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Abstract

In this paper, we propose an eXtended Virtual Element Method (X-VEM) for two-dimensional
linear elastic fracture. This approach, which is an extension of the standard Virtual Element
Method (VEM), facilitates mesh-independent modeling of crack discontinuities and elastic
crack-tip singularities on general polygonal meshes. For elastic fracture in the X-VEM, the
standard virtual element space is augmented by additional basis functions that are constructed
by multiplying standard virtual basis functions by suitable enrichment fields, such as asymp-
totic mixed-mode crack-tip solutions. The design of the X-VEM requires an extended projector
that maps functions lying in the extended virtual element space onto a set spanned by linear
polynomials and the enrichment fields. An efficient scheme to compute the mixed-mode stress
intensity factors using the domain form of the interaction integral is described. The formulation
permits integration of weakly singular functions to be performed over the boundary edges of
the element. Numerical experiments are conducted on benchmark mixed-mode linear elastic
fracture problems that demonstrate the sound accuracy and optimal convergence in energy of
the proposed formulation.

Keywords: partition-of-unity enrichment; X-VEM; crack discontinuity; crack-tip singularity;
mixed-mode fracture; polygonal meshes

1. Introduction

Over the past two decades, significant attention has been devoted to the development of
numerical techniques to solve problems that admit singular or discontinuous solutions such as
fracture propagation in solids. Among these techniques, enriched finite element approxima-
tions based on the partition-of-unity framework [1, 2] have received considerable attention. The
eXtended Finite Element Method (X-FEM) [3] is one of the most successful methods to anal-
yse fracture problems on unstructured triangular and quadrilateral meshes without requiring
remeshing. For fracture simulations on polygonal meshes, extended finite element formula-
tions have been proposed [4, 5] as well as the scaled boundary element method [6–8]. However,
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construction of shape functions that are defined on general polygons renders extended finite ele-
ment formulations to be more involved and numerical integration of regular and weakly singular
functions over polygons is also an issue that requires special attention [9–11].

The Virtual Element Method (VEM) [12] is a stabilized Galerkin formulation to solve partial
differential equations on very general polygonal meshes that overcomes the many difficulties
and challenges that are associated with polygonal finite element formulations. The VEM derives
from the mimetic finite difference method [13, 14] and is a generalization of the Finite Element
Method (FEM) in which the explicit knowledge of the basis functions is not needed. Such basis
functions are defined as the solution of a local elliptic partial differential equation, and are never
explicitly computed in the implementation of the method. Indeed, the VEM uses the elliptic
projections of the basis functions onto suitable polynomial spaces to discretize the bilinear form
and the continuous linear functional deriving from the variational formulation. Such projections
are computable because of a careful choice of the degrees of freedom. The discretized bilinear
form is conveniently decomposed as the sum of a consistent term, which ensures polynomial
consistency, and a correction term, which guarantees stability. Moreover, the VEM requires the
same element-wise assembly procedure of the FEM for the construction of the global stiffness
matrix, thus resulting in a linear system of equations from which the solution is obtained.

In recent years, the VEM has also been used to solve problems in solid mechanics, such as
two- and three-dimensional linear elasticity [15, 16], nearly incompressible elasticity [17–19],
inelastic problems [20, 21], mixed variational formulations for linear elasticity [22, 23], linear
elasticity on curvilinear elements [24], and elastodynamics [25–27]. However, very few studies
have exploited the flexibility of the method to deal with meshes that are cut by discontinuities
and/or contain interior singularities. Among these we mention the virtual element modeling
of flow in fracture networks [28] and the application of the VEM to 2D elastic fracture prob-
lems [29–31]. In these studies, hanging nodes are inserted at locations where each discontinuity
intersects an element, so that each cut element is partitioned into a collection of polygonal
elements.

Approximating spaces that consist of the product of low-order virtual element basis func-
tions and a nonpolynomial function were first proposed in [32] for the Helmholtz problem,
where the nonpolynomial function is chosen as a planewave in the two directions. More re-
cently, drawing inspiration from the X-FEM, an eXtended Virtual Element Method (X-VEM)
is presented in [33] to treat singularities and crack discontinuities in the scalar Laplace prob-
lem, which also governs the deformation of a stretched membrane or torsion in a prismatic
beam [34]. An enriched nonconforming virtual element method is proposed in [35], where the
approximation spaces is enriched with special singular functions (without using the partition-
of-unity framework) to solve the Poisson problem with reentrant corners.

In this paper, we develop an extended virtual element formulation for linear elastic fracture
problems, in which the displacement field features both discontinuities and crack-tip singu-
larities. For the X-VEM, we construct an enriched virtual element space by introducing an
additional set of virtual basis functions, which are built on vectorial enrichment fields that are
suitably chosen so that they reproduce the nature of the weak singularity in the neighborhood of
the crack tip. Hence, additional information about the exact solution is incorporated in the com-
putational method, mitigating the effects of the singularity on the numerical accuracy. In prin-
ciple, any number of auxiliary fields can be considered to enrich the virtual element space. In
the X-FEM, near-tip crack functions are used as enrichment functions in the discrete space [3],
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whereas in the X-VEM we require the enriched stress fields to be divergence-free and hence
choose the asymptotic mode I and mode II crack-tip displacement solutions as vectorial en-
richments. The use of vectorial enrichments was first proposed in the generalized finite element
method [36]. Furthermore, as introduced in Benvenuti et al. [33], discontinuities in the displace-
ment field are incorporated in the virtual element space using the approach proposed for finite
elements by Hansbo and Hansbo [37]. In contrast to the X-FEM, the X-VEM for elastic fracture
provides greater flexibility since it is applicable to arbitrary (simple and nonsimple) polygonal
meshes. Furthermore, unlike the X-FEM where special integration schemes [10] are needed to
accurately evaluate the weak form (domain) integrals, in the X-VEM a one-dimensional quadra-
ture rule on the boundary of the polygonal element suffices to compute such integrals. As in the
VEM, the explicit knowledge of virtual shape functions on general polygons is not required, and
as we will detail, in this particular instance of the X-VEM, weak form integrals are computed
only on the boundary of the element, where the virtual shape functions are known.

The remainder of this article is organized as follows. In Section 2, we introduce the strong
and weak forms for two-dimensional linear elastic fracture problems. In Section 3, we describe
the extended virtual element formulation. For crack tip singularities, we devise an extended pro-
jector that maps functions that lie in the extended virtual element space onto the space spanned
by the basis of linear polynomials and the enrichment fields. The approach of Hansbo and
Hansbo [37] is used to model crack discontinuities in the X-VEM. The implementation of the
X-VEM is discussed in Section 4. In Section 5, we presents results for the discontinuous and
extended patch tests, and show that the method delivers optimal rate of convergence in energy
for benchmark mixed-mode crack problems.

Final remarks and suggestions for future work are discussed in Section 6.

2. Governing equations for 2D linear elasticity

We consider a linear elastic body occupying the two-dimensional domain Ω ⊂ R2, bounded
by Γ (see Fig. 1). We denote the displacement field on Ω by u(x) and assume small strains and
displacements. The boundary Γ = Γu ∪ Γt ∪ Γc, where Γu, Γt and Γc are nonoverlapping, i.e.,
Γu ∩ Γt ∩ Γc = ∅.

Prescribed displacements g ∈ C0(Γu) are imposed on Γu, whereas tractions t̄ ∈ C0(Γt) are
imposed on Γt. Here, Γc represents a traction-free internal crack.

We now summarize the governing equations of the elastic problem under the assumptions
of small strains and displacements. Let σ be the Cauchy stress tensor. In the absence of body
forces, the equilibrium equations are

∇ · σ = 0 in Ω, (1a)

with the natural boundary conditions

σ · n = t̄ on Γt, (1b)
σ · n = 0 on Γc, (1c)

where n is the unit outward normal, and the essential boundary condition

u = g on Γu. (1d)
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Figure 1: Elastostatic boundary-value problem for an embedded crack.

The small strain tensor ε is related to the displacement field u by the compatibility equation

ε(u) = ∇su, (1e)

where ∇s is the symmetric part of the gradient operator, which is defined as

∇s(·) =
1
2

(
∇(·) + ∇T (·)

)
.

Lastly, the isotropic linear elastic constitutive law is

σ(u) = C : ε(u), (1f)

where C is the fourth-order elasticity tensor for a homogeneous isotropic material.
The weak form of the problem is constructed by defining the space of admissible displace-

ment fields as

U =
{
v ∈ [H1(Ω)]2 : v = g on Γu, v discontinuous on Γc

}
, (2)

where the space V is related to the regularity of the solution, and admits discontinuous functions
across the crack. Similarly, the test function space is defined as:

U0 =
{
v ∈ [H1(Ω)]2 : v = 0 on Γu, v discontinuous on Γc

}
. (3)

The weak form of the equilibrium equation reads as: Find u ∈ U such that

a(u, v) :=
∫

Ω

σ(v) : ε(u) dx =

∫
Γt

t̄ · vdΓ =: b(v) ∀v ∈ U0. (4)

The above statement is equivalent to the strong form (1a) and in a finite element framework it
is solved approximately on a sequence of appropriately nested finite-dimensional subspaces of
U .
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3. Extended virtual element formulation

We now discuss the formulation of the extended virtual element method for two-dimensional
elasticity problems. We start, in Section 3.1, from the definition and regularity properties of the
mesh families for the X-VEM, and after reviewing the ‘nonenriched’ VEM in Section 3.2, we
provide the design of the X-VEM for full and partial local enrichments in Sections 3.3 and 3.4.

3.1. Mesh definition and regularity assumptions
Let T = {Ωh}h be a family of decompositions of Ω into nonoverlapping polygonal elements

E with nonintersecting boundary ∂E, barycenter xE ≡ (xE, yE)T , area |E|, and diameter hE =

supx,y∈E |x − y|. The subindex h that labels each mesh Ωh is the maximum of the diameters hE

of the elements of that mesh. The boundary of E is formed by NE straight edges connecting NE

vertices. The sequence of the vertices on ∂E is oriented in the counter-clockwise order and the
vertex coordinates are denoted by xi ≡ (xi, yi)T , i = 1, 2, . . . ,NE. We denote the unit normal
vector to ∂E pointing out of E by nE.

Usually, in the convergence analysis of the conforming VEM, it is assumed that there exists
a positive constant % independent of h (hence, also of Ωh) such that for every polygonal element
E ∈ Ωh it holds that:

(i) E is star-shaped with respect to a disk with radius greater than %hE;
(ii) for every edge e ∈ ∂E it holds that he ≥ %hE.

Although the convergence analysis of the X-VEM is beyond the scope of this paper, we
present such mesh regularity assumptions to characterize the geometry of the elements in the
polygonal meshes, which is pertinent to our formulation. We also note that condition (i) implies
that all the mesh elements have a finite number of vertices and edges for h → 0 and are simply
connected subset of R2. In turn, condition (ii) excludes the possibility of collapsing vertices in
the refinement process, i.e., vertices whose distance becomes zero faster than h.

3.2. Conforming virtual element space, elliptic projection and bilinear form
Let Γc = ∅. On every polygonal element E with boundary ∂E, we first define the following

scalar virtual element space

Vh(E) ≡
{
vh ∈ H1(E) : ∆vh = 0, vh

|∂E ∈ C0(∂E), vh
|e ∈ P

1(e) ∀e ∈ ∂E)
}
, (5)

where P1(e) is the set of linear polynomials on the element edge e ∈ ∂E and ∆ is the Laplace
operator. We denote the canonical basis of Vh(E) by {ϕi}

NE
i=1, so that each ϕi is the harmonic

function on E with continuous piecewise linear trace on the boundary ∂E that takes value 1 on
the i-th node and 0 on the remaining nodes. The linear polynomials P1(E) are a subspace of
Vh(E), and the basis functions ϕi satisfies the partition-of-unity property

NE∑
i=1

ϕi(x) = 1 ∀x ∈ E. (6)

For the linear elasticity (vectorial) problem, on every polygonal element E ∈ Ωh we define
the local virtual element space of vector-valued functions as Vh(E) =

[
Vh(E)

]2. Every vector-
valued virtual element function vh ∈ Vh(E) is uniquely characterized by its vertex values, also
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known as the degrees of freedom (DOFs) of the method. In the framework of two-dimensional
elasticity, such degrees of freedom represent the two components of the displacement field at
the mesh vertices. Therefore, we have 2NE degrees of freedom per mesh element E. Such
degrees of freedom are unisolvent in Vh(E) [15].

We define the set of ‘canonical’ basis functions of Vh(E) by
{
ϕi

}2NE
i=1 so that ϕ2i−1 = (ϕi, 0)T

and φ2i = (0, ϕi)T for i = 1, . . . ,NE. These functions are made explicit by the following expres-
sion

Vh(E) = span
{(

ϕ1

0

)
,

(
0
ϕ1

)
, . . . ,

(
ϕi

0

)
,

(
0
ϕi

)
, . . . ,

(
ϕNE

0

)
,

(
0
ϕNE

)}
, (7)

and the partition-of-unity property (6) implies that

NE∑
i=1

ϕ2i−1(x) =

( ∑NE
i=1 ϕi(x)

0

)
=

(
1
0

)
and

NE∑
i=1

ϕ2i(x) =

(
0∑NE

i=1 ϕi(x)

)
=

(
0
1

)
∀x ∈ E.

We collect all the element spaces Vh(E) in a conforming way and define the global virtual
element space Vh ⊂ U0 as follows

Vh =
{
vh ∈

[
H1(Ω)

]2 : vh
|E ∈ Vh(E) ∀E ∈ Ωh

}
.

Let ah(·, ·) and bh(·) denote computable counterparts of the exact bilinear form a(·, ·) and the
linear functional b(·) acting on Vh, and consider the virtual element affine subspace of Vh given
by

Vh
g =

{
vh ∈ Vh : vh = gh on Γu

}
,

which incorporates the essential boundary condition (1d) in the space definition by taking the
linear interpolant gh of g, and the linear subspace Vh

0 ⊂ Vh that is obtained by setting gh = 0 in
Vh

g. With this caveat, the virtual element approximation of the variational problem (4) reads as:
Find uh ∈ Vh

g such that

ah(uh, vh) = bh(vh) ∀vh ∈ Vh
0. (8)

To construct the bilinear form ah(·, ·) and the linear functional bh(·), we first split them as
the sum of element terms ah,E(·, ·) and bh,E(·) so that

ah(uh, vh) =
∑
E∈Ω

ah,E(uh, vh) ∀uh, vh ∈ Vh,

bh(uh) =
∑
E∈Ω

bh,E(vh) ∀vh ∈ Vh.

It is well established in the VEM literature that a crucial requirement for every ah,E(·, ·)
to deliver an accurate and stable formulation is to satisfy the properties of linear consistency
and stability [12]. To construct such ah,E(·, ·), we resort to the elliptic projection operator
Πa : Vh(E) →

[
P

1(E)
]2, which maps vector-valued functions from Vh(E) onto linear vector
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polynomials. To fix the nontrivial kernel in the definition of such elliptic projector, we intro-
duce the average translation operator over the NE element vertices

{
x j

}NE
j=1 defined as

w =
1

NE

NE∑
j=1

w(x j), (9)

and the average rotation operator defined as

(w)R =
1

NE

NE∑
j=1

r(x j) · w(x j), r(x) =
(
y,−x

)T
. (10)

For each vh ∈ Vh(E), the elliptic projection Πa(vh) is the solution of the variational problem∫
E
σ(q) : ε(Πavh) dx =

∫
E
σ(q) : ε(vh) dx ∀q ∈

[
P

1(E)
]2
, (11a)

with the additional conditions

Πavh = vh, (11b)

(Πavh)R = (vh)R. (11c)

Conditions (11b) and (11c) fix the rigid-body modes (two translations and one rotation) that
form the kernel of ε(·).

A requirement for such a projection operator is that it is computable from the degrees of
freedom of Vh, as we explain below. In order to compute Πa(vh) it is convenient to choose, as a
basis of P1(E), the set of scaled monomials

m(x) =
{
1, ξ(x), η(x)

}
, with ξ(x) =

x − xE

hE
, η(x) =

y − yE

hE
, (12)

where x =
(
x, y

)T , so that the basis functions of P1(E) scale as O(1) with respect to h. It
immediately follows that P1(E) = span{1, ξ, η}, and a possible basis of

[
P

1(E)
]2 is

[
P

1(E)
]2

= span
{(

1
0

)
,

(
0
1

)
,

(
η
−ξ

)
,

(
ξ
0

)
,

(
0
η

)
,

(
η
ξ

)}
. (13)

The six vector fields in (13) represent the three planar rigid-body modes and the three indepen-
dent nonzero deformation modes.

To prove the computability of Πa, we rewrite (11a) with (11b)-(11c) as a linear system. For
every ϕi from the canonical basis of Vh(E) shown in (7), we consider the expansion of Πaϕi on
the basis of [P1(E)]2 shown in (13). A suitable application of the divergence theorem shows
that Πaϕi is computable by using only the degrees of freedom of ϕi and noting that ∇·σ(ϕi) = 0.
The polynomial projection Πavh can readily be computed for all virtual element fields vh from
the projections of the basis functions ϕi because the projection operator is a linear operator.

We will expand on this observation in the next section.
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Once computed, operator Πa allows us to evaluate the local approximated bilinear form as
follows

ah,E(vh,wh) = aE(Πa(vh), Πa(wh)
)

+ S E((vh − Πa(vh)
)
,
(
wh − Πa(wh)

))
=

∫
E
σ(Πa(vh)) : ε(Πa(wh) dx + S E((vh − Πa(vh)

)
,
(
wh − Πa(wh)

))
,

where S E(·, ·) is a suitable stabilizing term that preserves the coercivity of the system. According
to the virtual element methodology, S E(·, ·) can be any symmetric, positive definite, continuous
bilinear form defined on the kernel of the projection operator Πa [12].

We refer the reader to Section 4 for possible choices of the stabilization term.

Finally, the expression for the virtual element approximation of the linear functional in the
right-hand side of (8) is given by

bh,E(vh) =

∫
Γt∩∂E

t̄ · vh dΓ = bE(vh),

where bh,E(vh) is computable because t̄ is known and the trace of vh is a linear polynomial on
each edge e ∈ Γt ∩ ∂E that is known through the interpolation of the edge degrees of freedom.

3.3. Extended virtual element space, elliptic projection and bilinear form
If the exact solution to the selected problem contains singularities, then similar to the finite

element method, the accuracy of the virtual element method is compromised. For this reason,
it is beneficial to enrich the virtual element space by means of independent fields carrying
information about the singularities affecting the exact solution. As we discuss later on, such
fields are required to satisfy the equilibrium equations (1a). For two-dimensional elastic fracture
problems, we choose the enrichment fields as a scaled form of the exact asymptotic crack-tip
displacement fields for mode I and mode II crack opening, uI =

(
uI

x, u
I
y
)T and uII =

(
uII

x , u
II
y )T ,

respectively. These enrichment fields are given by the expressions:

uI
x := uI

x(r, θ) =

√
r

2π

[
(2κ − 1) cos

(
θ

2

)
− cos

(
3θ
2

)]
, (14a)

uI
y := uI

y(r, θ) =

√
r

2π

[
(2κ + 1) sin

(
θ

2

)
− sin

(
3θ
2

)]
, (14b)

uII
x := uII

x (r, θ) =

√
r

2π

[
(2κ + 3) sin

(
θ

2

)
+ sin

(
3θ
2

)]
, (14c)

uII
y := uII

y (r, θ) = −

√
r

2π

[
(2κ − 3) cos

(
θ

2

)
+ cos

(
3θ
2

)]
, (14d)

where (r, θ) are polar coordinates in the local crack tip reference system (see Fig. 2) and κ is the
Kolosov constant.

An explicit computation implies that these fields satisfy equilibrium, i.e., the conditions
∇·σ(uI) = 0 and ∇·σ(uII) = 0 hold. Note that uI and uII belong to H

3
2−η(Ω) for any η > 0 [38],
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Figure 2: Local crack-tip reference system in polar coordinates.

and this fact reduces the convergence rate of a standard finite element or virtual element method
to O(h

1
2 ).

Let ǔI =
(
ǔI

x, ǔ
I
y
)T and ǔII =

(
ǔII

x , ǔ
II
y
)T denote the dimensionless version of fields uI and uII ,

respectively,

ǔI = uI/h1/2 and ǔII = uII/h1/2, (15)

where h = maxE∈Ωh(hE). In order to define the extended virtual element space, we first introduce
the local virtual element space Vh,∗(E) ⊂ Vh(E), which reads as

Vh,∗(E) ≡
{
vh = (vh

x, v
h
y)T ∈ Vh(E) : vh

x = vh
y

}
. (16)

This space is generated by the linear combination of the basis functions ϕ∗i = (ϕi, ϕi)T , i =

1, . . . ,NE, where the functions ϕi are the basis functions of the scalar virtual element space
Vh(E), so that Vh,∗(E) = span

{
ϕ∗1, . . . ,ϕ

∗
NE

}
. The dimension of this space is clearly NE and the

partition-of-unity property of functions ϕi implies that

NE∑
i=1

ϕ∗i (x) =

 ∑NE
i=1 φi(x)∑NE
i=1 φi(x)

 =

(
1
1

)
∀x ∈ E.

Then, we define the matrices ψI and ψII as

ψI ≡

[
ǔI

x 0
0 ǔI

y

]
, ψII ≡

[
ǔII

x 0
0 ǔII

y

]
. (17)

We now have all the ingredients to define the local extended virtual element space Vh
X(E),

which reads as

Vh
X(E) ≡ Vh(E) ⊕ ψIVh,∗(E) ⊕ ψIIVh,∗(E). (18)

We obtain a basis of this space as the union of the basis functions of Vh
X(E), ψIVh,∗(E) and

ψIIVh,∗(E), so that

Vh
X(E) = span

{
ϕ1,ϕ2, . . . ,ϕ2i−1,ϕ2i, . . . ,ϕ2NE−1,ϕ2NE

}
∪ ψIspan

{
ϕ∗1,ϕ

∗
2, . . . ,ϕ

∗
NE

}
9



∪ ψIIspan
{
ϕ∗1,ϕ

∗
2, . . . ,ϕ

∗
NE

}
, (19)

where we recall that ϕ2i−1 = (ϕi, 0)T , ϕ2i = (0, ϕi)T and ϕ∗i = (ϕi, ϕi)T , i = 1, . . . ,NE. Therefore,
at every enriched node the vector-valued field vh

X(x) that belongs to the extended virtual element
space Vh

X(E) is characterized by four values and for an element whose nodes are all enriched,
we have 4NE degrees of freedom. For example, at the j-th node with coordinates x j, we find
that

vh(x j) =

NE∑
i=1

[
vh

i,x

(
ϕi(x j)

0

)
+ vh

i,y

(
0

ϕi(x j)

)
+ vh

i,I

 ǔI
x(x j)ϕi(x j)

ǔI
y(x j)ϕi(x j)

 + vh
i,II

 ǔII
x (x j)ϕi(x j)

ǔII
y (x j)ϕi(x j)

 ]

=

 vh
j,x + vh

j,I ǔ
I
x(x j) + vh

j,I ǔ
II
x (x j)

vh
j,y + vh

j,II ǔ
I
y(x j) + vh

j,II ǔ
II
y (x j)

 ,
since ϕi(x j) = δi j.

Remark 3.1. Here, vh
i,x, vh

i,y, vh
i,I and vh

i,II are the coefficients of the basis functions in (19) and
can thus be identified with the degrees of freedom of the method. Note, however, that the degrees
of freedom of an enriched function vh

X ∈ Vh
X(E) are no longer the values of vh

X at the vertices of
element E.

To ease the exposition, we denote the basis functions of Vh
X(E) by the symbol ϕi, i =

1, 2, . . . , 4NE, so that Vh
X(E) = span

{
ϕ1, ϕ2, . . . , ϕ4NE

}
where

ϕi =



(
ϕi, 0

)T
for 1 ≤ i ≤ 2NE, i odd,(

0, ϕi

)T
for 1 ≤ i ≤ 2NE, i even,(

ǔI
xϕi, ǔI

yϕi

)T
for 1 + 2NE ≤ i ≤ 3NE,(

ǔII
x ϕi, ǔII

y ϕi

)T
for 1 + 3NE ≤ i ≤ 4NE.

Finally, the extended global virtual element space Vh
X is defined as follows:

Vh
X =

{
vh

X ∈
[
H1(Ω)

]2 : vh
X |E ∈ Vh

X(E) ∀E ∈ Ωh

}
.

Again, to consider the essential boundary condition (1d) we consider the affine subspace Vh
X,g

of Vh
X defined by

Vh
X,g =

{
vh

X ∈ Vh
X : vh

X = gh
X on Γu

}
,

where gh
X is the extended linear interpolant of g, and the linear subspace Vh

X,0, which is defined
by setting gh

X = 0 in the above definition.
Since {ϕi}

4NE
i=1 are not known in the interior of the element, we construct a convenient projec-

tion operator that will allow us to obtain computable approximations ah
X(·, ·) : Vh

X(E)×Vh
X(E)→

R and bh
X(·) : Vh

X(E)→ R of the exact bilinear form a(·, ·) and the linear functional b(·) appear-
ing in (4). The extended virtual element formulation then reads: Find uh

X ∈ Vh
X,g such that

ah
X(uh

X, v
h
X) = bh

X(vh
X) ∀vh

X ∈ Vh
X,0, (20)

10



where the bilinear form ah
X(·, ·) is built element-wise as

ah
X(uh

X, v
h
X) =

∑
E∈Ω

ah,E
X (uh

X, v
h
X) ∀uh

X, v
h
X ∈ Vh

X, (21)

and again we set bh
X(vh

X) = b(vh
X).

In order to construct a consistent and stable bilinear form ah,E
X (·, ·), we extend the polyno-

mial space P1(E) to a subspace of Vh(E) including the linear polynomials and the additional
enrichment functions ǔI and ǔII , so that

PX(E) ≡ P1(E) ⊕ span(ǔI , ǔII).

Space PX(E) is spanned by the eight linearly independent vector fields

PX(E) = span
{ (

1
0

)
,

(
0
1

)
,

(
η
−ξ

)
,

(
ξ
0

)
,

(
0
η

)
,

(
η
ξ

)
,

(
ǔI

x
ǔI

y

)
,

(
ǔII

x
ǔII

y

) }
. (22)

The first six vector fields in (22) represent the three fundamental rigid body motions and the
three independent deformation modes that form P

1(E), cf. (13). The last two vector fields are
the scaled enrichment fields chosen to construct the extended virtual element space Vh

X(E).

Remark 3.2. All qX ∈ PX(E) satisfy the equilibrium equation ∇ · σ(qX) = 0. This property is
crucial to determine the computability of the extended projection operator Πa

X.

To construct a bilinear form ah,E
X (·, ·) for which such properties hold, we define the extended

elliptic projection operator Πa
X : Vh

X(E)→ PX(E) for each element E. For each vh
X ∈ Vh

X(E), the
extended elliptic projection Πa

X(vh
X) is the solution of the variational problem∫

E
σ(qX) : ε(Πa

Xvh
X) dx =

∫
E
σ(qX) : ε(vh

X) dx ∀qX ∈ PX(E), (23a)

with the additional conditions

Πa
Xvh

X = vh
X, (23b)

(Πa
Xvh

X)R = (vh
X)R, (23c)

where (·) and (·)R are the average translation and rotation, respectively, which are defined in (9)
and (10). Recalling the divergence theorem and Remark 3.2, the vector polynomial Πa

Xvh
X ∈

PX(E) is computable from the degrees of freedom of vh
X.

The projection operator Πa
X allows us to define the local extended bilinear form as follows:

ah,E
X (vh

X,w
h
X) ≡ aE

(
Πa

X(vh
X), Πa

X(wh
X)

)
+ S E

X

(
vh

X − Πa
X(vh

X), wh
X − Πa

X(wh
X)

)
=

∫
E
σ
(
Πa

X(vh
X)

)
: ε

(
Πa

X(wh
X)

)
dx + S E

X

(
vh

X − Πa
X(vh

X), wh
X − Πa

X(wh
X)

)
, (24)

where S E
X(·, ·) is a stabilization term that must be suitably defined to guarantee linear consis-

tency (cf. (25)) and stability (cf. (26)) of the method. Again, according to the virtual element
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methodology, S E
X(·, ·) can be any symmetric, positive definite, continuous bilinear form defined

on the kernel of the extended projection operator Πa
X [15]. The reader is referred to Section 4

for possible choices of the stabilization term.
With a suitable choice of the stabilization term, the bilinear form ah,E

X (·, ·) has the following
properties, which are fundamental in order to guarantee the convergence of the method:

(i) extended linear consistency: for all vh
X ∈ Vh

X(E) and qX ∈ PX(E) it holds that

ah,E
X (vh

X, qX) = aE(vh
X, qX); (25)

(ii) stability: there exist two positive constants α∗, α∗, independent of h and E, such that

α∗aE(vh
X, v

h
X) ≤ ah,E

X (vh
X, v

h
X) ≤ α∗aE(vh

X, v
h
X) ∀vh

X ∈ Vh
X(E). (26)

According to the virtual element theory, cf. [12], the constants α∗ and α∗ must be independent
of the mesh size parameter h. However, they can depend on the other model and discretization
parameters such as the bound on C and the mesh regularity constant ρ. Here, aE(·, ·) is the local
coercive and continuous bilinear form

aE(u, v) =

∫
E
σ(v) : ε(u) dx ∀u, v ∈ U0.

Remark 3.3. In Section 4, we provide two possible choices of the stabilization term by consid-
ering the standard dofi-dofi and D-recipe formulations in our extended setting. Such choices
are widely accepted in the VEM literature and in some cases they were theoretically proved to
be effective to guarantee stability relations such as (26). However, the choice of the stabilization
term in the presence of enrichment functions and its impact on the behavior of the VEM are still
open issues at this time. For example, it would be desirable that the constants of the stability
relation (26) are independent of the Young’s modulus and Poisson’s ratio to realize a robust
discretization. These topics will be the subject of future work.

3.4. Partial enrichment
Let E denote an element of mesh Ωh and kE a positive integer number strictly less than NE

(the case for kE = NE is the full enrichment case). We select kE distinct nodes of element E to be
enriched and the corresponding basis functions ϕ∗i` ∈ Vh,∗(E) labeled by the kE distinct indices
i` ∈ [1,NE] for ` = 1, . . . , kE. We formally denote the subset of these indices by I = {i`}

kE
`=1.

Using these basis functions, we define the reduced virtual element space

Ṽ
h,∗

(E) ≡ span
{
ϕ∗i1 ,ϕ

∗
i2 , . . . ,ϕ

∗
ikE

}
⊂ Vh,∗(E)

and the reduced extended virtual element space

Ṽ
h
X(E) = Vh(E) ⊕ ψIṼ

h,∗
(E) ⊕ ψIIṼ

h,∗
(E) ⊂ Vh

X,

where a tilde accent as a superscript is used to denote all ‘reduced’ mathematical objects. Equiv-
alently, we can define the reduced virtual element space Ṽ

h
X(E) as the span of the basis functions

of Vh(E), ψIṼ
h,∗

(E) and ψIIṼ
h,∗

(E), so that

Ṽ
h
X(E) = span

{
ϕ1,ϕ2, . . . ,ϕ2i−1,ϕ2i, . . . ,ϕ2NE−1,ϕ2NE

}
∪ ψIspan

{
ϕ∗1,ϕ

∗
2, . . . ,ϕ

∗
kE

}
12



∪ ψIIspan
{
ϕ∗1,ϕ

∗
2, . . . ,ϕ

∗
kE

}
, (27)

which can be compared to (19). Accordingly, a generic virtual element function that belongs to
the reduced space Ṽ

h
X(E) is described by 2NE + 2kE degrees of freedom instead of 4NE degrees

of freedom. The first 2NE degrees of freedom are the vertex values of a vector-valued field
vh ∈ Vh(E). The other 2kE degrees of freedom correspond to the vertex values of a virtual vector-
valued function that belongs to the enriching space ψIṼ

h,∗
(E) ⊕ ψIIṼ

h,∗
(E) and clearly depends

on ǔI and ǔII . We outline a few important facts that will be crucial in the implementation
of the partially enriched virtual element method. First, the set of basis functions ϕ∗i` for ` =

1, . . . , kE does not satisfy a partition-of-unity property. Consequently, the enriching fields ǔI

and ǔII are not elements of ψIṼ
h,∗

(E) ⊕ ψIIṼ
h,∗

(E) and the extended space PX(E) cannot be a

subspace of Ṽ
h,∗

(E). However, since Ṽ
h
X(E) is a linear subspace of Vh

X(E), we can still apply the
projection operator Πa

X to its functions and obtain a projection in the extended spacePX(E), and
the construction of the bilinear form ah,E

X (·, ·) of the previous section still holds. For a proper

formal definition, we introduce the extension (or injection) operator EkE : Ṽ
h,∗

(E) → Vh,∗(E)
that remaps any reduced virtual element function ṽh

X ∈ Ṽ
h
X(E) into the fully enriched function

EkE (̃vh
X) ∈ Vh

X(E) such that:

i-th DOF of EkE (̃vh
X) =


i-th DOF of ṽh

X if 1 ≤ i ≤ 2NE,

i`-th DOF of ṽh
X if i = 2NE + i` or i = 3NE + i` with i` ∈ I,

0 otherwise.

(28)

Practically speaking, the remapped function has the same degrees of freedom of the reduced
functions and zero at all the additional degrees of freedom that correspond to the nonenriched
nodes. Then, we define a new stiffness bilinear form ãh,E

X (·, ·) : Ṽ
h
X(E) × Ṽ

h
X(E)→ R as

ãh,E
X

(̃
vh

X, w̃
h
X

)
:= ah,E

X

(
EkE

(̃
vh

X
)
,EkE

(
w̃h

X
))
, (29)

so that we can reuse the definition of ah,E
X (·, ·). Furthermore, the whole construction of the

previous section, including the consistency and stability properties, still holds.

As we discuss in the implementation section, this formal approach also suggests a straight-
forward way (but perhaps not the most efficient one) to implement the partial enrichment as all
we need in practice is to apply a matrix representation of the injection operator EkE to the ele-
ment stiffness matrix of a fully enriched element. We will see that this procedure is equivalent
to first constructing the fully enriched stiffness matrix, and then simply suppressing all rows and
columns that correspond to the degrees of freedom of the nonenriched nodes.

As we note in Section 5, partial enrichment induces a loss of optimal convergence, which
also occurs in the X-FEM. This consequence is not surprising, since even though we are pro-
jecting onto a space consisting of polynomials and nonpolynomial near-tip enrichment fields, in
this case the local extended virtual element space is not sufficiently rich to approximate the sin-
gular behaviour of the function near the crack tip. Special enrichment strategies can be devised
to overcome this issue, for instance using the so-called geometric enrichment.

13



3.5. Embedding discontinuities
In this section, we show how both the regular and the extended virtual element formulations

presented in Sections 3.2 and 3.3 can be endowed with a structure that allows discontinuous
fields to be embedded within the virtual element space. Consider a crack γ that intersects some
of the elements in a mesh, and define d(x) as the signed distance from a point x to γ. For
modeling strong discontinuities like a crack, it would be convenient to consider enrichment
with the generalized Heaviside function H(x), which is equal to +1 for points with d(x) ≥ 0 (x
is on or above the crack) and −1 for points with d(x) < 0 (x is below the crack). As in the X-
FEM, we could enrich those nodes whose basis function’s support intersects the interior of the
crack (not including the tips) with H(x). However, the resulting extended projection Πa

X onto
PX(E) would not be directly computable from the degrees of freedom of the method because
the corresponding enriched virtual element basis functions Hϕi are not known along the crack.

To deliver a viable solution, we let the element E to be partitioned by the discontinuity γ
into two subdomains E− and E+. Following [33], in order to represent two independent linear
polynomials on E− and E+, we adopt the approach of Hansbo and Hansbo [37] and tailor it to
the X-VEM. It is known that the approach of Hansbo and Hansbo is equivalent to the standard
X-FEM approximation with Heaviside enrichment [39]. To this end, let NVE

dofs denote the number
of degrees of freedom for element E, such that NVE

dofs = 2NE for the virtual element formulation
in 3.2 and NVE

dofs = 4NE for the extended virtual element formulation in Section 3.3. Each one
of the NVE

dofs virtual shape functions, ϕi on E, is written as the sum of two new virtual shape
functions ϕ−i and ϕ+

i that are both discontinuous across the crack, and are defined as follows:

ϕ+
i =

0 in E−

ϕi in E+
, ϕ−i =

ϕi in E−

0 in E+
. (30)

Clearly, ϕ−i and ϕ+
i are harmonic and continuous functions in E− and E+, respectively, and

ϕi = ϕ−i +ϕ+
i . Proceeding likewise for all the degrees of freedom in the element, we can generate

NHH
dofs = 2NVE

dofs discontinuous functions, starting from the initial NVE
dofs virtual basis functions. This

choice implies doubling the nodal DOFs of the element. Therefore, the number of degrees of
freedom for the element with an internal discontinuity is twice that of the original element, and
a virtual element basis is constructed by considering two copies of the original virtual element
basis functions, restricted to E− and E+ respectively, as defined in (30).

We now define the local virtual element space to which the discontinuous approximate solu-
tion belongs. For the sake of simplicity, we present the derivation with respect to the formulation
presented in Section 3.2. Consider the following spaces:

Vh,−(E) ≡
{

vh ∈
[
H1(E−)

]2 : ∆vh
|E− = 0, vh

|∂E− ∈ [C0(∂E−)]2,

vh
|e ∈

[
P

1(e)
]2
∀e ∈ (∂E ∩ ∂E−), vh

|E+ = 0
}
,

Vh,+(E) ≡
{

vh ∈
[
H1(E+)

]2 : ∆vh
|E+ = 0, vh

|∂E+ ∈ [C0(∂E+)]2,

vh
|e ∈

[
P

1(e)
]2
∀e ∈ (∂E ∩ ∂E+), vh

|E− = 0
}
.

Then, the local virtual element space reads:

Vh
X(E) ≡

{
vh

X = (vh,− + vh,+) : vh,− ∈ Vh,−(E), vh,+ ∈ Vh,+(E)
}
. (31)
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Remark 3.4. The space Vh
X(E) in (31) is not a subspace of H1(E) as we do not assume any

regularity of the virtual element functions across the crack, so that a discontinuity is admissible.
This fact implies that also the global virtual element space Vh

X cannot be a subspace of H1(Ω),
but this is not an issue since the exact solution contains a discontinuity and thus cannot be in
H1(Ω).

An analogous definition of the local virtual element space for elements cut by a crack can
be easily provided also for the enriched formulation presented in Section 3.3.

As we detail later on, virtual element functions along interface edges can be reconstructed
by a suitable approximation. We obtain the following representation for the virtual element
approximation on the element E cut by γ:

vh
X(x) =

NVE
dof∑

i=1

[
ϕ−i (x)v−i + ϕ+

i (x)v+
i
]
∀x ∈ E, (32)

where v−i and v+
i are the degrees of freedom associated with ϕ−i and ϕ+

i , respectively. To provide
a feasible solution using (32), it is necessary to know the trace of the virtual shape functions ϕi
along the crack. We also need two distinct regular projectors, respectively Πa,− onto

[
P

1(E−)
]2

and Πa,+ onto
[
P

1(E+)
]2, and two distinct extended projectors, respectively Πa,−

X onto PX(E−)
and Πa,+

X onto PX(E+). These projection operators must be computable from the NHH
dof nodal

degrees of freedom. A convenient approximation of the trace of the i-th virtual element shape
function ϕi along the crack is provided by a vector-valued function Ni(x), that is componentwise
harmonic on the cracked element E. Such a function is built as a first-order polyharmonic
spline [40] and the reader is pointed to [33] for further details.

We also point out that the flexibility of the virtual element method allows an element to
be cut into two polygonal virtual elements, regardless of the element shape, and therefore the
modeling of crack opening and growth can follow this alternative route (see [29]). However,
mesh quality can be affected. For instance, let us consider the case when partitioning of the
element results in one subelement being a quasi-degenerate triangle: this badly-shaped triangle
will worsen matrix-conditioning and/or the interpolation error. This scenario becomes acute in
3D if sliver tetrahedra appear and the partitioning is now much more difficult to handle, both
algorithmically and computationally. Moreover, a technique to embed a discontinuous field in
the extended virtual element discrete space is required whenever a mesh-independent modeling
approach is preferred, such as in the simulation of cohesive fracture or when a finite element
transitions from a continuous regime to a region with discontinuous kinematics [41].

4. Numerical implementation

In this section, we outline the main implementation aspects of the extended virtual element
method introduced in Sections 3.3–3.5. For the (nonenriched) virtual element formulation pre-
sented in Section 3.2, the interested reader can refer to [18].

4.1. Fully enriched elements with singular fields
To begin with, we assume a fully enriched element E, i.e., an element in which all the NE

nodes are enriched with the two singular fields (15). Therefore, on such element we have 4NE
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degrees of freedom, and we can represent any virtual displacement field vh
X ∈ Vh

X(E) in terms
of the shape functions of Vh

X(E) as vh
X = NXdofs

(
vh

X
)

where dofs
(
vh

X
)
∈ R4NE is the vector of

the degrees of freedom of vh
X with respect to the basis function {ϕi}

4NE
i=1 spanning Vh

X(E) and
NX ∈ R

2×4NE is the matrix whose columns contain such basis functions

NX ≡

[
ϕ1

0
0
ϕ1

. . .

. . .
ǔI

xϕ1

ǔI
yϕ1

ǔI
xϕ2

ǔI
yϕ2

. . .

. . .
ǔII

x ϕ1

ǔII
x ϕ1

ǔII
x ϕ2

ǔII
y ϕ2

. . .

. . .

]
=

[
ϕ1 ϕ2 . . . ϕ4NE

]
. (33)

Now, we define matrix MX ∈ R
2×8, whose columns are the basis vectors mα of PX(E) intro-

duced in (22)

MX ≡

[
1 0 η ξ 0 η ǔI

x ǔII
x

0 1 −ξ 0 η ξ ǔI
y ǔII

y

]
=

[
m1 m2 m3 m4 m5 m6 m7 m8

]
. (34)

Hereafter, we conveniently use the notation m7 = ǔI and m8 = ǔII . We represent the action of
the projection operator Πa

X on the virtual basis functions by means of a matrix Πa
X ∈ R

8×4NE .
The i-th column of this matrix, denoted by πi =

(
πi
α

)
∈ R8, contains the coefficients of Πa

X(ϕi)
when the projection is expanded on the basis MX so that

Πa
X(ϕi) = MXπ

i =

8∑
α=1

mαπ
i
α, (35)

which in compact form can be expressed as Πa
X(NX) = MXΠ

a
X.

We preliminarily observe that for every qX ∈ PX(E) and every vh
X ∈ Vh

X(E), recalling that
∇ · σ(qX) = 0 and applying the divergence theorem, we find that

aE(qX, v
h
X) =

∫
E
σ(qX) : ε(vh

X)dx =

∫
E
σ(qX) : ∇vh

Xdx

=

∫
E
∇ · (σ(qX) · vh

X) − vh
X · (∇ · σ(qX))dx

=

∫
∂E

(σ(qX) · vh
X) · nEds (36)

The boundary integral is always computable, since the integrand is known on the boundary.
By virtue of (36) and recalling the definition of the elliptic projection operator, we compute

the projections of the virtual shape functions in terms of the basis of PX(E). Indeed, for every
vh

X ∈ Vh
X(E) we can write the following orthogonality condition:

aE(mβ,Π
a
X(vh

X)) = aE(mβ, vh
X) β = 1, . . . , 8. (37)

Then, recall that dofs
(
vh

X
)

= (vh
X,i) are the 4NE degrees of freedom of vh

X with respect to the basis
{ϕi}

4NE
i=1 . In view of (35) and noting that vh

X and dofs
(
vh

X
)

are arbitrary, we find that

4NE∑
i=1

aE(mβ,Π
a
X(ϕi)

)
vh

X,i =

4NE∑
i=1

aE(mβ,ϕi)v
h
X,i β = 1, . . . , 8

=⇒

8∑
α=1

aE(mβ,mα

)
πi
α = aE(mβ,ϕi) β = 1, . . . , 8, i = 1, . . . , 4NE

=⇒ ĜXΠ
a
X = B̂X,
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where the companion matrices ĜX ∈ R
8×8 and B̂X ∈ R

8×4NE are defined componentwise as

(ĜX)β,α = aE(mβ,mα), β, α = 1, . . . , 8,

(B̂X)β,i = aE(mβ,ϕi), β = 1, . . . , 8, i = 1, . . . , 4NE,

or in the equivalent compact form by

ĜX = a(MT
X, MX) and B̂X = a(MT

X, NX). (38)

Recalling (36), both matrices ĜX and B̂X can be computed by integrating on the element bound-
ary as follows:

(ĜX)β,α =

∫
E
σ(mβ) : ε(mα)dΩ =

∫
∂E

(
σ(mβ

)
· mα

)
· nEdΓ, (39)

(B̂X)β,i =

∫
E
σ(mβ) : ε(ϕi)dΩ =

∫
∂E

(
σ(mβ

)
· ϕi

)
· nEdΓ. (40)

The first three rows of ĜX and B̂X are zero, since the small strain tensor associated to rigid
body motions is zero, and therefore ĜX is rank deficient. To overcome this issue we use condi-
tions (23b)-(23c), which imposes that the projector preserves the average nodal translations and
rotations. So, we define the matrices GX =

(
(GX)β,α

)
and BX =

(
(BX)β,i

)
as

(GX)β,α =



1
NE

NE∑
j=1

mα(v j) β = 1, 2,

1
NE

NE∑
j=1

r(v j) · mα(v j) β = 3,

(ĜX)β,α β = 4, . . . , 8,

(41)

and

(BX)β,i =



1
NE

NE∑
j=1

ϕi(v j) β = 1, 2,

1
NE

NE∑
j=1

r(v j) · ϕi(v j) β = 3,

(B̂X)β,i β = 4, . . . , 4NE.

(42)

Since matrix GX is nonsingular, the projection matrix Πa
X is the unique solution of the linear

system GXΠ
a
X = BX. To derive the representation of the operator Πa

X with respect to the basis
{ϕi}

4NE
i=1 spanning Vh

X(E) we introduce matrix DX ∈ R
4NE×8, whose α-th column (α = 1, . . . , 8)

contains the degrees of freedom of the vector polynomial mα. Therefore, it holds that MX =

NX DX and

Πa
X(NX) = MXΠ

a
X = NX

(
DXΠ

a
X
)
,
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from which we infer that such matrix representation is given by matrix DXΠ
a
X. A straight-

forward calculation yields that GX = BX DX in the X-VEM, which is similar in form to the
standard relation in the VEM, G = BD [42]. This provides a means to verify the correctness
of the computation of these matrices.

The stiffness matrix is given by the sum of a consistency and stability term,

KE
X = KE

X,c + KE
X,s,

so that we can evaluate the extended stiffness bilinear form applied to vh
X, wh

X ∈ Vh
X(E) by using

the degrees of freedom dofs
(
vh

X
)

and dofs
(
wh

X
)

as follows

ah,E
X

(
vh

X,w
h
X

)
=

(
dofs

(
vh

X
))T KE

X dofs
(
wh

X
)
. (43)

For every vh
X ∈ Vh

X(E), we first consider the relations

Πa
X(vh

X) = Πa
X
(
NXdofs

(
vh

X
))

= Πa
X
(
NX

)
dofs

(
vh

X
)

= MXΠ
a
X dofs

(
vh

X
)

=
(
dofs

(
vh

X
))T (Πa

X)T (MX)T .
(44)

Recalling (44), we compute the consistency term as

aE(Πa
X(vh

X),Πa
X(wh

X)
)

=
(
dofs

(
wh

X
))T (Πa

X)T aE(MT
X, MX

)
Πa

Xdofs
(
vh

X
)

=
(
dofs

(
wh

X
))T (Πa

X)T ĜXΠ
a
Xdofs

(
wh

X
)
.

By comparison, we see that

KE
X,c = (Πa

X)T ĜXΠ
a
X. (45)

For the stability term we generalize the so-called dofi-dofi [12] and D-recipe [43] stabiliza-
tions by evaluating the second term in (24) at the element vertices. To this end, we first note
that

vh
X(x`) − Πa

X(vh
X)(x`) = NX(x`)dofs

(
wh

X
)
− NX(x`)DXΠ

a
Xdofs

(
wh

X
)
.

Definition (33) and ϕ j(x`) = δ j` implies that

j-th column of NX(x`) =



(
ϕ j(x`), 0

)T
for 1 ≤ j ≤ 2NE, j odd,(

0, ϕ j(x`)
)T

for 1 ≤ j ≤ 2NE, j even,(
ǔI

x(x`)φ j(x`), ǔI
y(x`)ϕ j(x`)

)T
for 1 + 2NE ≤ j ≤ 3NE,(

ǔII
x (x`)φ j(x`), ǔII

y (x`)ϕ j(x`)
)T

for 1 + 3NE ≤ j ≤ 4NE,

=



(
δ j,`, 0

)T
for 1 ≤ j ≤ 2NE, j odd,(

0, δ j,`

)T
for 1 ≤ j ≤ 2NE, j even,(

ǔI
x(x`)δ j,`, ǔI

y(x`)δ j,`

)T
for 1 + 2NE ≤ j ≤ 3NE,(

ǔII
x (x`)δ j,`, ǔII

y (x`)δ j,`

)T
for 1 + 3NE ≤ j ≤ 4NE,
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for ` = 1, . . . ,NE. We collect NX(x`) in the compact block-diagonal matrix J = diag(J11, J22) ∈
R

4NE×4NE such that J11 = I2NE×2NE , which is the 2NE × 2NE-sized identity matrix, and J22 =[
J I

22, J II
22
]
, with

J I
22 = diag

(
ǔI(x1), ǔI(x2), . . . , ǔI(xNE )

)
,

J II
22 = diag

(
ǔII(x1), ǔII(x2), . . . , ǔII(xNE )

)
.

Here, J11 ∈ R
2NE×2NE collects the values of the first 2NE columns of NX(x`) and is such that

the `-th row corresponds to the `-th element vertex. In turn, the matrix blocks J I
22 and J II

22 are
2NE × NE-sized matrices that collect the NE columns of NX corresponding to ψIVh,∗(E) and
ψIIVh,∗(E), and again each row corresponds to a given element vertex. Finally, we introduce the
matrix D̂X = J DX, and we write the dofi-dofi stabilization as

S E
X

(
vh

X − Πa
X(vh

X),wh
X − Πa

X(wh
X)

)
= τ

NE∑
`=1

(
NX(x`)dofs

(
vh

X
)
− NX(x`)DXΠ

a
Xdofs

(
vh

X
))

×
(
NX(x`)dofs

(
wh

X
)
− NX(x`)DXΠ

a
Xdofs

(
wh

X
))

= τ
(
dofs

(
vh

X
))T (

J − D̂XΠ
a
X

)T (
J − D̂XΠ

a
X

)(
dofs

(
wh

X
))
, (46)

where τ is a suitable scaling parameter; a possible choice is τ = α trace(KE
X,c)/4NE, where α is

a constant (a sensitivity analysis on the choice of α is presented in the next section). Hence,

KE
X,s = τ(J − D̂XΠ

a
X)T (J − D̂XΠ

a
X).

Similarly, the D-recipe stabilization, which was originally proposed in [43] for the Poisson
equation, can be generalized by taking the stabilization matrix

KE
X,s = (J − D̂XΠ

a
X)T SX (J − D̂XΠ

a
X),

where

(SX)i j = δi j max
(
trace(C)

3
hE, (KE

X,c)ii

)
i, j = 1, . . . ,NE,

and with the same definition of J and D̂X introduced above.

4.2. Partially enriched elements with singular fields
Let EX ∈ R

4NE×(2NE+2kE) be the matrix representation of the extension operator EkE intro-
duced in Section 3.4, so that every vector-valued field ṽh

X ∈ Ṽ
h
X(E) with degrees of freedom

dofs
(̃
vh

X
)
∈ R2NE+2kE is remapped into the vector-valued field vh

X ∈ Vh
X(E) with degrees of free-

dom dofs
(
vh

X
)

= EXdofs
(̃
vh

X
)
∈ R4NE . Let K̃

E
X ∈ R

(2NE+2kE)×(2NE+2kE) such that

ãh,E
X

(̃
vh

X, w̃
h
X

)
=

(
dofs

(̃
vh

X
))T K̃

E
X dofs

(
w̃h

X
)
. (47)
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Now, starting from definition (29) and using (47), a straightforward calculation yields

ãh,E
X

(̃
vh

X, w̃
h
X

)
= ah,E

X

(
EkE vh

X,EkE w̃h
X

)
=

(
dofs

(
EkE wh

X
))T

KE
X dofs

(
EkE vh

X
)

=
(
EXdofs

(
w̃h

X
))T

KE
X EXdofs

(̃
vh

X
)

=
(
dofs

(
w̃h

X
))T (

EX
)T KE

X EX dofs
(̃
vh

X
)
,

and by comparison with (47) it follows that

K̃
E
X =

(
EX

)T KE
X EX, (48)

since ṽh
X and w̃h

X are arbitrary. To conclude this section, we are only left to explain the con-
struction of the matrix EX that embodies definition (28). To obtain such a matrix, we take the
4NE×4NE-size identity matrix and remove the 2(NE−kE) columns that corresponds to the basis
functions of the nonenriched vertices in ψIVh,∗(E) ⊕ ψIIVh,∗(E). Finally we note that when we
apply (EX)T to the left of matrix KE

X and EX to the right of matrix KE
X we are indeed selecting

the rows and the columns of KE
X that corresponds to all the degrees of freedom of Vh(E) and

the degrees of freedom of the enriched nodes of ψIVh,∗(E) ⊕ ψIIVh,∗(E). In the numerical im-
plementation we do not need to construct the matrix EX explicitly and compute K̃

E
X using (48),

since we can simply build the stiffness matrix KE
X of the full enrichment case and remove all

rows and columns that refer to non-enriched nodal degrees of freedom.

4.3. Embedding discontinuities
Let us consider the case in which an element E, fully enriched according to the construction

outlined in Section 4.1, is also cut by a crack γ into two subelements E− and E+, see Fig. 3.
Then, following the approach presented in Section 3.5, we can compute the projectors Πa

X
− and

E+

E-

γ

Figure 3: Crack line γ cuts element E into two subelements E− and E+.

Πa
X

+ on the two subelements E− and E+ generated by the crack line γ intersecting element E.
Recalling that, in the present approach, the number of degrees of freedom is doubled and is
equal to NHH

dof = 8NE, we denote by i− and i+ the degrees of freedom associated to φ−i and φ+
i

respectively, with i = 1, . . . , 4NE.
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Then, the consistent part of the stiffness matrix has a diagonal block structure and is com-
posed by the following submatrix blocks:

(KE
X,c)+,+ = (Πa

X
+)T Ĝ

+

XΠ
a
X

+,

(KE
X,c)−,− = (Πa

X
−)T Ĝ

−

XΠ
a
X
−,

where matrices Ĝ
−

X and Ĝ
+

X are the counterparts of ĜX computed for E− and E+, respectively.
On the other hand, the general expression for the stabilization part shares the same diagonal

block structures and reads:

(KE
X,s)+,+ = τ(J − D̂

+

XΠ
a
X

+)T (J − D̂
+

XΠ
a
X

+),

(KE
X,s)−,− = τ(J − D̂

−

XΠ
a
X
−)T (J − D̂

−

XΠ
a
X
−),

where matrices D̂
−

X and D̂
+

X are the counterparts of D̂X computed for E− and E+, respectively.

4.4. Computation of stress intensity factors
In order to determine the susceptibility of a given elastic two-dimensional body to fracture

growth we need to extract appropriate crack tip parameters such as the J-integral and mixed-
mode stress intensity factors. We consider a neighborhood of the crack tip, as shown in Fig. 4a.
Given an arbitrary closed path Γ around the crack tip, the J-integral is defined as:

J =

∫
Γ

(
Wdx2 − Ti

∂ui

∂x1
ds

)
, (51)

which is path independent under the assumptions of small deformations, elastic material behav-
ior and quasi-statically applied loads [44]. In (51), ui is the i-th component of the displacement
field, ds is the differential of the arc length of Γ, Ti is the i-th component of the traction vector
along Γ and W is the strain energy density, which is defined as:

W =

∫ εi j

0
σi jdεi j =

1
2
σi jεi j. (52)

However, the J-integral in (51) is not well-suited for numerical computations, since it is defined
on a vanishingly small closed path. For this reason, in numerical procedures, Li et al. [45] pro-
posed to recast the line integral (51) into a domain integral over an annular region Ω, bounded
by an inner closed curve ∂Ωi → 0, which contains the crack tip, and an outer closed curve ∂Ωo:

J =

∫
Ω

(
σi j

∂ui

∂x1
−Wδ1i

)
∂w
∂xi

dΩ, (53)

where w is a suitable weight function that is equal to unity within the domain bounded by
∂Ωo and vanishes on ∂Ωo. Based on this definition, given two equilibrium states denoted by
superscripts (1) and (2), referred to as the present state and an auxiliary state respectively, the
interaction integral in domain form is given by

I(1,2) =

∫
Ω

F j(x1, x2)
∂w
∂x j

dΩ, (54)
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Figure 4: Local crack tip coordinates (a) and discretized J-domain (shaded area) (b).

where

F j(x1, x2) = σ(1)
i j

∂u(2)
i

∂x1
+ σ(2)

i j

∂u(1)
i

∂x1
−W (1,2)δ1 j, (55)

and W (1,2) = σ(1)
i j ε

(2)
i j = σ(2)

i j ε
(1)
i j is the interaction strain energy.

The stress intensity factors for mode I and mode II crack opening, respectively denoted by
KI and KII , are computed using the relation

I(1,2) =
2
E′

[
K(1)

I K(2)
I + K(1)

II K(2)
II

]
, (56)

where E′ = E for plane stress conditions and E′ = E/(1−ν2) for plain strain conditions. Indeed,
on choosing the auxiliary field corresponding to KI = 1 and KII = 0 allows KI to be extracted in
a straightforward manner and similarly on selecting the auxiliary field corresponding to KI = 0
and KII = 1 allows KII to be computed:

KI =
E′

2
I(1,I), KII =

E′

2
I(1,II). (57)
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However, computing the interaction integral (54) is not straightforward in the X-VEM, since
the numerical integration is performed over polygonal elements. For this reason, after consider-
ing a J-domain that is an annular region ΩJ that consists of a ring of elements that are intersected
by a circle of given radius rd centered on the crack tip (i.e., the shaded area in Fig. 4b), we ap-
ply the divergence theorem and transform the domain integral (54) into a line integral that is
evaluated on the boundaries of the element [29]:

I(1,2) =
∑
E∈ΩJ

(∫
∂E

F j(x1, x2)wn jdΓ −

∫
E

∂F j

∂x j
(x1, x2)wdΩ

)
. (58)

We note that ∇ · F = 0 in (58) since the auxiliary fields are equilibrated, and therefore only the
boundary integral needs to be computed.

Since virtual shape functions are not known in the interior of the elements, we use the elliptic
projection of the solution in terms of displacements to compute the corresponding deformation
field and the stress components. Hence, the interaction integral can be finally computed as:

I(1,2) =
∑
E∈ΩJ

∫
∂E

σi j(Πa
E(u(1)

i ))
∂u(2)

i

∂x1
+ σ(2)

i j

∂Πa
E(u(1)

i )
∂x1

− W̃ (1,2)δ1 j

 wn jdΓ, (59)

where W̃ (1,2) = σi j(Πa
E(u(1)

i ))ε(2)
i j . From a computational viewpoint, it is convenient to assume

the weight function w to be equal to unity on all nodes in ΩJ that lie within the circle of radius
rd, and equal to zero on all nodes in ΩJ that lie outside the circle of radius rd. Along element
edges, where integrations are carried out, linear interpolation of w between its nodal values is
adopted.

5. Numerical examples

In order to check the consistency of the X-VEM, we first conduct two distinct patch tests: an
extended patch test, addressing the enrichment with singular fields as described in Section 4.1,
and a discontinuous patch test aimed at assessing the inclusion of discontinuities in the discrete
space by means of the approach presented in Section 3.5. Then, we test the X-VEM on a
benchmark problem to establish the convergence rate of the method and the accuracy of the
stress intensity factors. Unless stated otherwise, Young’s modulus E = 105 and Poisson ratio
ν = 0.3 are chosen in the numerical computations.

5.1. Extended patch test
The extended patch test ensures that the singular enrichment fields in (15) can be exactly

reproduced using the X-VEM. To perform the extended patch test, we consider a square elastic
plate that occupies the region (−1, 1)2 under plane strain conditions, with a horizontal crack of
unit length that extends from (−1, 0) to (0, 0) (see Fig. 5a).

Both a coarse mesh of 10× 10 square elements and a coarse mesh of 64 polygonal elements
are considered. For the purposes of the extended patch test, the crack is modeled explicitly so
that we do not have to embed the discontinuity in the discrete space. All the nodes in the domain
are enriched and the Cartesian components of the near-tip displacement fields (15) are imposed
on the boundary of the domain by requiring that all the enriched boundary degrees of freedom
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Figure 5: Mixed mode I and mode II crack opening benchmark problem: domain geometry (a) and exact deformed
shape (b).

are equal to 1 and all the standard boundary degrees of freedom are equal to 0. The exact
displacement solution field is shown in Fig. 5b. As detailed in the previous section, integrals
need to be evaluated over the element boundary only. We adopt a 16-points Gauss quadrature
rule on each element edge.

As a measure for the error of the numerical solution with respect to the exact solution we
adopted the relative error in strain energy, which is computed as

E(uh) =
|a(ũ, ũ) − a(uh,uh)|

a(u,u)
, (60)

where 1
2a(u,u) = 1.6776885579× 10−5 is the strain energy of the exact solution u, and ũh is the

projection of the discrete solution uh, which is defined as:

ũh =
∑
E∈T

Πa
Euh. (61)

We also adopt this error measure in the subsequent sections that follow. In (61), we use the same
symbol Πa

E to denote the restriction of the virtual element functions defined on the element E
of the projection operator Πa if E is a nonenriched element and the projection operator Πa

X if E
is an enriched element. The choice of using the projection ũh of the solution uh follows from
observing that it is not possible to compute the true energy associated with uh, since the virtual
functions are not explicitly known [46]. The relative error in strain energy for the extended
patch tests is provided in Table 1, which clearly shows that the X-VEM delivers sound accuracy
in reproducing the enrichment fields, although the error is affected by numerical integration of
singular functions.
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Table 1: Relative error in strain energy for the extended patch test on the (−1, 1) × (1, 1) square domain with
horizontal crack.

Mesh E(uh)
10 × 10 square elements 2 × 10−12

64 polygonal elements 3 × 10−10

Figure 6: Geometry and loading conditions of the discontinuous patch test.

5.2. Discontinuous patch test
In order to evaluate the effectiveness and robustness of the X-VEM in the presence of dis-

continuities, formulated according to the approach presented in Section 3.5, we adopt a suit-
able patch test which entails solving a problem whose exact solution is discontinuous and lies
in the discrete space. We then verify if the extended virtual element approximation matches
such a solution. To this end, we here adapt the discontinuous patch test first proposed by
Dolbow and Devan [47] in finite strain elasticity to the present context of plain strain linear
elasticity. The test involves solving the problem of a 2D elastic domain occupying the unit
square domain Ω = (0, 1)2 that is bisected by an horizontal crack γ into two open subdomains
Ω− = (0, 1) × (0, 1/2) and Ω+ = (0, 1) × (1/2, 1). The crack is implicitly included in the model
following the construction proposed in Section 3.5. For the sake of simplicity, we assume
E = 1 and ν = 0, so that the problem is reduced to one dimension. As boundary conditions, we
prescribe zero displacements along the edge x = 0, a discontinuous distribution of horizontal
tractions along the edge x = 1 and zero tractions along the horizontal edges y = 0 and y = 1:

u(0, y) = 0,

σxx(1, y) =

1, y ≤ 1/2
2, y > 1/2

, σyy(1, y) = σxy(1, y) = 0,

σyy(x, 0) = σxy(x, 0) = 0,
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σyy(x, 1) = σxy(x, 1) = 0.

For this problem, whose geometry and boundary conditions are depicted in Fig. 6, the exact
solution is the following piecewise linear function

u(x, y) =

[x, 0]T , (x, y) ∈ Ω− ,

[2x, 0]T , (x, y) ∈ Ω+ .
(63)

The exact solution (63) belongs to the discrete space. In agreement with the expectations, the
extended virtual element formulation presented in Section 3.5, which uses distinct projector
operators on the two subdomains generated by the horizontal crack, passes the proposed patch
test with a relative error in strain energy of 2 × 10−13.

5.3. Convergence study
We study the convergence of the X-VEM for the problem of a two-dimensional square plate

under plain strain conditions that contains a horizontal crack, extending from the boundary to
the center of the specimen. The boundary conditions are such that mixed-mode conditions
prevail. The geometry of the domain is the same adopted as that for the extended patch test
in Section 5.1 and is shown in Fig. 5a. On the boundary of the domain, we apply the exact
near-tip displacement fields (14), which are also employed as enrichment fields for the X-VEM
and represent the exact solution for the problem at hand.

In this study, we consider both quadrilateral and in general polygonal meshes, see Fig.7.
Quadrilateral meshes are composed of 10×10, 20×20, 40×40 and 80×80 square elements. For
the X-VEM, we use the stabilization in (46), where α = 1 is chosen as the scaling parameter.
We generated the polygonal meshes from Voronoi tassellations by using Polymesher [48].
In order to apply essential boundary conditions, the crack is explicitly meshed over the first
element (AB), while the remaining part of the crack (BC) is modeled by the X-VEM.

To compute the element stiffness matrix KE, we implement the X-VEM of Section 4 fol-
lowing two different strategies: topological enrichment and geometric enrichment. In the topo-
logical enrichment, graphically represented in Fig. 8a, we only enrich the node located at the
singularity of the solution. The convergence rate for this problem is given by R = min(2λ, 2p),
where λ is the order of the singularity and p the polynomial degree [49]. Since in our case
λ = 1/2 and p = 1, we obtain a convergence rate R = 1 that is non-optimal, as we anticipated
in Section 3.4. In fact, this suboptimal convergence rate is also noted in enriched finite element
techniques for fracture problems, cf. [50]. Figure 9 shows convergence plots of the relative
error in strain energy. The expected convergence rate R is reported in the graph. Both VEM and
X-VEM with topological enrichment converge in strain energy with a rate close to 1, in agree-
ment with theory. It turns out that the X-VEM is insensitive to the type of mesh (quadrilaterals
or polygons), and the results from the X-VEM are consistently more accurate than those from
standard VEM.

Many prior studies have shown that geometric enrichment, i.e., enriching all the nodes
within a given radius from the singularity at the crack tip, allows the standard X-FEM for
fracture problems to recover the optimal convergence rate [50, 51]. In order to establish if the
proposed X-VEM can deliver the optimal convergence rate R = 2 that is predicted by theory,
we enrich all nodes that are located within a ball of radius re = 0.5 from the origin (see Fig. 8b).
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Figure 7: Mixed-mode benchmark problem. (a) Quadrilateral mesh and (b) polygonal mesh.

(a)

re

(b)

Figure 8: Mixed-mode benchmark problem. (a) Topological enrichment and (b) geometric enrichment.

Figure 10 depicts convergence plots for the relative error in strain energy on quadrilateral and
polygonal meshes for the X-VEM with geometric enrichment. The convergence rate is close
to 2, which is consistent with theory. To provide a clearer picture, Fig. 11 shows a comparison
between the convergence plots in strain energy for both quadrilateral and polygonal meshes.

In order to assess the robustness and the accuracy of the X-VEM in providing stress inten-
sity factors, we apply the procedure described in Section 4.4 to the problem at hand. For this
example, the exact mode I and mode II stress intensity factors are KI = 1 and KII = 1. Both
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Figure 9: Convergence in strain energy for the mixed-mode benchmark problem. For the X-VEM, only the node at
the origin is enriched (topological enrichment). Comparisons are shown with the standard VEM on quadrilateral
and polygonal meshes. All methods converge with a rate close to unity.

topological and geometric enrichment are considered. Stress intensity factors are computed
considering a ring of elements placed at a radius rd = 0.4 from the origin.

Figures 12a and 12b show the convergence of KI and KII on quadrilateral and polygonal
meshes. Convergence is stable on all the meshes and accuracy is sound. In particular, geo-
metric enrichment enhances both the convergence rate and the accuracy. Finally, in Fig. 13 we
investigate the influence of the scaling parameter α in the stabilization. Convergence is optimal
for α ranging from 10−3 to 10, with trends in improved accuracy towards smaller values of α.
Moreover, as shown in Fig. 14, α does not need to be adjusted if the Young modulus E is varied:
for a given α, the accuracy of the method is not significantly influenced by varying E.

5.4. Inclined edge crack in a finite plate under uniform tension
We now study the problem of an inclinded edge crack in a finite plate under uniform tension.

The geometry and boundary conditions are shown in Fig. 15. The plate width W = 6 and plate
height H = 3 are chosen. The crack has length a = 1 and is inclined at an angle β. Uniform
tractions σt = 1 are applied on the top edge and horizontal rollers are imposed on the bottom
edge. The exact solution for this problem in the neighborhood of the crack tip is given by a
linear combination of the fields (14). However, the exact solution on the whole domain is not
known in closed-form.

Figures 16a and 16b show the convergence plots (inclination angles, β = 0 and β = π/6) in
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Figure 10: Convergence in strain energy for the mixed-mode benchmark problem. For the X-VEM, geometric
enrichment (re = 0.5) on quadrilateral and polygonal meshes is used. Comparisons are made with the standard
VEM. X-VEM converges with a rate close to two.

terms of the relative error in strain energy on quadrilateral and polygonal meshes. The stabi-
lization parameter α = 0.01 is chosen. Reference solution for the energy is computed with an
overkill mesh of 460.800 elements using the X-FEM. We use meshes of square elements with
h = 1/4, 1/10, 1/20, 1/40, as well as polygonal (Voronoi) meshes. Convergence of the X-VEM
is compared to standard VEM and X-FEM. The X-VEM displays sound accuracy for both mesh
types, and is comparable to that obtained with the X-FEM. Finally, in Fig. 17, convergence of KI

for β = π/6 is presented for different types of meshes and enrichment radii. Again, the obtained
results are in good agreement with the X-FEM, which can be inferred from Table 2, where the
numerical results for KI and KII are listed for the X-FEM and for the X-VEM with different
values of the stabilization parameter α. As already noted in Section 5.3, here too smaller values
of α improve the accuracy of the X-VEM.

6. Concluding remarks

We developed a stable and convergent extended virtual element method for two-dimensional
elastic fracture problems, which permits the incorporation of crack-tip singularities and discon-
tinuities in the approximation space. Inspired by the construction of the X-FEM [3], we aug-
mented the standard virtual element space by means of additional vectorial basis functions that
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Figure 11: Convergence in strain energy for the mixed-mode benchmark problem using topological enrichment
(hollow markers) and geometric enrichment with re = 0.5 (solid markers) on quadrilateral and polygonal meshes.

were constructed using the asymptotic mode I and mode II crack-tip displacement fields as en-
richment functions. An extended elliptic projector was proposed that projects the functions of
the extended virtual element space onto the space spanned by linear polynomials and the enrich-
ment fields. Crack discontinuities were modeled by decomposing each virtual shape function as
the sum of two discontinuous shape functions, following the approach proposed by Hansbo and
Hansbo [37]. The proposed extended virtual element formulation does not present integration
issues, since all integrals are computed on the elements boundary, where virtual shape func-
tions are known. A one-dimensional Gauss quadrature rule proved to be sufficient. On forming
the element projection matrix, the consistency part of the stiffness matrix was computed and
standard VEM procedures were followed to obtain the element stabilization matrix. Special
attention was required to form the stabilization matrix on partially enriched elements, and an
ad-hoc stabilization strategy was devised that delivered accurate results. Finally, we proposed
a procedure for the computation of stress intensity factors, which entails the discretization of
the annular J-domain with a ring of polygonal elements and the evaluation of the interaction
integral after transforming it to a boundary integral by means of the divergence theorem.

In order to assess the consistency and the robustness of the proposed X-VEM, we conducted
several numerical tests. First, we carried out an extended patch test to ensure the consistency of
the method with the mode I and mode II near-tip displacement fields chosen as enrichments. We
also performed a discontinuous patch test to verify the consistency of the Hansbo and Hansbo
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Figure 12: Convergence of stress intensity factors for the mixed-mode benchmark problem using topological en-
richment (hollow markers) and geometric enrichment with re = 0.5 (solid markers) on quadrilateral and polygonal
meshes. (a) KI and (b) KII .
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Figure 13: Convergence in strain energy for the mixed-mode benchmark problem. Convergence curves are shown
for the X-VEM on a quadrilateral mesh with geometric enrichment and different choices of the stabilization pa-
rameter α.

approach [37] that we used to incorporate the discontinuities. Then, we performed convergence
studies on quadrilateral and polygonal meshes with the X-VEM on the benchmark problem of
an edge crack in a square plate that is subjected to boundary conditions that are consistent with
the exact mixed-mode near-tip displacement solutions. To this end, we considered topological
and geometric enrichment strategies. In particular, we showed that geometric enrichment allows
the method to deliver optimal convergence rates in strain energy as well as in terms of mixed-
mode stress intensity factors. Finally, the X-VEM was used to solve the problem of an inclined
crack in a finite plate under uniform tension, and the SIF results from the X-VEM were found
to be in good agreement with those computed using standard X-FEM. In future work, we will
investigate the proposed extended virtual element formulation for tracking crack growth in both
two- and three-dimensional elastic media.
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Figure 14: Convergence in strain energy for the mixed-mode benchmark problem. Convergence curves are shown
for the X-VEM on a quadrilateral mesh with geometric enrichment and different choices of both the stabilization
parameter α and the Young modulus E: (a) α = 0.01, (b) α = 0.1, (c) α = 1.0
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Figure 15: Inclined edge crack in a finite plate under uniform tension. (a) Problem geometry and (b) virtual element
mesh.

Table 2: Stress intensity factors, KI and KII , for a finite plate with an inclined edge crack under uniform tension.
Numerical results are listed for the X-FEM and the X-VEM (different values of the stabilization parameter α) on a
60 × 120 mesh of square elements.

KI KII

β X-VEM X-FEM X-VEM X-FEM
α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

π/12 2.9351 2.9333 2.9262 2.9349 0.4631 0.4627 0.4615 0.4630
π/6 2.3652 2.3639 2.3582 2.3651 0.7607 0.7603 0.7584 0.7606
π/4 1.6418 1.6408 1.6370 1.6419 0.8333 0.8329 0.8308 0.8334
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Figure 16: Convergence in strain energy for the problem of an inclined edge crack in a finite plate under uniform
tension. Convergence curves are shown for quadrilateral and polygonal meshes, with varying enrichment radii. (a)
β = 0 and (b) β = π/6.
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Figure 17: Convergence of KI for the problem of an inclined edge crack in a finite plate under uniform tension
(β = π/6). Convergence curves are shown for quadrilateral and polygonal meshes, with varying enrichment radii.
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