertex

and a small side of the triangle has the worst effect on the accuracy of the

integration.

4. Computational Fracture Simulations

4.1. Convergence study

To demonstrate the effectiveness of the integration schemes, we first per-

form a convergence study over a cracked domain. Consider the cracked plate

defined over the region (−L,L) × (−L,L) as shown in Fig. 8a with a crack

that extends from (−L, 0) to (0, 0). This problem is considered in Sukumar

and Srolovitz. [72]. The material is assumed to be homogeneous and isotropic

with E = 1 and ν = 0.3. For the essential boundary conditions, we impose

the near-tip displacement field corresponding to KI = 1 and KII = 0. As a

measure of accuracy, the relative energy norm of the error is used:

Erel =
||u − uh||E(Ω)

||u||E(Ω)

=

(∫

Ω
(ε − ε

h)T D (ε − ε
h)dΩ

)1/2

(∫

Ω
ε

T D εdΩ
)1/2

, (11)

where u and uh are the exact and finite element solutions for the displace-

ment field, ε and ε
h are the exact and finite element solutions for the strain

and D is the plane strain constitutive matrix. Two strategies are chosen
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Fig. 7: Contour plots of the relative error in the evaluation of
∫

Ω
1/rαdx. (a)

α = 1, nsp = 4 × 4; (b) α = 1, nsp = 10 × 10; (c) α = 1/2, nsp = 4 × 4; and

(d) α = 1/2, nsp = 10 × 10.
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for near-tip enrichment [54]: topological enrichment where only one layer of

elements around the crack-tip is enriched with crack-tip functions; and geo-

metrical enrichment where all the nodes within a fixed distance re from the

crack-tip are enriched. In each case, the integration over the elements con-

taining the crack-tip is carried out by subdividing the element into triangles

and using two different integration schemes on each subtriangle: 5×5 tensor-

product; and 5×5 generalized Duffy transformation. Figures 8a and 8b show

the enriched nodes and the convergence curves for topological enrichment.

The finite element node at (−L, 0) is duplicated so that the exact essential

boundary condition can be realized. Both integration methods produce a

rate of convergence of 1/2 in the relative energy norm of the error, which

is in agreement with finite element theory. The enriched nodes and conver-

gence curves for geometrical enrichment with two different enrichment radii

(re = 0.25 and re = 0.5) are depicted in Figures 8c and 8d. With geometric

enrichment, smaller approximation errors are expected, and hence better ac-

curacy in the numerical integration is required. The integration using 5 × 5

tensor-product rule yields a rate of convergence of 0.85 and 0.76 for enrich-

ment radii of re = 0.25 and re = 0.5, respectively, whereas more accurate

integration with the 5×5 generalized Duffy transformation is realized, which

delivers the optimal first-order rate of convergence in the energy norm.

4.2. Stress intensity factor calculations

To validate the integration schemes presented in this paper we apply them

for the calculation of stress intensity factors (SIFs) in an infinite plate with

an inclined center crack under biaxial loading (Fig. 9a). The exact values of

stress intensity factors are given by Aliabadi et al. [73]:

KI = (σ2 sin2 β + σ1 cos2 β)
√
πa, (12a)

KII = (σ2 − σ1) sin β cos β
√
πa, (12b)
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where σ1 and σ2 are the tensile loads in the x1- and x2-directions, a is the

half-length of the crack, and β is the inclination angle with respect to the

vertical axis. The ratio of the length of the crack to the length of the plate

(a/w) is set to 1/10 so that the problem domain can adequately represent

an infinite domain. Numerical integration over the elements that do not

have a discontinuity inside them, i.e., in the standard finite elements and

in elements that are partially enriched for the Heaviside function is carried

out with 2 × 2 tensor-product Gauss rule. For the elements with near-tip

enrichment but not containing the crack-tip, 4×4 tensor product is used. We

use our discontinuous quadratures for the elements that are fully cut by the

crack and for the elements containing the crack-tip, 8 × 8 generalized Duffy

transformation over the triangles is used. The results depicted in Fig. 9b

and listed in Table 2 show a comparison of the exact SIFs from (12) and

the ones calculated by the X-FEM on a 41 × 41 mesh. The X-FEM results

show excellent agreement with the exact solution and the errors are similar to

those obtained by Tabarraei and Sukumar [47]. The maximum relative error

in KI and KII is 0.6% and 2.4%, respectively. Other benchmark problems

such as an edge-crack under tension and shear loading [5, 74] have also been

successfully tested using the proposed quadrature rules.

4.3. Quasi-static crack growth

4.3.1. Edge-cracked plate in tension

To show the effectiveness of the discontinuous quadrature rules, we use

them for quasi-static crack growth simulations. Figure 10a shows a cracked

domain with an inclined edge crack. The domain is the rectangle defined

as (0, 1) × (0, 2) with a crack segment starting from (0, 1) and extending to

(0.4, 1.4). The initial stress intensity factors calculated using the X-FEM

on a 41 × 81 mesh are: KI = 1.9060 and KII = 0.8049, which is in good

agreement with the reference solution provided in Sutradhar et al. [75]. The
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Fig. 9: SIF calculation for an inclined center-crack. (a) geometry; and (b)

exact and extended finite element SIFs versus the inclination angle.

Table 2: Stress intensity factors for an infinite plate with an inclined center

crack.

β
Exact X-FEM

KI KII KI KII

0 1.2533 0.0000 1.2547 0.0000

15 1.3373 0.3133 1.3379 0.3108

30 1.5666 0.5427 1.5666 0.5457

45 1.8800 0.6267 1.8864 0.6341

60 2.1933 0.5427 2.1936 0.5421

75 2.4227 0.3133 2.4255 0.3210

90 2.5066 0.0000 2.5095 0.0000
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crack growth length in each step is assumed to be twice the size of the

element containing the crack-tip and the maximum hoop (circumferential)

stress criterion is used to find the crack growth angle. Figure 10b shows the

crack growth path for meshes 41 × 81 and 81 × 161, and convergence in the

crack path is observed.

To assess the efficiency of the discontinuous quadrature rules, we com-

pare the total number of integration points over the elements that are cut

by the crack, i.e., the elements with all their nodes enriched by the Heav-

iside function. Figure 11a shows the crack and the partitioned domain at

the initial stage with 3-point standard quadrature rules over each of the tri-

angles [69], whereas Fig. 11b shows the discontinuous quadrature rules over

the same elements without partitioning them. At this stage, 720 integration

points are required if partitioning is used compared to 105 evaluation points

for the discontinuous quadrature rules. Figures 11c and 11d exhibit similar

trends at the final stage of crack growth: 1854 integration points are needed

when partitioning is done and 195 points are required if the discontinuous

quadrature rules are used. We point out that the discontinuous quadratures

at each step of crack growth can be saved for the next step, and new dis-

continuous quadratures need to be constructed only over the elements at

the crack-tip that were previously enriched with near-tip functions and are

completely cut by the crack at the current step. The number of integration

points of discontinuous quadrature rules vary from three over elements with

simple geometries to five over elements with kinks inside them.

4.3.2. Double-edge cracked plate in tension

Finally, we consider quasi-static crack growth in a double-edge cracked

plate in uniaxial tension. The geometry of the specimen with an initial crack

is shown in Fig. 12a with parameters a/w = 0.1, h/w = 2, and w = 1. The

position of the edge cracks are perturbed in the vertical direction (δ = 0.02) so
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mesh 81 × 161
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Fig. 10: Inclined crack growth problem. (a) initial crack; and (b) crack path.

that the cracks are under mixed-mode loading conditions. The crack growth

procedure is identical to that followed in the previous problem (Section 4.3.1).

Fig. 12b shows the crack path after 11 iterations. The integration points

used for evaluation of stiffness matrix entries corresponding to the Heaviside

enrichment are shown in Fig. 12c for standard quadrature rules over the

triangle [69] (1806 integration points) and in Fig. 12d for the discontinuous

quadratures (196 integration points).

5. Concluding Remarks

We applied the node elimination algorithm for the construction of efficient

and accurate quadrature rules for fracture computations in the extended fi-

nite element method (X-FEM). For discontinuous functions, the quadrature

rules obviated the need for partitioning and also resulted in significantly fewer

integration points for evaluation of stiffness matrix entries. Construction of

quadratic, cubic and quartic quadrature rules for integration of discontin-

uous functions over different polygons with arbitrary crack configurations
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(d)

Fig. 11: Quadratures for integration of discontinuous functions. (a) initial

stage, quadratures over partitions; (b) initial stage, discontinuous quadra-

tures without partitioning; (c) final stage, quadratures over partitions; and

(d) final stage, discontinuous quadratures without partitioning
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Fig. 12: Double-edge cracked plate in tension. (a) geometry; (b) crack path;

(c) quadratures for integration of discontinuous functions over partitions

(1806 integration points); and (d) quadratures for integration of discontinu-

ous functions without partitioning (196 integration points).
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were presented. These calculations entail a one-time computational cost,

and hence are of use in crack growth simulations.

The generalized Duffy transformation was adopted for the accurate in-

tegration of the derivatives of the near-tip enrichment functions within the

X-FEM. The integration of functions with 1/r and 1/
√
r singularities over

different arbitrary polygons and crack configurations were presented, which

affirmed the markedly better performance of the generalized Duffy trans-

formation vis-à-vis tensor-product rules and the Duffy transformation. A

convergence study for an edge-crack using topological and geometrical en-

richments was performed. The effectiveness of the generalized Duffy trans-

formation in recovering the optimal first-order rate of convergence in the en-

ergy norm was shown. The discontinuous and singular quadratures were used

in the benchmark problem of an inclined crack under biaxial tension—the

mixed-mode stress intensity factors using the X-FEM were in good agreement

with the exact solution, which provided further validation on the accuracy

of the integration schemes. Finally, the merits of constructing discontinuous

quadrature rules were demonstrated through two quasi-static crack growth

simulations within the X-FEM—element-partitioning was not needed and in

comparison to integration via partitioning, significantly fewer number of in-

tegration points were required. With suitable extensions of the algorithm,

quadrature schemes can also be developed for higher-order finite elements

and weak discontinuities [76–80].
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[25] L. Jeřábková, T. Kuhlen, Stable cutting of deformable objects in virtual

environments using the XFEM, IEEE Computer Graphics and Applica-

tions 29 (2) (2009) 61–71.

[26] P. Kaufmann, S. Martin, M. Botsch, E. Grinspun, M. Gross, Enrichment

textures for detailed cutting of shells, ACM Transactions on Graphics

28 (3) (2009) 50:1–50:10.

[27] G. Ventura, On the elimination of quadrature subcells for discontinuous

functions in the extended finite-element method, International Journal

for Numerical Methods in Engineering 66 (2006) 761–795.

[28] A.-K. Tornberg, Multi-dimensional quadrature of singular and discon-

tinuous functions, BIT Numerical Mathematics 42 (3) (2002) 644–669.
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