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Abstract

In this paper, the quadtree data structure and conforming polygonal interpolants are used to develop anh-adaptive
finite element method. Quadtree is a hierarchical data structure that is computationally attractive for adaptive
numerical simulations. Mesh generation and adaptive refinement of quadtree meshes is straight-forward. However,
finite elements are non-conforming on quadtree meshes due to level-mismatches between adjacent elements, which
results in the presence of so-calledhanging nodes. In this study, we use meshfree (natural-neighbor,nn) basis
functions on a reference element combined with an affine map to construct conforming approximations on quadtree
meshes. Numerical examples are presented to demonstrate the accuracy and performance of the proposedh-adaptive
finite element method.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Uniform meshes are not a computationally viable choice for solving system of partial differential
equations in which steep gradients, singularities, or discontinuities need to be captured. Using large
elements will lead to non-satisfactory results in the vicinity of such regions and the use of small elements
in the whole domain is not economical. The purpose of adaptive refinement strategy is to automatically
adjust mesh resolution in order to obtain better accuracy where it is needed most. Today, the most
advanced refinement techniques are based on natural refinement of elements. Quadtree data structure,

∗ Corresponding author. Tel.: +1 5307546415; fax: +15307527872.
E-mail address:nsukumar@ucdavis.edu(N. Sukumar).

0168-874X/$ - see front matter� 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.finel.2004.08.002

http://www.elsevier.com/locate/finel
mailto:nsukumar@ucdavis.edu


A. Tabarraei, N. Sukumar / Finite Elements in Analysis and Design 41 (2005) 686–702 687

NW NE

SW SE

a

b

(a) (b)

Fig. 1. Quadtree data structure. (a) Level 1 and (b) Level 2.

which is based on the principle of recursive decomposition[1] provides a simple, fast, and efficient way
for h- andp-refinement. As a spatial data structure, efficient storage and fast data retrieval in a quadtree
(or octree in 3D) are unmatched, which renders it particularly attractive for adaptive simulations. The
generation ofhanging nodes, however, has been a significant impediment in using quadtree meshes in
finite element methods. Hanging nodes are generated after each refinement, if the adjacent elements are
not of the same size. InFig. 1, quadtree meshes after one and two levels of refinements are shown. The
hanging nodes aandb that are generated in neighboring elements at different levels of refinement are
indicated. Since classical finite element methods are non-conforming on quadtree meshes, complicated
algorithms and interpolation functions are needed to handle the presence of hanging nodes. Therefore for
better efficiency, the number of hanging nodes over an element face is minimized.A commonmethod that
is widely used to minimize the number of hanging nodes is therestricted quadtree[2–4]. In a restricted
quadtree, the maximum difference between the level of refinement of adjacent elements cannot be more
than one (this is also known as the 2:1 rule).
There are three classical methods, which are often used to handle the presence of hanging nodes on

quadtree meshes. The first approach is to add temporary triangular or rectangular elements to those
elements that have a hanging node to obtain compatible meshes[4,5]. On using the 2:1 rule, the variation
of neighbor arrangements is limited to five cases and therefore a compatible mesh can be easily obtained
as shown inFig. 2. Finding the elements that have hanging nodes and adding temporary triangles to
them renders the problem to be expensive, and results in meshes that are locally over-refined and are far
from optimal. The second method is to constrain the hanging nodes to corner nodes. Transformation of
classical shape functions to constrained shape functions is required by this method. In the third approach,
Lagrange multipliers or penalty methods are used to treat the incompatibility, which leads to algorithmic
complexities. Recently, conforming approximations over quadtree meshes have been obtained using
hierarchical enrichment[6,7] as well as B-splines[8]. These methods also rely on the 2:1 rule.
The key contribution in this study is the adaptation of a recently proposed polygonal interpolant[9] to

enable one to conduct numerical computations on quadtree decompositions of any finite element mesh.
We use a natural neighbor (Laplace) interpolant[10–12] to obtainC0(�) admissible approximations
along edges that includehanging nodes. The shape functions are defined over the reference elements
and through an affine map, conforming basis functions are constructed on quadtree meshes. These basis
functions satisfy all the desirable properties of finite element basis functions, and therefore they can be
easily incorporated into existing FE codes.
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Fig. 2. Adding temporary elements to make a compatible mesh.

The outline of this paper follows. The construction of the Laplace interpolant on polygonal meshes is
described in Section 2. In Section 3, the quadtree data structure is reviewed. The application of a recently
developed polygonal interpolant[9] to solve the problem of hanging nodes is presented in Section 4. The
adaptivity strategy is described in Section 5, and themerits of the new technique forh-adaptive numerical
computations is demonstrated in Section 6. We close with some final remarks in Section 7.

2. Conforming interpolants on polygons

Barycentric coordinates on simplex elements (triangles in 2D and tetrahedra in 3D) are well-known.
The generalization of barycentric coordinates ton-sided polygons is a topic of current research. In 1975,
Wachspress[13] proposed a rational basis function for convex polygons, which has recently generated
renewed interest. Meyer and co-workers[14] derived a simplified expression for Wachspress basis func-
tions, whereas Floater[15] proposed barycentric coordinates in which a vertex in a planar triangulation
is expressed as a convex combination of its neighboring elements. Recently, a new polygonal interpolant
based onnatural neighbors[9] was proposed[16]. This technique will be reviewed here and later we will
use it to construct conforming approximations on quadtree meshes.
Consider a domain� that is discretized byN nodes. The Voronoi cell of a pointp that lies within

the convex hull is the locus of all points that are closer to that point than to any other node in the plane[17].
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Fig. 3. Voronoi cell of pointp and construction of Laplace shape function. (a) Pentagonal reference element and (b) hexagonal
reference element.

InFig. 3, theVoronoi cell of pointp is shown.TheDelaunay triangulation canbeconstructedby connecting
nodes that have a common Voronoi edge. If a pointp lies inside a Delaunay triangulationt, those nodes
that define trianglet are natural neighbors of pointp [16]. The Laplace interpolant of pointp is defined as

�i(x) = �i(x)∑n
j=1 �j (x)

, �j (x) = sj (x)
hj (x)

, x ∈ R2, (1)

wheresi is the common edge between Voronoi cell of pointp and nodei andhi is the distance between
pointp and nodei (Fig. 3). The Laplace interpolant satisfies the following properties[10]:

(1) Non-negative, interpolate, and form a partition of unity:

0��i(x)�1, �i(xj ) = �ij ,

n∑
i=1

�i(x) = 1, (2)

where�ij is the Kronecker-delta.
(2) Linear precision or completeness[18]:

n∑
i=1

�i(�)xi = x, (3)

which indicates that the shape functions can exactly reproduce a linear function. On the boundary
of the domain� the interpolant is linear. This property in conjunction with the Kronecker-delta
property in Eq. (2) ensures that linear essential boundary conditions can be imposed as in finite
elements. For further details on the Laplace interpolant and its use within Galerkin methods, the
interested reader can refer to[19,20].

To construct conforming approximations over quadtree meshes, first we define the interpolant over ref-
erence elements. InFig. 4, the reference elements for a pentagon, hexagon, heptagon, and octagon are
shown. Note that all of the vertices (nodes) of the reference elements lie on the same circumcircle and
hence all the nodes are natural neighbors for any point that lies within the circumcircle. For a triangle and
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Fig. 4. Reference (canonical) elements. (a) Pentagon; (b) hexagon; (c) heptagon and (d) octagon.
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Fig. 5. Mapping from a regular pentagon to a quadtree element with one hanging node.

a bi-unit square with nodes on the circumcircle, Laplace and finite element interpolation are equivalent
[19]. The interpolation function over the physical element is constructed by using the isoparametric map
given in Eq. (3). InFig. 5, themapping from a regular pentagonal reference element to a quadtree element
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with one hanging node is shown. Since the mapping is affine, the interpolant remains linear on the edges
of the physical element.

3. Quadtree data structure

In this section, we briefly review the quadtree data structure and define some of the related terminology.
Formore information, the interested reader can see[1,21]. Quadtree is a hierarchical data structure, which
was first used in computer graphics[22–24]and image processing[25]. The use of quadtree for mesh
generation in finite element studies was introduced by Yerry and Shephard[2]. It has also been used in
computational fluid dynamics[26,27], h- andp-adaptive schemes[6,8,28], solution of Euler equation
[29], etc.
In a quadtree data structure, the domain is a unit square. This unit square, which is known as the

root of the data structure can be decomposed into four new equal elements, and each of these new
elements is split recursively until a stopping criterion is met. The new elements are calledchildrenof
the decomposed (father) element. The children can be recognized by their relative position in the father
element{SW,SE,NW,NE}. An element is called aleaf cell or a terminalcell if it does not have any
children. Two elements are calledneighboror adjacentif they have a common edge. Thelevel of an
element is the number of decompositions needed to obtain that element. The level of the root is zero.
The information about a quadtree can be stored in a tree structure. InFig. 6, a quadtree data structure

and its representative tree is shown, with a pointer connecting each element to its father. On using the
tree structure, information such as level of refinement, ancestors, neighbors, and children of an element
can be easily traced. For each element, the connectivity data, refinement level, a pointer to its father, and
a pointer to its children are stored. With this information, other required data such as the neighbors of an
element can be found[21]. Different storage methods for quadtree can be found in[1,27].
After each refinement, if the new elements and their adjacent elements are in different levels, hanging

nodes are generated. Hanging nodes are the vertices of the smaller element that lie on the edge of the
larger element, but not on any of its vertices (e.g., nodesa andb in Fig. 1a). InFig. 7a, a quadtree mesh
with two hanging nodes is shown. Note that the classical shape function of nodea along edge 1–2 of
elementA is parabolic, whereas it is piecewise-linear on edges 1-a-2 of elementsB andC. Therefore,

(a) (b)

Fig. 6. Quadtree and its representative tree.
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Fig. 7. A quadtree mesh and the shape function of a hanging node. (a) Quadtree mesh; (b) shape function of nodeaand (c) shape
function of nodea along edge 1–2.

finite elements are non-conforming along the edge 1–2, which include a hanging node. In order to satisfy
the conformity of the primary variable between these elements, careful treatment is required. In this paper,
we use the Laplace interpolants to construct conforming shape functions over a quadtree mesh. On using
this technique, there is no need to decompose existing elements or to use special nodal shape functions.

4. Conforming shape functions on quadtree meshes

As described in the previous section, classical finite elements are non-conforming along edges that
include a hanging node. In the present study, we use the polygonal interpolant introduced in Section 2 to
construct conformingC0(�) approximation on quadtree meshes. Consider elementA in Fig. 7a, which
has one hanging node along the edge 1–2. Referring toFig. 5, the Laplace shape functions are defined on
a regular pentagon and an affine (isoparametric) map is used to obtain the shape functions for element A.
In Fig. 7b, the shape function plot for nodea is shown.As one can observe, the shape function of nodea is
piecewise-linear along edges 1-aand 2-a (Fig. 7c). Note that this behavior on the boundary is distinct from
higher-order FEM, as mentioned earlier in Section 3. For elements with more hanging nodes, the shape
functions can be constructed by mapping from the corresponding polygonal reference element (hexagon,
heptagon, octagon, etc.). On using Laplace interpolation, there is no distinction between hanging nodes
and corner nodes and in fact all the nodes are considered as corner nodes and the shape function of all the
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Fig. 8. Numerical integration scheme based on the partition of the reference element.

nodes are obtained similarly. Because of this, there is no need to restrict the number of hanging nodes and
the 2:1 rule can be ignored. For the purpose of numerical integration, we first sub-divide the reference
element into triangular elements and integrate the function over these triangles by using well-known
quadrature rules. The integral of a scalar functionf on the physical element can be obtained as

∫
�e

f d� =
∫

�0

f |J2|d� =
n∑

j=1

∫
�j
�0

f |J2|d� =
n∑

j=1

∫ 1

0

∫ 1−�

0
f |Jj

1||J2|d�d�. (4)

The sequence of mappings used in the integration scheme are shown inFig. 8.

5. Adaptive strategy

The model problem which we consider is the following elliptic boundary-value problem:

−∇2u(x) = f (x), in �, (5a)

subject to the boundary conditions:

�u

�n
= g, on �N, (5b)

u = 0, on �D. (5c)

In the above equation,� is the problem domain,�D and�N are disjoint boundary segments of the domain
with �D ∪ �N = ��. The weak or variational form of these equations can be written as

B(u, v) = L(v), ∀v ∈ H 1
0 (�), (6a)
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B(u, v) =
∫

�
∇u · ∇v d�, (6b)

L(v) =
∫

�
f v d� +

∫
�N

gv ds, (6c)

whereH 1
0 (�) is the Sobolev space of functions with square-integrable derivatives and vanishing values

on��.
The error in any numerical solution can be defined as

e = u − uh, (7)

whereu is the exact solution field anduh is the numerical approximation. Since this local definition is
not computationally convenient, mathematical norms are introduced to measure the error. One of the
attractive mathematical norms, which can be easily related to the weak form in Eq. (6) is the energy of
the error:

‖e‖2 = B(e, e) =
∫

�
∇e · ∇e d�. (8)

Since the exact solution field is generally unknown, the approximate solution is post-processed to obtain
a more accurate measure for the gradient ofuh. This can be done by using recovery based methods such
asL2 or Z2 [30,31] projection method. Therefore, in general, ifu is unknown,e in Eq. (8) is replaced
by e� = u� − uh, whereu� is the recovered solution field ande∗ is an estimate for the true errore. The
relative percentage error in the energy norm is

� = ‖e‖
‖u‖ , (9)

where‖u‖ is the exact energy norm.
A simple criterion to achieve a solution with acceptable level of error is[32]:

���max, (10)

where�max is the maximum permissible error percentage in the whole domain, and� is given by

� = ‖e‖
(‖uh‖2 + ‖e‖2)1/2 . (11)

To obtain an economical mesh with high convergence rate, the equi-distribution of the error among all of
the elements is used, i.e.,

‖e‖ = √
m‖e‖i , (12)

wherem is the number of elements in the mesh. On the basis of the previous equations, we can infer that
the error in each element is such that[32]

‖e‖i ��max

(
(‖uh‖2 + ‖e‖2)

m

)1/2

≡ ēm. (13)
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Hence, those elements that do not satisfy the above equation are refined. If

�i = ‖e‖i

ēm

>1, (14)

the element is refined; otherwise it can be merged. In this study, first a reasonable rectangular mesh is
defined over the domain. Each of these elements can be considered as the root of a different tree. If based
on Eq. (14), refinement is needed on an element, the particular element is split into four new elements.
Each new element has the same aspect ratio as its father and therefore there is no need to check the aspect
ratio of the new elements. The above steps are repeated until all the elements satisfy Eq. (13).

6. Numerical results

To investigate the performance of the adaptive technique, a few numerical simulations are carried out.
First, the patch test result for the Laplace equation is studied on quadtree meshes with different number
of hanging nodes. Then, three Poisson problems that involve steep gradients and singularities within their
domain are solved. For the purpose of numerical integration, we use 2× 2 Gauss–Legendre quadrature
on four-node bilinear quadrilateral elements, whereas on elements with hanging nodes, 25 Gauss points
are used in each subtriangle. We interfaced the direct solver, SuperLU[33], to our adaptive code for the
solution of the linear system of equations. In the numerical examples, the maximum permissible error in
energy norm is set to five percent (�max= 0.05).

6.1. Patch test

The patch test for the Laplacian is∇c2u = 0 in � = (−1,1)2, with essential boundary conditions
u = g(x) = x1 + x2 imposed on the boundary of the biunit square. The exact solution isu(x) = x1 + x2.
Consider the three regularized (2:1 rule) meshes shown inFig. 9. The patch test results are presented
in Table 1. The relative error inL2 and energy norms areO(10−10) andO(10−10), respectively. The
second patch test is carried out over non-regularized meshes. The meshes are shown inFig. 10. The size
of adjacent elements are very different, and some elements have more than one hanging node along an
edge. This large change in element size does lead to a slight decrease in accuracy—errors inL2 norm are
O(10−7) andO(10−6), respectively. The shape function of nodea of meshFig. 10b is shown inFig. 11.
The linear behavior of the shape function along the edges can be seen, which demonstrates the conformity

(a) (b) (c)

Fig. 9. Patch test on regularized meshes. (a) Mesha (14 nodes); (b) meshb (73 nodes) and meshc (591 nodes).
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Fig. 10. Patch test on non-regularized elements. (a) Mesha (62 nodes) and (b) meshb (503 nodes).
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Fig. 11. Shape function of nodea in Fig. 10b. (a) 3D plot and (b) contour plot.

Table 1
Relative error in theL2 and energy norm for the patch test

Meshes Number of Number of Relative error in Relative error in
elements nodes L2 norm energy norm

a 7 14 9.9× 10−11 3.3× 10−10

b 52 73 3.5× 10−11 2.9× 10−10

c 496 591 6.8× 10−10 8.2× 10−9

of the shape function. The above numerical results indicate that sufficient accuracy is obtained in the patch
test, and we attribute this to the conformity of the interpolant. On-going research work is addressing the
issue of further improvements in the numerical integration.
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Fig. 12. Successive adaptive refinement and numerical solution for Poisson Problem I. (a) Level 0 (25 nodes); (b) level 1 (41
nodes); (c) level 2 (88 nodes); (d) level 3 (195 nodes); (e) level 4 (464 nodes); (f) level 5 (991 nodes) and (g)uh.

6.2. Poisson Problem I

We solve the Poisson equation over a unit square with Dirichlet boundary conditions:

−∇2u = f, in � = (0,1)2, (15a)

u = 0, on ��. (15b)

The source termf is chosen such that the exact solution of the problem is[8]:

u(x) = x101 x102 (1− x1)(1− x2). (16)

In Fig. 12, the initial mesh and its refinements are shown. We observe fromFig. 12g that the numerical
solutionuh computed on mesh 12f (991 nodes) captures the sharp gradient near (1,1).
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Fig. 13. Successive adaptive refinement and numerical solution for Poisson Problem II. (a) Level 0 (25 nodes); (b) level 1 (49
nodes); (c) level 2 (104 nodes); (d) level 3 (220 nodes); (e) level 4 (538 nodes); (f) level 5 (1347 nodes); (g) 3D plot ofuh and
(h) contour plot ofuh.

6.3. Poisson Problem II

The second Poisson problem with Dirichlet boundary conditions corresponding to an exact solution
[34]

u(x) = 5x2(1− x)2(e10x
2 − 1)y2(1− y)2(e10y

2 − 1) (17)

is solved on the unit square. The initial and refined meshes are shown inFig. 13.As one might expect, we
obtainmesh refinement in the neighborhood of the region with steep gradients.A 3D plot of the numerical
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solution is shown inFig. 13g, whereas a contour plot ofuh is presented inFig. 13h. In this example also,
the numerical solution is able to resolve the presence of the high gradient in the problem.

6.4. L-shaped domain

Finally, we consider the Laplace equation in theL-shaped region,�, shown inFig. 14. For the Dirichlet
problem, the exact solution is[35,36]:

u(r, 	) = r2/3 sin

(
2	

3

)
, (18)

wherer and	 are measured with respect to vertexA. The exact solution is used to impose the essential
boundary conditions on��. Since the derivatives ofu are singular at the origin, we expect to obtain
refinement near the re-entrant corner. InFig. 15, the initial mesh and the refined meshes are shown. As
expected, the quadtree mesh provides high resolution in an area surrounding the re-entrant corner. A
contour plot of the numerical solution is depicted inFig. 15g.

7. Concluding remarks

In this paper, we have presented a new method forh-adaptive mesh refinement. We used the natural
neighbor interpolant to construct conforming approximation over non-compatible quadtree meshes. The
process of constructing shape functions over physical elements is similar to classical finite elements.
First, we defined Laplace shape functions over reference elements[9], and then on using an isoparametric
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Fig. 15. Successive adaptive refinement near a corner singularity. (a) Level 0 (21 nodes); (b) level 1 (59 nodes); (c) level 2 (103
nodes); (d) level 3 (138 nodes); (e) level 4 (179 nodes); (f) level 5 (192 nodes) and (g) contour plot ofuh.

map, the shape functions over physical elements were obtained. The striking advantages of this technique
are its simplicity and generality. The technique preserves continuity on edges with multiple-nodes, and
avoids the need to use Lagrange multipliers or multi-point constraints, as is usually required. Numerical
results for the patch test and Poisson problems were presented. TheL2 and energy error norm results
for the patch test were sufficiently accurate, and the method was able to capture the sharp gradients and
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singularity in the Poisson problems. The efficiency of the quadtree data structure in combination with the
attractive properties of the Laplace interpolant results in a simple and robust mesh refinement technique.
Further verification studies and implementation of thish-adaptive method for solving elasticity problems
involving crack discontinuities and singularities are currently under investigation.
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