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SUMMARY

In this paper, we study the efficient numerical integration of functions with sharp gradients and

cusps. An adaptive integration algorithm is presented that systematically improves the accuracy of

the integration of a set of functions. The algorithm is based on a divide and conquer strategy and is

independent of the location of the sharp gradient or cusp. The error analysis reveals that for a C0

function (derivative-discontinuity at a point), a rate of convergence of n + 1 is obtained in Rn. Two

applications of the adaptive integration scheme are studied. First, we use the adaptive quadratures

for the integration of the regularized Heaviside function—a strongly localized function that is used for

modeling sharp gradients. Then, the adaptive quadratures are employed in the enriched finite element

solution of the all-electron Coulomb problem in crystalline diamond. The source term and enrichment

functions of this problem have sharp gradients and cusps at the nuclei. We show that the optimal

rate of convergence is obtained with only a marginal increase in the number of integration points with
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respect to the pure finite element solution with the same number of elements. The adaptive integration

scheme is simple, robust, and directly applicable to any generalized finite element method employing

enrichments with sharp local variations or cusps in n-dimensional parallelepiped elements. Copyright

© 2011 John Wiley & Sons, Ltd.

key words: adaptive quadrature; octree refinement; sharp gradients; cusps; partition-of-unity
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1. INTRODUCTION

Functions with sharp gradients appear in the solution of problems with localization and

cohesive process zones [1–3], shear bands [4, 5], thermal gradients [6–8], convection- and

advection-diffusion problems [9–11], and in electronic structure calculations and ab initio

materials modeling [12–14]. In the partition-of-unity [15] solution of these problems, such

sharp gradients and cusps are efficiently resolved by incorporating enrichment functions that

resemble the solution locally. As a result, efficient numerical integration of the basis functions

and their gradients to form the system matrices becomes computationally demanding since

one has to deal with strongly localized functions, instead of polynomial integrands. In many

applications, the enrichment functions are the solution of local problems and known only

numerically. Evaluation of such integrands can be extremely time-consuming, which points to

the need for an efficient integration scheme. In this paper, we present an adaptive scheme for

the integration of functions with sharp gradients and cusps. Adaptive integration algorithms

accumulate integration points in regions with higher errors, and use fewer points where the

integrand is smooth. Also, we are interested in domains that can be prescribed as a collection

of hyperparallelepipeds, for example, parallelograms and parallelepipeds in two and three
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EFFICIENT INTEGRATION OF FUNCTIONS WITH SHARP GRADIENTS AND CUSPS 3

dimensions, respectively.

Adaptive integration schemes are normally recursive in nature and have a few common

ingredients [16]: a quadrature rule that can be applied to the integration domain to provide

a local estimate of the integration; a procedure to estimate the local integration error; a

strategy to partition the integration domain into smaller divisions of the same shape; and

a stopping criterion. The algorithm of Gander and Gautschi [17] over the interval and that

of Berntsen et al. [16, 18] for a collection of triangles and tetrahedra are examples. Genz

and Cools [19] proposed an algorithm for a vector-valued function over a combination of

n-dimensional simplices. At each step, a subset of the simplices with the highest errors are

selected and subdivided, and quadratures over the subdivisions are used to update the integral.

The local error in Reference [19] is estimated by applying null quadrature rules—quadratures

that (incorrectly) integrate to zero all polynomials up to degree d, and fail to do so for at least

one polynomial of a higher degree d+1 [20, 21]. Herein, we use the difference in the integration

of a function with two different tensor-product quadrature rules as the local error estimate,

and proceed to subdivide a cell until the absolute error of integration of all the functions over

each individual cell falls below a prescribed tolerance.

In this paper, we consider two types of local features. First, we focus on the regularized

Heaviside function: this function has a sharp gradient, and by shrinking the size of the

process zone, becomes strongly localized. Tornberg [22] and Patzák and Jirásek [1] proposed

regularized forms of the Heaviside function that smear the strong discontinuity over a short

distance on which the discontinuous function is approximated by a localized function. Oh et

al. [23] introduced several smooth-piecewise-polynomial regularized discontinuous functions

that can be used in the extended finite element method. Benvenuti et al. [2] presented a
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method to integrate the regularized Heaviside function by the integration of the equivalent

smooth functions. This is an extension of the method of Ventura [24] for the integration of

discontinuous functions, which is however restricted to elements with constant Jacobian of the

transformation. A more general treatment for the integration of arbitrary classes of functions,

which is also adopted in this work, is adaptive integration using a posteriori error estimates:

the integration points are concentrated close to the region where sharp gradients appear, and

fewer points are used elsewhere [2].

Next, we consider functions with cusps. We pick the Coulomb problem in crystalline diamond

and apply an enriched finite element (EFE) approach: Poisson’s equation is solved with

the electronic charge density as the source term, and the isolated atom solutions as the

enrichment functions [14]. These functions have sharp gradients in the region close to the

atomic sites, and have cusps at the nuclei. In one dimension, Möbius transformation has

been used for the integration of functions with a peak at or near a boundary [25–27]. When

Möbius transformation is applied to a standard quadrature over the interval, integration points

are attracted toward the sharp gradient and more accurate results are obtained. However,

this technique cannot be applied in higher dimensions. A well-known remedy in such cases

is adaptive integration. Our adaptive integration scheme recursively performs a uniform

refinement of the parent cell until the prescribed error tolerance over each subcell is met.

The number of integration points in the adaptive quadratures is only marginally more than

that obtained for the finite element solution with the same number of elements (and much

lower accuracy), which points to the fact that numerical integration is not a bottleneck for the

EFE solution of the problem.

The structure of this paper follows. In Section 2, the adaptive integration scheme is
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EFFICIENT INTEGRATION OF FUNCTIONS WITH SHARP GRADIENTS AND CUSPS 5

introduced, followed by an error analysis in Section 3. It is shown that the algorithm is efficient

for integrands with a cusp, such as C0 functions of the form f(x) = 1− r or f(x) = exp(−αr).

The adaptive integration algorithm is used for the integration of the regularized Heaviside

function in Section 4.1. In Section 4.2, an enriched finite element approach is applied to solve

the all-electron Coulomb problem in crystalline diamond (charge density has a cusp at the

nuclei). We close with a few concluding remarks in Section 5.

2. ADAPTIVE INTEGRATION SCHEME

Our quadrature construction algorithm is customized to meet the integration demands of high

accuracy over parallelepipeds. A tensor-product quadrature based on a one-dimensional Gauss

rule with five points in each direction is used to evaluate the local integrals. A tensor-product

quadrature with eight points in each direction is used to compute the reference integral, and

provides an estimate of the local integration error. The reason for choosing eight points in

each direction is that a quadrature with six points might not be accurate enough to detect the

integration error (due to the sharp gradients of the integrands); and a seven-point quadrature

may suffer from the same odd-even defect of the quadratures as does a five-point quadrature.

If the absolute error of integration is greater than the prescribed tolerance, the integration

domain is uniformly divided into eight cells (in three dimensions) and the adaptive integration

is performed over each cell recursively. This process is started with all the functions that need

to be integrated, and at each step only those functions whose integration error is greater than

the tolerance are passed to the next level, until all functions are integrated to the specified

tolerance. Using the relative error as the stopping criterion may cause numerical difficulties

in parts of the domain where the integral of at least one of the functions is close to zero.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–28
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This problem was also reported in Reference [17], and was resolved by additionally checking

the local estimate against the global estimate of the integration: if the contribution of the

partition was small enough, further subdivision was circumvented. Such a problem is avoided

by using the absolute error as the measure of accuracy. Note that the error tolerance in

our quadrature construction scheme is only a stopping criterion, and may not represent the

exact integration error. However, it provides a systematic means to improve the accuracy of

the numerical integration until stable solutions are obtained. In a specific application, the

appropriate tolerance depends on the overall accuracy required and the mesh resolution: as

the mesh is refined, the tolerance (error per element) should be decreased proportionally to

attain the same overall accuracy. Furthermore, if material parameters that appear in the weak

form integrals have strong spatial variations, they can be included in the integrands fi (see

Algorithm below) that are evaluated to construct the quadrature rule within the element. The

following pseudo-code explains our quadrature construction scheme.

Algorithm: Adaptive quadrature construction

Input: The domain of integration Ω; numf integrands {fi}; prescribed error tolerance tol

Output: Adaptive quadrature over Ω that integrates {fi}numf
i=1 within the accuracy of tol

for i = 1 : numf do

I1 = integrate fi over Ω with 5-point quadrature

I2 = integrate fi over Ω with 8-point quadrature

if |I2 − I1| > tol then set Pi = 1, otherwise set Pi = 0

end do

if {Pi}numf
i=1 = 0

return the 5-point quadrature as the rule over Ω

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–28
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EFFICIENT INTEGRATION OF FUNCTIONS WITH SHARP GRADIENTS AND CUSPS 7

else

partition Ω into eight uniform cells {Ωj}8j=1

for each cell Ωj , call the quadrature construction routine with the integrands

{fi, s.t. Pi = 1}numf
i=1

put the eight obtained quadratures together: the adaptive quadrature over Ω

end if

This adaptive integration scheme is similar to that of van Dooren and de Ridder [28], except

that in Reference [28], the domain is subdivided in one direction (dimension) at a time, and all

integrands are carried until the last iteration. Limiting subdivision to one dimension at each

step can be useful if the integrands have a strong dependence on one of the spatial dimensions.

Berntsen et al. [29] devise an analogous scheme with nonuniform subdivision, and improve the

error estimate: the error is approximated by combining integrals over a cell and its children.

Adaptive integration by octree subdivision is also used by Pieper [30], and the integration

error is estimated as the difference between the integral over a cell and its children.

2.1. Example

Consider the functions f1(x) = 10 exp(−100r21) and f2(x) = 100 exp(−200r22) as the integrands

for the quadrature construction, where r1 is the distance from the point x to the origin, r2

is the distance to (.81, .62, .73), and the domain of integration is the unit cube. Figure 1a

shows an adaptive quadrature over the unit cube with the above integrands and an error

tolerance of 10−6 with 8875 integration points. A sequence of octree refinements of the domain

is shown in Figure 1b–1e. The MATLAB� implementation of the adaptive quadrature is listed in

Appendix I.
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(a) (b) (c) (d) (e)

Figure 1. Adaptive quadrature over the unit cube. (a) quadrature points; and (b)-(e) the sequence of

octree refinements.

3. ERROR ANALYSIS

In this section, the convergence properties of the adaptive integration algorithm are studied.

Specifically, we are interested in cases where the integrand has a cusp, for example f(x) = 1−r

or f(x) = exp(−αr), which are C0 functions with a derivative-discontinuity at the origin.

However, this will not have an adverse effect on the efficiency of the adaptive integration

scheme, and a high rate of convergence is realized. The following examples clarify the problem.

Consider the integration of the function f(x) = 1− r, where r is the distance of the point x

to the origin. The integration domain is [−1, 1]n for n = 1, 2, . . . , 6. In Figure 2, the function

f is illustrated in one and two dimensions. Gauss quadratures are used to integrate f , and the

position of the cusp is arbitrary. By contrast, one could consider the cusp as a hindrance to

convergence, and partition the integration domain by placing the cusp at the boundary of the

subdivisions. Figure 3 shows the convergence of the integration as the number of integration

points is increased: a rate of convergence of n + 1 is observed in Rn, which can be explained

by appealing to the Taylor expansion of the integrand. Since the integrand is continuous

over a small cell Ω0 containing the cusp, the error of approximating it with a polynomial

is O(h); hence the error in the integration is O(h)VΩ0 ∼ O(hn+1), where VΩ0 ∼ O(hn) is
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EFFICIENT INTEGRATION OF FUNCTIONS WITH SHARP GRADIENTS AND CUSPS 9

(a) (b)

Figure 2. f(x) = 1− r. (a) in one dimension; and (b) in two dimensions.

the volume of Ω0. This indicates that our quadrature construction scheme can attain higher

convergence rates in higher dimensions (for C0 functions), in contrast to the usual deficiency

of numerical integration methods that suffer from the curse of dimensionality. We perform

the same experiment with f(x) = exp(−20r), which has a cusp at the origin. The function

is plotted in Figure 4a in two dimensions. The convergence curves for the integration using

tensor-product quadratures are shown in Figure 4b with respect to the minimum distance of

the integration points to the cusp. As expected, a rate of convergence of n+1 is observed in Rn.

Numerical experiments also reveal that for smoother functions Cm, m > 0, higher convergence

rates are achieved, consistent with Darboux’s Principle [31].

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–28

Prepared using nmeauth.cls
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(a) (b)

Figure 3. Convergence curves of the integration of f(x) = 1 − r. (a) with respect to the number of

integration points in each direction; and (b) with respect to the minimum distance of the Gauss points

to the cusp (only even number of integration points are shown).

(a) (b)

Figure 4. f(x) = exp(−20r). (a) f in two dimensions; and (b) convergence curves of the integration

of f(x) with respect to the minimum distance of the Gauss points to the cusp (only even number of

integration points are shown).
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4. NUMERICAL EXAMPLES

4.1. Integration of the Regularized Heaviside Function

Solution fields with sharp spatial gradients arise in modeling physical phenomena such as shear

band evolution, damage and cohesive process zones, and convection-dominated problems with

shocks. Different classes of the regularized step function are adopted as the enrichment function

for modeling sharp gradients, among which the following piecewise polynomial regularized

Heaviside function is proposed by Patzák and Jirásek [1]:

ψ(φ, ε) =


0 if φ < −ε

1
Vε

∫ φ

−ε

(
1− ξ2

ε2

)4

dξ if |φ| ≤ ε

1 if φ > ε,

(1)

where φ(x) is the signed distance from the interface, and ε is a parameter that determines the

gradient of the enrichment function (half-width of the zone). The reference volume Vε is set

to 256ε/315 to enforce C4 continuity. Integrating (1) gives [10]:

ψ(φ, ε) =
1

256ε9
(
128ε9 + 315φε8 − 420φ3ε6 + 378φ5ε4 − 180φ7ε2 + 35φ9

)
, (2)

in the region |φ| ≤ ε. It has been suggested that a single enrichment function may not be

adequate to represent the complete range of sharp gradients present in a problem, e.g., the

shock front in a convection-dominated problem, or the damage process zone in quasibrittle

materials. For such problems, multiple enrichment functions, each having a separate parameter

ε should be used [1, 10]. For the sake of illustration consider five functions with the parameter

ε/h = {2.5, 0.85, 0.265, 0.085, 0.0225} (h is the element size), and integrate them on the unit

square (h = 1). This set was produced by Abbas et al. [10] to minimize the pointwise error

in modeling shocks. Other types of sharp-gradient enrichment functions, such as tanh(qφ) can

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–28
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also be used, where q controls the severity of the gradient. The interface is a straight line shown

in Figure 5a, and the enrichment function for ε = 0.085 is depicted in Figure 5f. Four different

integration strategies are examined: (1) tensor-product over the square, ignoring the interface;

(2) and (3) integration over subtriangles using a coarse and a fine partitioning; and (4) adaptive

quadrature. In all cases, the accuracy is improved by increasing the number of integration

points (Figure 5g). The adaptive integration outperforms all other integration strategies.

The experiment is repeated for a kinked interface and the results are shown in Figure 6.

Due to the shape of the interface, the integrand in this case is relatively more complicated,

and the advantage of using the adaptive quadrature is emphasized. For an arbitrary curved

discontinuity, different methods have been proposed, for example, integration by partitioning

the element into triangles with curved edges [32, 33], and octree-subdivision [34]. In Figure 7,

the regularized Heaviside functions are integrated over a domain with a curved discontinuity.

The interface is represented in closed form using a quadratic polynomial. The performance

of the adaptive quadrature is compared with the tensor-product quadrature in Figure 7e.

Adaptive quadratures require fewer integration points for the same accuracy.

4.2. Enriched Finite Element in Quantum-Mechanical Calculations

In Reference [14], an enriched finite element method was applied to the Coulomb problem in

crystalline diamond, and tensor-product quadratures were used for the numerical integration.

The number of integration points was increased until convergence in the solution was achieved.

A higher-order quadrature was used over the elements containing the nuclei, since the enriched

basis functions and the source term were strongly localized about the nuclei. A large number

of integration points were required to obtain the desired accuracy and the optimal rate of

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–28

Prepared using nmeauth.cls



EFFICIENT INTEGRATION OF FUNCTIONS WITH SHARP GRADIENTS AND CUSPS 13

(a) (b) (c) (d) (e)

(f) (g)

Figure 5. Numerical integration of the regularized Heaviside function with a straight interface. (a)

domain of integration and interface; (b) tensor-product; (c) triangular quadratures (4 triangles); (d)

triangular quadratures (8 triangles); (e) adaptive quadrature; (f) the regularized Heaviside function

for ε = 0.085; and (g) maximum relative error in the integration of the five functions versus the

number of integration points for different strategies.

convergence. Herein, we use the adaptive integration scheme introduced in Section 2 to setup

the system matrices, and show that the optimal rate of convergence is realized at a relatively

low computational cost. First, we present a brief description of the problem, and then the

adaptive numerical integration algorithm is used to set up the finite element system matrices.

For details on the formulation and solution technique, see References [13, 14].
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(a) (b) (c) (d) (e)

(f) (g)

Figure 6. Numerical integration of the regularized Heaviside function with a kinked interface. (a)

domain of integration and interface; (b) tensor-product; (c) triangular quadratures (6 triangles); (d)

triangular quadratures (32 triangles); (e) adaptive quadrature; (f) the regularized Heaviside function

for ε = 0.085; and (g) maximum relative error in the integration of the five functions versus the

number of integration points for different strategies.

Consider the unit cell defined by the lattice vectors

a1 =
a

2
(0, 1, 1)

a2 =
a

2
(1, 0, 1) (3)

a3 =
a

2
(1, 1, 0),

where a = 6.75 bohr, and carbon atoms are at τ1 = (0, 0, 0) and τ2 = (1/4, 1/4, 1/4) in lattice

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–28

Prepared using nmeauth.cls



EFFICIENT INTEGRATION OF FUNCTIONS WITH SHARP GRADIENTS AND CUSPS 15

(a) (b) (c)

(d) (e)

Figure 7. Numerical integration of the regularized Heaviside function with a curved interface. (a)

domain of integration and interface; (b) tensor-product; (e) adaptive quadrature; (f) the regularized

Heaviside function for ε = 0.085; and (g) maximum relative error in the integration of the five functions

versus the number of integration points for different strategies.

coordinates. The total charge ρ in the unit cell is written as

ρ(x) = ρ+(x) + ρ−(x) = ρ+(x)− ρ̃(x) + ρ−(x) + ρ̃(x) = ρ̃+(x) + ρ̃−(x), (4)

where ρ+(x) =
∑

i ρi(x) =
∑

i qiδ(x− τi) is the total nuclear charge density in the unit cell,

ρ−(x) is the electronic charge density, and ρ̃+(x) = ρ+(x)− ρ̃(x) and ρ̃−(x) = ρ−(x)+ ρ̃(x) are

the neutralized nuclear and electronic charge densities, respectively. The neutralizing charge

ρ̃(x) is introduced in (4) to circumvent the divergence of the potential V +(x) (V + ∼ 1/r) at

nuclear locations, so that Ṽ + is extracted analytically, and Ṽ − is solved in real space. The

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–28
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16 S. E. MOUSAVI, J. E. PASK AND N. SUKUMAR

potential Ṽ − associated with the neutralized electronic charge density is obtained from the

solution of Poisson’s equation:

∇2Ṽ −(x) = −4πρ̃−(x), (5)

subject to periodic boundary conditions, with continuous neutralized electronic charge density

ρ̃−(x) as the source term. The EFE solution is written as

Ṽ −(x) =
∑

i

φi(x)ai +
∑
α

ψα(x)bα ≡
∑

k

Φk(x)ck, (6)

where α is summed over the atoms and {Φk} = {φi}∪{ψα} is the combination of the classical

and enriched basis functions that form the EFE basis. The enrichment functions ψα(x) are

taken as sum of the potentials ṽ−I —isolated atomic solutions corresponding to the neutralized

electronic charge densities ρ̃−I = ρ−I +ρ̃I in the vicinity of each atom I. The enrichment function

is written as

ψα(x) = Ṽ −α (x) =
∑
R

ṽ−α (x−R), (7)

where R denotes lattice translation vectors. The electronic charge densities and the enrichment

functions are plotted in Figure 8.

On incorporating the trial and test functions of the form (5) into the weak form of the

Poisson’s equation, the discrete linear system of equations emerges. It is seen that the terms

ψ,ψ2, ∂ψ/∂r, (∂ψ/∂r)2, and ψ∂ψ/∂r appear in the element stiffness matrix, and ρ in the

element force vector, where for simplicity ψ and ρ are used for the enrichment function, and

the electronic charge density, respectively, and ∂ψ/∂r refers to the derivative with respect

to the radial coordinate. These functions are normalized, with an absolute maximum value of

unity, and plotted in Figure 9. The integrands have sharp gradients close to the atomic positions

and produce cusps at the atomic sites. While it is possible to integrate these terms separately

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–28
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(a) (b)

Figure 8. (a) Electronic charge densities; and (b) enrichment functions for the Coulomb problem in

crystalline diamond [14].

(resulting in multiple ad hoc quadratures), it is desirable to have a single quadrature that is

capable of efficiently evaluating the integrals altogether. The proposed numerical integration

algorithm constructs a quadrature rule over each finite element that satisfies a given error

tolerance for all the above integrands. Once the finite element mesh is generated, adaptive

quadratures are constructed and saved for each element, which are used throughout the analysis

and the postprocessing.

A sequence of refined meshes are used with 4, 8, 12, 16, 20, 24, and 32 cubic serendipity

finite elements in each direction. Numerical integration is performed with tensor-product

and adaptive quadratures. In each case, the accuracy of the quadratures is increased until

convergence in the solution is observed. The number of integration points for each mesh and

integration strategy is reported in Table I. Figure 10 shows the convergence curves for FE

and EFE runs, with a rate of convergence of 4.39 and 5.96, respectively, for the last three

data points. The results indicate that the integration scheme is sufficiently accurate to realize

the optimal rate of convergence. The error tolerance (input of the quadrature construction

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–28
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18 S. E. MOUSAVI, J. E. PASK AND N. SUKUMAR

Figure 9. Normalized integrands in the element stiffness matrix and force vector of the Poisson problem.

algorithm) is the maximum allowable error that produces a stable result (i.e., stable with

respect to further decrease in tolerance). For the pure FE runs, a 5-point Gauss quadrature rule

is used in each direction. Adaptive integration proves to be superior with respect to the tensor-

product quadrature. The improvement is emphasized for finer meshes where higher accuracies

are required: the integration demand of the EFE solution is only marginally higher than the

pure FE solution (of much lower accuracy) on the same mesh. In Figure 11, a comparison is

made between the behavior of tensor-product and adaptive quadratures for the EFE solution

of the Coulomb problem in crystalline diamond. The quadrature error in the Coulomb energy

is plotted with respect to the number of integration points for finite element meshes with 4 and

16 elements in each direction. The accuracy of the quadrature is increased until the desired

convergence with respect to the quadrature is attained. The adaptive quadrature requires

fewer integration points to achieve the same accuracy. Standard Gauss quadrature shows a

smoother convergence curve, which can be attributed to the uniform overall increase in the
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accuracy of the quadrature throughout the domain. The efficiency of the adaptive quadrature

is more noticeable in case of the 16× 16× 16 mesh.

Note that in all the meshes used earlier, the atoms are located at the vertices of the finite

elements—the atom inside the unit cell is at a quarter of the diagonal from the corner, and the

number of elements is a multiple of four—and there is no atom inside any finite element. For

more general lattice systems, non-uniformly refined meshes may be required in order to ensure

that all atoms are located at the vertices of elements. This is not desirable due to the increase

in the total number of elements and the associated computational costs. Furthermore, with

the application of the EFE, one would like to resolve the local features by adding enrichment

functions to the approximation, and not by refining the finite element mesh. In the following,

we use meshes with 1, 2, 3, 5, 6, and 7 elements in each direction. In all these cases, the

atom in the unit cell lies inside an element. The number of integration points of the tensor-

product and adaptive quadratures are compared in Table II. The increase in the number

of integration points for the tensor-product quadrature is significant, whereas the adaptive

integration provides accurate results with a moderate number of integration points.

5. CONCLUDING REMARKS

An adaptive integration scheme was presented that can be used for functions with sharp

gradients and cusps. The algorithm uses tensor-product quadratures with 5 and 8 integration

points in each direction to estimate the local error, and divides the domain uniformly,

independent of the location of the cusp or sharp gradient, until the target tolerance is met.

The error analysis in the integration of a function with a cusp (derivative-discontinuity at a

point) showed that the rate of convergence is improved in higher dimensions. The adaptive
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Table I. Comparison of the number of integration points for tensor-product and adaptive quadratures.

Mesh Error tolerance Number of integration points

Pure FE Tensor-product Adaptive

4 2.2× 10−3 8000 169000 78000

8 1.7× 10−4 64000 624000 162000

12 2.2× 10−5 216000 1840000 349000

16 4.3× 10−6 512000 14020000 981000

20 1.1× 10−6 1000000 27196000 1549500

24 3.0× 10−7 1728000 46852000 3073750

32 4.7× 10−8 4096000 — 6112000

Figure 10. Error in Coulomb energy per atom. 32× 32× 32 mesh is used as the reference solution.
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(a) (b)
Figure 11. Comparison of tensor-product and adaptive quadratures for the crystalline diamond

problem. The thick line shows the EFE solution error. (a) 4 × 4 × 4 mesh; and (b) 16 × 16 × 16

mesh.

Table II. Comparison of the number of integration points for tensor-product and adaptive quadratures:

one of the atoms is inside an element.

Mesh Error tolerance Number of integration points

Pure FE Tensor-product Adaptive

1 9.8× 10−3 125 1000000 48250

2 6.8× 10−3 1000 4096000 48250

3 3.3× 10−3 3375 1880000 55875

5 1.1× 10−3 15625 8000000 165250

6 4.9× 10−4 27000 27000000 188875

7 3.0× 10−4 42875 21952000 183750
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integration algorithm was successfully used for the integration of a set of regularized Heaviside

functions, and proved to be more efficient than integration by partitioning as well as tensor-

product quadratures. The method was also applied to the enriched finite element solution of

the all-electron Coulomb potential and energy of crystalline diamond (Poisson’s equation).

The enrichment functions and source term were strongly localized about the atomic positions.

The adaptive integration scheme proved to be very efficient, and recovered the optimal rate of

convergence with only a moderate increase in the number of integration points with respect to

the classical finite element method (of much lower accuracy) on the same mesh; while reducing

the integration points required in the EFE solution by an order of magnitude or more. The

adaptive integration scheme is simple, robust, and directly applicable to any generalized finite

element method employing enrichments with sharp local variations or cusps in n-dimensional

parallelepiped elements.
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APPENDIX

I. MATLAB Code for the Adaptive Integration Scheme

The following routine is the implementation of our adaptive integration scheme and produces

a quadrature over an n-dimensional hyperparallelepiped for a given set of functions and

prescribed error tolerance. First, a description of the input and output parameters is given.

� fn: 1 × numf , set of integrands, defined as an array of structures with the member

h, which is a function handle. For example, in case of two integrands, we have:

fn(1).h = @integrand1; and fn(2).h = @integrand2;, where integrand1.m and

integrand2.m are MATLAB functions defined as Rn → R.

� d: (n + 1) × n, domain of integration, a hyperparallelepiped in Rn, defined using one

point as its base and only n subsequent vertices of d. For example, while d(2, :) is a

vertex of d, the vector d(2, :)-d(1, :) is a lattice vector of d.
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� nsp: 1×2, number of integration points in each direction to evaluate the integral over the

partitions. nsp(1) is used to evaluate the local integrals, and nsp(2) is used to evaluate

the local integration error.

� tol: 1× 1, absolute value of the integration error.

� X: n× numx, quadrature points, each point is a column vector.

� W: numx× 1, quadrature weights.

For example, the functions used in Section 2.1 are defined in the following m-files:

function val = integrand1(X)
R = sqrt(sum(X.^2, 1));
val = 10*exp(-100*R.^2);
%------------------------------------------
function val = integrand2(X)
R = sqrt(sum((X - repmat([.81, .62, .73]’, 1, size(X, 2))).^2, 1));
val = 100*exp(-200*R.^2);

The domain of integration (unit cube) is defined using its base and three of its vertices:

d = [0, 0, 0; ...
1, 0, 0; ...
0, 1, 0; ...
0, 0, 1];

With the above setting, the adaptive quadrature function can be called (see Figure 1):

[X, W] = ndimensional_adaptive_integration(fn, d, [5, 8], 1e-6);

The MATLAB code for the quadrature construction follows.

function [X, W] = ndimensional_adaptive_integration(fn, d, nsp, tol)
% External Dependencies (m-files)
% gauss_points(nsp) : 1D Gauss points
% gauss_weights(nsp): 1D Gauss weights
dim = size(d, 2); % dimension
[XYZg1, Wg1] = Get_initial_quad(nsp(1), dim);
[XYZg2, Wg2] = Get_initial_quad(nsp(2), dim);
[X, W] = Adaptive_integration(fn, d, dim, ...

nsp, XYZg1, Wg1, XYZg2, Wg2, tol);
%------------------------------------------------------------
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function [XYZ, W] = Adaptive_integration(fn, d, dim, ...
nsp, XYZg1, Wg1, XYZg2, Wg2, tol)

numfun = length(fn);
nspd = nsp.^dim;
PARTITION = zeros(numfun, 1);
for ind = 1:numfun

[integ1, XYZt1, Wt1] = Integrate_over_one_cell(fn(ind), ...
d, dim, nspd(1), XYZg1, Wg1);

integ2 = Integrate_over_one_cell(fn(ind), d, dim, ...
nspd(2), XYZg2, Wg2);

err = abs(integ2 - integ1);
if (err >= tol), PARTITION(ind) = 1; end

end
if any(PARTITION)

two_power_dim = 2^dim;
XYZtemp = cell(1, two_power_dim); Wtemp = XYZtemp;
vectors = (d(2:end, :) - repmat(d(1, :), dim, 1)) / 2;
I = zeros(dim, 1);
for ind = 1:two_power_dim

base = d(1, :);
for j = 1:dim

base = base + (I(j))*vectors(j, :);
end
division = [base; repmat(base, dim, 1) + vectors];
[XYZtemp{ind}, Wtemp{ind}] = Adaptive_integration(...

fn(PARTITION == 1), division, dim, nsp, ...
XYZg1, Wg1, XYZg2, Wg2, tol);

I = incrementI(I, dim);
end
XYZ = []; W = [];
for ind = 1:two_power_dim

XYZ = [XYZ, XYZtemp{ind}];
W = [W; Wtemp{ind}];

end
else

XYZ = XYZt1;
W = Wt1;

end
%------------------------------------------------------------
function [integ, XYZt, Wt] = Integrate_over_one_cell(fn, d, ...

dim, nspd, XYZg, Wg)
A = (d(2:end, :) - repmat(d(1, :), dim, 1))’;
shift = d(1, :)’;
XYZt = A*XYZg + repmat(shift, 1, nspd);
Wt = Wg*det(A);
integ = dot(Wt, fn.h(XYZt));
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%------------------------------------------------------------
function [XYZg, Wg] = Get_initial_quad(nsp, dim)
% Get a nsp^dim point quad over the unit ’dim’-dimensional hypercube
xg = gauss_points(nsp)’; xg = (1 + xg)/2;
wg = gauss_weights(nsp)’; wg = wg/2;
XYZg = xg;
Wg = wg;
for i = 2:dim

XYZg = repmat(XYZg, nsp, 1);
XYZg(:, i) = reshape(repmat(xg, 1, nsp^(i-1))’, 1, nsp^i);
Wg = repmat(Wg, nsp, 1);
Wg(:, i) = reshape(repmat(wg, 1, nsp^(i-1))’, 1, nsp^i);

end
XYZg = XYZg’;
Wg = prod(Wg, 2);
%------------------------------------------------------------
function I = incrementI(I, dim)
% Keep track of the vectors that construct the current cell
I(1) = I(1) + 1;
for i = 1:(dim-1)

if (I(i) == 1), break; end
I(i) = 0;
I(i+1) = I(i+1) + 1;

end

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 00:1–28
Prepared using nmeauth.cls


